模拟星空背景照明的光源系统.pdf
《模拟星空背景照明的光源系统.pdf》由会员分享,可在线阅读,更多相关《模拟星空背景照明的光源系统.pdf(12页完成版)》请在专利查询网上搜索。
1、(19)中华人民共和国国家知识产权局 (12)实用新型专利 (10)授权公告号 (45)授权公告日 (21)申请号 202020722565.1 (22)申请日 2020.05.06 (73)专利权人 苏州大侎光学科技有限公司 地址 215500 江苏省苏州市常熟市经济开 发区高新技术产业园苏州路40号 (72)发明人 任建伟孙亦武丁金延陈卫波 (74)专利代理机构 南京申云知识产权代理事务 所(普通合伙) 32274 代理人 邱兴天 (51)Int.Cl. F21S 8/00(2006.01) F21V 7/05(2006.01) F21V 8/00(2006.01) F21V 9/08(2。
2、006.01) F21V 9/20(2018.01) F21V 23/00(2015.01) F21V 33/00(2006.01) (ESM)同样的发明创造已同日申请发明专利 (54)实用新型名称 一种模拟星空背景照明的光源系统 (57)摘要 本实用新型公开了一种模拟星空背景照明 的光源系统, 涉及照明领域。 所述系统主要包括 吸光板、 固定板、 光导纤维、 星光发生器、 反光板 和星光室。 本实用新型通过在吸光板上设置不同 直径的光导纤维, 模拟不同大小和星等的星星, 可以在室内环境中呈现晴朗夜晚的星空景象; 同 时配合滤光片和星光发生器的PWM控制电路, 可 模拟不同天气条件下夜空中星星。
3、的亮度, 达到模 拟真实星光照明的效果; 进一步还可以根据需要 模拟夜空中不同的星座, 既美观又具有科普效 果。 权利要求书1页 说明书7页 附图3页 CN 211976648 U 2020.11.20 CN 211976648 U 1.一种模拟星空背景照明的光源系统, 其特征在于: 所述光源系统包括: 吸光板(7)、 固 定板(9)、 光导纤维(3)、 星光发生器(4)、 反光板(2)和星光室(1); 所述吸光板(7)与所述固定板(9)连接, 所述吸光板(7)位于所述固定板(9)的上方, 所 述吸光板(7)与所述固定板(9)之间形成有容置腔体(10); 所述吸光板(7)为具有海绵孔状结构的材。
4、料, 所述吸光板(7)上开有透光窗口(5)和固 定孔, 所述透光窗口(5)贯穿所述吸光板(7)和所述固定板(9), 所述固定孔用于固定所述光 导纤维(3); 所述光导纤维(3)的出光端面固定在所述吸光板(7)上, 所述光导纤维(3)的入光端面 固定在所述星光发生器(4)上; 所述星光发生器(4)设置于所述容置腔体(10)内, 所述星光发生器(4)用于发射不同波 长的光, 所述星光发生器(4)所发出的光通过所述光导纤维(3)传导至所述吸光板(7)的上 表面, 形成星点光源; 所述反光板(2)与所述吸光板(7)连接, 所述反光板(2)位于所述吸光板(7)的上方, 所 述反光板(2)和所述吸光板(7。
5、)之间形成星光室(1); 所述反光板(2)包括依次堆叠设置的分光层(a)、 蓝色滤光层(b)和漫反射层(c); 所述 分光层(a)用于将入射到其上的光部分反射, 部分透射。 2.如权利要求1所述的模拟星空背景照明的光源系统, 其特征在于: 所述光导纤维(3) 包括多根具有不同直径的光导纤维, 用于模拟多个具有不同星等的星星。 3.如权利要求2所述的模拟星空背景照明的光源系统, 其特征在于: 所述光源系统还包 括PWM控制电路, 用于控制所述星光发生器(4)中的光源的电流。 4.如权利要求1至3任一项所述的模拟星空背景照明的光源系统, 其特征在于: 所述星 光发生器(4)与所述光导纤维(3)之间。
6、设置有可移动的滤光片(8)。 5.如权利要求4所述的模拟星空背景照明的光源系统, 其特征在于: 所述分光层(a)为 半透半反层。 权利要求书 1/1 页 2 CN 211976648 U 2 一种模拟星空背景照明的光源系统 技术领域 0001 本实用新型涉及照明技术领域, 尤其涉及一种模拟星空背景照明的光源系统。 所 述的星空背景照明包括星空云图分布和星空照明环境。 本实用新型应用于类似房屋室内的 密闭环境中照明, 可在室内模拟出真实的夜空星光照明效果。 背景技术 0002 目前仿生态元素设计在医学和建筑领域已经广泛应用, 生态学即对自然现象进行 搜集、 描述和记载的一种方法, 仿生态设计则是。
7、通过高新技术, 将生态自然环境元素通过仪 器、 设备、 影像、 声音、 触感等多种感观形式展现出来, 让使用者在不可能出现生态环境的条 件下直接或间接的体验自然生态环境。 在医学上, 通过提供仿生态环境的照明和影像, 使患 者在病床上或者病房内即体验亲临大自然环境, 通过改善患者的心情, 调整患者的身体激 素分泌和代谢, 可促进病患的康复几率和速度; 对于医护人员, 长期处于室内封闭环境会极 大地影响医护人员的身心健康, 进而影响工作, 通过仿生态技术, 为医护人员打造生态环境 的工作情景和氛围, 可有效改善医护人员的工作效率和工作质量。 然而, 现有的部分居住环 境受外界因素限制使住户几乎难。
8、以感受到自然的生态环境, 例如, 白天的阳光照射、 夜晚的 星空等, 这就使能够模拟自然环境的照明系统受到广泛的青睐。 0003 在建筑领域照明的要求主要有三方面: 1、 功能性要求, 即满足最基本的照明要求; 2、 装饰性要求, 要求美观; 3、 生理健康和心理健康要求。 满足生理健康要求和心里健康要 求, 首先需要模拟真实的自然天空环境。 实用新型内容 0004 针对现在的社会需求, 本实用新型提出了一种模拟星空背景照明的光源系统。 该 照明系统应用于类似房屋室内的密闭环境中照明, 可在室内呈现晴朗夜晚的星空景象。 0005 为了便于本实用新型的详细诠释, 在本实用新型的描述中, 需要对专。
9、业术语进行 解释: 0006 1. “星等” 是天文学上对星星明暗程度的一种表示方法, 通俗的说法是星星的等 级。 星的明暗一律用星等来表示, 星等数越小, 说明星越亮。 0007 2.视星等 0008 天体光度测量直接得到的星等同天体的距离有关, 称为视星等, 它反映天体的视 亮度。 一颗很亮的星可以由于距离远而显得很暗(星等数值大); 而一颗实际上很暗的星可 能由于距离近而显得很亮(星等数值小)。 对于点光源, 则代表天体在地球上的照度。 星等常 用m表示。 对单一波长测定的单色星等差与辐射探测器的特性无关。 但在一定波段内测定的 星等差, 随探测器的选择性而不同。 因此, 对应不同探测器。
10、有各种星等系统。 例如: 0009 a. “目视星等mv” 是人眼测定的星等。 美国哈佛大学天文台规定小熊座 星的mv+ 6.55等, 以此来确定目视星等的零点。 例如, 太阳的目视星等为-26.74等; 天狼星的目视星 等为-1.6等。 目视星等为1等的星, 在地面的照度约等于8.310-9勒克司。 说明书 1/7 页 3 CN 211976648 U 3 0010 b. “照相星等mp” 是用蓝敏照相底片测定的星等。 国际照相星等Ipg的零点是这样规 定的: 令目视星等介于5.56.5等间的A0型星的平均Ipg为mv。 0011 c. “仿视星等mpv、 国际仿视星等Ipv” 是用正色底片。
11、加黄色滤光片测定的。 它的分光 特性与人眼相近, 实际上取代了目视星等。 0012 d. “绝对星等” , 为了比较天体的发光强度, 采用绝对星等。 0013 绝对星等的计算: 0014 M的定义是, 把天体假想置于距离10秒差距处所得到的视星等。 若已知天体的视差 (以弧秒计)和经星际消光改正的视星等m, 可按下列公式计算绝对星等: 0015 Mm+5(1+log10 ) 0016 若已知天体的距离d和视星等m, 可按下列公式计算绝对星等: 0017 0018 其中d0是10秒差, 即32.616光年。 0019 对应不同系统的视星等有不同的绝对星等。 0020 若已知天体的绝对星等和视差 。
12、, 或者距离d, 可按照下列公式计算可视星等: 0021或mM-5(1+log10 ) 0022 普森公式: 用于计算星等与发光亮度之间的关系 0023 0024 联系两个天体的星等m1、 m2和它们的亮度E1、 E2。 这个星等尺度的定义一直沿用至 今。 星等尺度的零点由规定某颗星的星等值来确定。 0025 e. “光电星等” 通过对天体发光的波段的辐射测量, 来定义天体的光谱成分。 由于 天体的辐射光谱不同, 因此对于观察者来说, 可见星的颜色是不同的。 UBV系统包括对天体 在三个波长段的辐射测量, 传统上通过在检测系统前放置标准滤光星等片实现: U: 波长 360nm左右, 测量近紫外。
13、线成份, 所得为紫外星等。 B: 波长440nm左右, 测量蓝色成分, 所得为 蓝色星等(蓝等, 英文Blue magnitude)。 V: 波长550nm左右, 测量黄、 绿色成分, 和人眼所见 亮度接近, 所得为可见星等。 天文文献中, 不特别说明的星等一般是可见星等。 0026 本实用新型提出的一种模拟星空背景照明的光源系统, 包括: 吸光板、 固定板、 光 导纤维、 星光发生器、 反光板、 和星光室; 0027 所述吸光板与所述固定板连接, 所述吸光板位于所述固定板的上方, 所述吸光板 与所述固定板之间形成有容置腔体; 0028 所述吸光板为具有海绵孔状结构的材料, 所述吸光板上开有透。
14、光窗口和固定孔, 所述透光窗口贯穿所述吸光板和所述固定板, 所述固定孔用于固定所述光导纤维; 0029 所述光导纤维的出光端面固定在所述吸光板上, 所述光导纤维的入光端面固定在 所述星光发生器上; 0030 所述星光发生器设置于所述容置腔体内, 所述星光发生器用于发射不同光电星等 的光, 即不同波长的光; 所述星光发生器所发出的光通过所述光导纤维传导至所述吸光板 的上表面, 形成星点光源; 说明书 2/7 页 4 CN 211976648 U 4 0031 所述反光板与所述吸光板连接, 所述反光板位于所述吸光板的上方, 所述反光板 和所述吸光板之间形成星光室; 0032 所述反光板包括依次堆叠。
15、设置的分光层、 蓝色滤光层和漫反射层; 所述分光层用 于将入射到其上的光部分反射, 部分透射。 0033 进一步的, 所述光导纤维包括多根具有不同直径的光导纤维, 用于模拟多个具有 不同星等的星星。 0034 进一步的, 所述光导纤维(3)的直径d通过以下步骤获得: 0035 1)确定被模拟的星星的星等m1; 0036 2)根据普森公式(1)计算出被模拟的星星的辐射亮度E1; 0037 0038 其中, m2-26.7, 为太阳的星等, E21.865109cd/m2, 为太阳在地面的亮度; 0039 3)根据步骤2)中计算出的辐射亮度E1, 利用亮度与光通量的计算公式(2)计算光 导纤维(3。
16、)输出的光通量Pc; 0040 PcE1L2 (2) 0041 其中, 为光导纤维(3)的孔径角, 为已知量; LL1+L2, L1为光导纤维(3)出光面与 反光板(2)之间的距离, L2为人眼与反光板(2)之间的距离; 0042 4)根据步骤3)计算出的光通量Pc, 利用光通量与直径的关系式(3)、 (4)计算出光 纤直径d; 0043 AsPc/(Ed ) (3) 0044 As d2/4 (4) 0045 其中, As为光导纤维(3)的横截面积, Ed为星光发生器(4)在光导纤维(3)的横截面 上的照度值, 可通过测量得出; 为光导纤维(3)的透过率, 为常数。 0046 进一步的, 所。
17、述光源系统还包括PWM控制电路, 用于控制所述星光发生器(4)中的 光源的电流。 0047 进一步的, 所述星光发生器与所述光导纤维之间设置有可移动的滤光片。 0048 进一步地, 所述分光层的反射率: 透射率为85:25。 0049 在一种可实施的方案中, 所述分光层为半透半反层。 0050 本实用新型提供的一种模拟星空背景照明的光源系统通过设置不同直径的光导 纤维, 模拟不同大小和星等的星星, 可以在室内环境中呈现晴朗夜晚的星空景象; 同时配合 滤光片和星光发生器的PWM控制电路, 可模拟不同天气条件下(有云朵或无云朵)夜空中星 星的亮度, 达到模拟真实星光照明的效果; 进一步还可以根据需。
18、要模拟夜空中不同的星座, 既美观又具有科普效果。 附图说明 0051 为了更清楚地说明本实用新型实施例中的技术方案, 下面将对实施例描述中所需 要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本实用新型的一些实 施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图 获得其他的附图。 说明书 3/7 页 5 CN 211976648 U 5 0052 图1为本实用新型实施例所述的照明系统的结构示意图; 0053 图2为本实用新型实施例所述的反光板的结构示意图 0054 图3为本实用新型实施例所述的天蝎座主要恒星星等分布图; 0055 图4为本实用。
19、新型实施例所述的光导纤维传导星光结构示意图; 0056 图5为本实用新型实施例所述的猎户座目视星等分布图; 0057 其中: 1-星光室, 2-反光板, 3-光导纤维, 4-星光发生器, 5-透光窗口, 6-密闭室, 7- 吸光板, 8-滤光片, 9-固定板, 10-容置腔体, a-分光层, b-蓝色滤光层, c-漫反射层, A-出光 面, B-光导纤维的像, C-人眼。 具体实施方式 0058 下面将结合本实用新型实施例中的附图, 对本实用新型实施例中的技术方案进行 清楚、 完整地描述。 显然, 所描述的实施例仅仅是本实用新型一部分实施例, 而不是全部的 实施例。 基于本实用新型中的实施例,。
20、 本领域普通技术人员在没有作出创造性劳动的前提 下所获得的所有其他实施例, 都属于本实用新型保护的范围。 0059 此处所称的 “一个实施例” 或 “实施例” 是指可包含于本实用新型至少一个实现方 式中的特定特征、 结构或特性。 在本实用新型的描述中, 需要理解的是, 术语 “上” 、“下” 、 “顶” 、“底” 等指示的方位或位置关系为基于附图所示的方位或位置关系, 仅是为了便于描 述本实用新型和简化描述, 而不是指示或暗示所指的装置或元件必须具有特定的方位、 以 特定的方位构造和操作, 因此不能理解为对本实用新型的限制。 此外, 术语 “第一” 、“第二” 仅用于描述目的, 而不能理解为指。
21、示或暗示相对重要性或者隐含指明所指示的技术特征的 数量。 由此, 限定有 “第一” 、“第二” 的特征可以明示或者隐含的包括一个或者更多个该特 征。 而为了便于本实用新型的详细诠释, 在本实用新型的描述中, 需要理解的术语 “长度” 、 “宽度” 、“上” 、“下” 、“前” 、“后” 、“左” 、“右” 、“竖直” 、“水平” 、“穹顶” 、“边缘” 、“内” 、“外” 等 指示的方位或位置关系为基于附图所示的方位或位置关系, 以及 “漫反射光” 、“镜反射光” 、 “直射光” 、“透射光” 、“散射光” 、“星光” 、“天空背景光” 、“色温” 、“渐变” 、“发散角” 、“照度” 、 “。
22、光亮度” 、“光通量” 等光学术语来对光线或者照明进行描述。 且, 术语 “第一” 、“第二” 等是 用于区别类似的对象, 而不必用于描述特定的顺序或先后次序。 在本实用新型中, 除非另有 明确的规定和限定, 术语 “安装” 、“相连” 、“连接” 、“固定” 等术语应做广义理解, 例如, 可以 是固定连接, 也可以是可拆卸连接, 或成一体; 可以是机械连接, 也可以是电连接; 可以是直 接相连, 也可以通过中间媒介间接相连, 可以是两个元件内部的连通或两个元件的相互作 用关系。 对于本领域的普通技术人员而言, 可以根据具体情况理解上述术语在本实用新型 中的具体含义。 应该理解这样使用的数据在。
23、适当情况下可以互换, 以便这里描述的本实用 新型的实施例能够以除了在这里图示或描述的那些以外的顺序实施。 0060 实施例1 0061 如图1所示, 图1示出了本实用新型所述的一种模拟星空背景照明的光源系统的结 构示意图, 所述照明系统用于向密闭室6中照射模拟星光, 吸光板7、 固定板9、 光导纤维3、 星 光发生器4、 反光板2、 和星光室1; 0062 所述吸光板7与所述固定板9连接, 所述吸光板7位于所述固定板9的上方, 所述吸 光板7与所述固定板9之间形成有容置腔体10; 说明书 4/7 页 6 CN 211976648 U 6 0063 所述吸光板7为具有海绵孔状结构的材料, 所述吸。
24、光板7上开有透光窗口5和固定 孔, 所述透光窗口5贯穿所述吸光板7和所述固定板9, 所述固定孔用于固定所述光导纤维3; 0064 所述光导纤维3的出光端面固定在所述吸光板7上, 所述光导纤维3的入光端面固 定在所述星光发生器4上; 0065 所述星光发生器4设置于所述容置腔体10内, 所述星光发生器4用于发射不同光电 星等的光, 即不同波长的光, 所述星光发生器4所发出的光通过所述光导纤维3传导至所述 吸光板7的上表面, 形成星点光源; 0066 所述反光板2与所述吸光板7连接, 所述反光板2位于所述吸光板7的上方, 所述反 光板2和所述吸光板7之间形成星光室1; 0067 所述反光板2包括依。
25、次堆叠设置的分光层a、 蓝色滤光层b和漫反射层c; 所述分光 层a用于将入射到其上的光部分反射, 部分透射。 0068 可以理解的是, 所述密闭室5可以是房屋, 所述固定板9可以安装在房屋的顶板上, 用于通过所述透光窗口4向所述房屋内照射光, 即模拟后的星光可以从透光窗口4照射到所 述密闭室5中。 0069 进一步的, 如图2所示, 图2示出了反光板的结构示意图, 所述反光板2包括依次堆 叠设置的分光层a、 蓝色滤光层b和漫反射层c, 所述分光层a与所述星光室连通。 所述分光层 a用于将入射到其上的光部分反射, 部分透射。 所述分光层a的反射率和透射率的比值可根 据需要设置, 优选地, 所述分。
26、光层a的反射率: 透射率为85:25; 更优选地, 所述分光层a 为半透半反层。 0070 所述星光发生器4所发出的光通过所述光导纤维3传导至所述吸光板7的上表面, 形成星点光源; 所述星点光源发射出的光束照射到所述分光层a时, 部分光被反射, 形成 反射光束; 其余部分光透过所述分光层a, 进入蓝色滤光层b, 形成光束, 由于蓝色滤光 层b仅能透过蓝光, 其他波段的光均被蓝色滤光层b吸收, 因此所述光束透过所述蓝色滤 光层b形成蓝光光束, 所述蓝光光束入射到所述漫反射层c上被所述漫反射层c反射, 形成蓝 色漫反射光, 所述蓝色漫反射光透过所述蓝色滤光层b和所述分光层a, 形成漫射的天 空光。。
27、 由于光源的亮度、 色温调至于夜晚晴空时星星的真实的亮度和色温, 因此在反光板的 背侧形成的蓝色漫反射光较弱, 且光呈蓝黑色, 与星光透过地球大气层后发生的蓝黑色漫 反射光接近, 因此在视觉上为观察者提供了逼真的夜空星光景象。 所述反射光束由所述 透光窗口5射出, 照射到密闭室6中, 在视觉上呈现星光由室外射入室内的效果。 0071 吸光板7上布置有多根不同直径的光导纤维3, 用于模拟不同大小和具有不同星等 的星星。 0072 图3示出了天蝎座主要恒星星等分布图, 本实施例以模拟天蝎座恒星分布的光源 系统为例, 介绍本实用新型光源系统的具体获得过程。 0073 步骤1: 由普森公式(1)计算出。
28、天蝎座心宿二I的辐射亮度E1。 0074 0075 其中, 心宿二I的星等m11, 太阳的星等m2-26.7, 太阳在地面的亮度E21.865 109cd/m2, 则心宿二I在地面的亮度E10.0155cd/m2; 0076 步骤2: 依次计算出:尾宿五II、 尾宿八III、 房宿二IV、 房宿三V等目视星等的辐射 说明书 5/7 页 7 CN 211976648 U 7 亮度E2、 E3En。 0077 步骤3: 如图4所示, 光导纤维3的出光面A发出的光, 经过反光板2反射, 进入观察者 C的视野中, 根据上述的目视星等的辐射亮度Ei的计算结果, 通过亮度与光通量的计算公式 (2)计算光导。
29、纤维(3)输出的光通量Pci; 0078 PciEiL2 (2) 0079 其中, i1n, 为光导纤维3的孔径角, 为已知量; 0080 光导纤维3的输出端面距人眼C的距离L为本实用新型中的设计参量, 参考图4中, L L1+L2, L1近似为光导纤维3出光面与反光板2之间的距离, L2近似为人眼C与反光板2之间 的距离; 0081 步骤4: 根据步骤3计算出的光通量Pci, 利用光通量与直径的关系式(3)、 (4)计算出 光导纤维3的直径di; 0082 AsiPci/(Edi ) (3) 0083 Asi di2/4 (4) 0084 其中, Asi为第i根光导纤维3的横截面积, Edi。
30、为星光发生器4在第i根光导纤维3的 横截面上的照度值, 可通过测量得出; 为光导纤维3的透过率, 为常数。 0085 通过以上步骤计算出安装固定在吸光板7上的多根光导纤维3的直径, 可得到能够 模拟天蝎座恒星分布的光源系统, 该光源系统中, 不同直径的光导纤维可以模拟不同大小 以及不同星等的星星。 0086 人眼目视星等最大为6等星, 除太阳以外最亮星等为-4.6(金星), 本实用新型可以 模拟6-4.6星等的星星。 0087 进一步地, 本实施例中的光源系统还包括PWM控制电路, 用于控制星光发生器4中 的光源的电流, 进而控制星光发生器4中的光源的功率, 最终控制星光发生器4产生的照度 值。
31、Ed的大小。 该PWM控制电路采用10000步细分的值的控制电路, 可将星光发生器4的照度值 Ed控制输出104个等级。 0088 本实施例中星光发生器4与光导纤维3之间设置有可移动的滤光片8, 通过配置滤 光片8和星光发生器4的PWM控制电路, 实现模拟多种天气条件下夜空中星星的亮度, 例如: 当夜空中云层较厚时, 星星的亮度较低, 此时可以通过减小星光发生器4的电流和/或使用 透光率低的滤光片, 降低星星的亮度; 而在晴朗的夜空, 星星的亮度高, 此时可以通过增大 星光发生器4的电流和/或使用透光率高的滤光片, 增加星星的亮度。 0089 如图4所示, 光纤出光面A形成具有相应星等的星点光。
32、源, 该星点光源通过反光板2 反射, 形成星点光源的像B, 并通过透光窗口5进入观察者C的视野内。 由于星点光源以反射 镜成像的原理进入观察者C的视野, 因此所述的星点光源与观察者C之间的距离LL2+L1, 本方案可使观察者C观察的星光具有距离感。 0090 实施例2 0091 本实施例通过光电星等测量和计算机分析, 计算出猎户座及附近恒星的UBV光谱 组成, 以及各恒星的亮度, 恒星亮度的计算过程同实施例1。 根据恒星的亮度计算各光导纤 维的直径, 计算过程同实施例1。 根据计算结果可在本实施例的装置内实现模拟真实的猎户 座区域内的星等分布, 如图5所示, 给观察者呈现出真实的立体星空景象。 0092 以上所述仅为本实用新型的较佳实施例, 并不用以限制本实用新型, 凡在本实用 说明书 6/7 页 8 CN 211976648 U 8 新型的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本实用新型的保 护范围之内。 说明书 7/7 页 9 CN 211976648 U 9 图1 图2 说明书附图 1/3 页 10 CN 211976648 U 10 图3 图4 说明书附图 2/3 页 11 CN 211976648 U 11 图5 说明书附图 3/3 页 12 CN 211976648 U 12 。
- 内容关键字: 模拟 星空 背景 照明 光源 系统
一体式安全吊钳.pdf
漂浮电缆.pdf
线缆托架.pdf
防腐防潮的海洋监测设备固定装置.pdf
超声波布面预湿分解设备.pdf
道路边坡结构.pdf
多工位伺服系统.pdf
智慧采油装备.pdf
油气分离滤芯.pdf
公路裂缝修补装置.pdf
电解槽的极距测量装置.pdf
混凝土抗裂检测装置.pdf
多相流泵.pdf
高电压高倍率球形锰酸锂球磨混料机.pdf
卷扬机卷筒结构.pdf
防尘防砂式排气嘴结构.pdf
外科临床管路固定装置.pdf
免维护激振器.pdf
流延机自动对刀装置.pdf
全氢强对流罩式炉.pdf
表演机器人模型控制系统.pdf
亚跨超声速流场可控喷管的设计方法、装置、设备和介质.pdf
区块链协助搜索的物联网数据共享方法.pdf
油侧膜头装置及隔膜式压缩机.pdf
自动化PCB板测试系统.pdf
海洋藻类污染治理作业装备.pdf
抗鸡PML单克隆抗体及其应用.pdf
矿用液压油缸的定时养护装置.pdf
射频复电容率测量装置及方法.pdf
便携式一体化海水淡化器.pdf
快速定位及自动退料的冲压模具.pdf
基于灰水足迹的减污降碳协同度分析方法.pdf
具有强制通风结构的鞋.pdf
含纤维的浆状建筑材料.pdf
环保型水熄焦焦炭强度增强剂实用剂型.pdf
一种木屑烘干机的滚筒.pdf
用于聚乙烯制品的旋转模塑法.pdf
一种千斤顶.pdf
一种保暖记忆面料.pdf
一种球等鞭金藻海藻油的提取方法.pdf
利用压力瞬变传输流体的设备.pdf
一种食品包装塑料基材薄膜及其生产工艺.pdf
一种家庭幼儿保护报警装置.pdf
一种线性不确定性系统鲁棒故障检测滤波器设计方法.pdf
人类工程学旋转装钉器.pdf
一种硅片切割钢丝.pdf
基于DSP与CAN总线的水轮机监测系统.pdf
显示器用玻璃基板及其分选方法.pdf
一种高温工业窑炉.pdf
远程油墨供应器.pdf
不完全固化ZPIN的制造方法.pdf