多媒体推荐方法及装置.pdf

上传人:梁腾 文档编号:9339016 上传时间:2021-05-14 格式:PDF 页数:18 大小:762.74KB
收藏 版权申诉 举报 下载
多媒体推荐方法及装置.pdf_第1页
第1页 / 共18页
多媒体推荐方法及装置.pdf_第2页
第2页 / 共18页
多媒体推荐方法及装置.pdf_第3页
第3页 / 共18页
文档描述:

《多媒体推荐方法及装置.pdf》由会员分享,可在线阅读,更多相关《多媒体推荐方法及装置.pdf(18页完成版)》请在专利查询网上搜索。

1、(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 202010002148.4 (22)申请日 2020.01.02 (71)申请人 中国联合网络通信集团有限公司 地址 100033 北京市西城区金融大街21号 (72)发明人 张玉桃 (74)专利代理机构 北京中博世达专利商标代理 有限公司 11274 代理人 申健 (51)Int.Cl. G06F 16/435(2019.01) (54)发明名称 一种多媒体推荐方法及装置 (57)摘要 本申请的实施例提供一种多媒体推荐方法 及装置, 涉及多媒体领域, 能够解决多媒体推荐 准确。

2、度较低的问题。 具体的, 多媒体推荐装置先 获取第一信息和第二信息; 第一信息和第二信息 分别为用户相似度、 多媒体相似度和搜索记录中 的一个, 且第二信息与第一信息不同。 其次, 多媒 体推荐装置根据第一信息, 确定第一多媒体集 合, 并根据第二信息, 确定第二多媒体集合, 以及 确定第一多媒体集合和第二多媒体集合的交集。 最后, 多媒体推荐装置为目标用户推荐上述交集 中的至少一个待推荐多媒体。 多媒体推荐装置综 合考虑用户相似度、 多媒体相似度和搜索记录, 确定待推荐多媒体, 有效地提高了推荐的准确 度。 权利要求书3页 说明书10页 附图4页 CN 111191056 A 2020.05。

3、.22 CN 111191056 A 1.一种多媒体推荐方法, 其特征在于, 包括: 获取第一信息和第二信息; 所述第一信息和所述第二信息分别为用户相似度、 多媒体 相似度和搜索记录中的一个, 且所述第二信息与所述第一信息不同; 所述用户相似度为目 标用户与每一个其他用户之间的相似度; 所述多媒体相似度为第一多媒体与每一个其他多 媒体之间的相似度, 所述第一多媒体为所述目标用户在第一预设时间段播放的多媒体; 所 述搜索记录为所述目标用户在第二预设时间段内的搜索记录; 根据所述第一信息, 确定第一多媒体集合, 以及根据所述第二信息, 确定第二多媒体集 合; 确定至少一个待推荐多媒体, 所述至少一。

4、个待推荐多媒体属于所述第一多媒体集合和 所述第二多媒体集合的交集; 为所述目标用户推荐所述至少一个待推荐多媒体。 2.根据权利要求1所述的多媒体推荐方法, 其特征在于, 所述多媒体推荐方法还包括: 获取第三信息; 所述第三信息为所述用户相似度、 所述多媒体相似度和所述搜索记录 中的一个, 所述第三信息与所述第一信息不同, 且所述第三信息与所述第二信息不同; 根据所述第三信息, 确定第三多媒体集合; 所述确定至少一个待推荐多媒体, 包括: 确定所述至少一个待推荐多媒体, 所述至少一个待推荐多媒体属于所述第一多媒体集 合、 所述第二多媒体集合以及所述第三多媒体集合的交集。 3.根据权利要求1或2所。

5、述的多媒体推荐方法, 其特征在于, 所述第一信息为所述用户 相似度; 所述获取第一信息, 包括: 确定至少一条目标路径, 所述目标路径为预先建立的网络中包括所述目标用户和第一 用户的路径, 所述第一用户为任一其他用户; 根据预设算法, 确定所述至少一条目标路径的每条目标路径中, 所述目标用户与所述 第一用户之间的子相似度; 根据确定出的所有子相似度, 确定所述目标用户与所述第一用户之间的相似度。 4.根据权利要求3所述的多媒体推荐方法, 其特征在于, 所述根据所述第一信息, 确定 第一多媒体集合, 包括: 根据所述第一信息, 确定第二用户, 所述第二用户与所述目标用户之间的相似度大于 预设阈值。

6、; 获取所述第二用户的播放多媒体记录; 从所述第二用户的播放多媒体记录中, 选取N个多媒体, 所述第一多媒体集合包括所述 N个多媒体, N为正整数。 5.根据权利要求1或2所述的多媒体推荐方法, 其特征在于, 所述第一信息为所述多媒 体相似度; 所述获取第一信息包括: 根据预设算法, 获取所述第一多媒体的词向量以及其他每一多媒体的词向量; 计算所述第一多媒体的词向量以及其他每一多媒体的词向量之间的相似度, 得到所述 多媒体相似度。 6.根据权利要求1或2所述的多媒体推荐方法, 其特征在于, 所述第一信息为所述搜索 记录, 根据所述第一信息确定第一多媒体集合, 包括: 权利要求书 1/3 页 2。

7、 CN 111191056 A 2 在所述搜索记录中确定满足预设条件的多媒体; 确定所述第一多媒体集合包括所述满足预设条件的多媒体。 7.一种多媒体推荐装置, 其特征在于, 包括: 获取模块, 用于获取第一信息和第二信息; 所述第一信息和所述第二信息分别为用户 相似度、 多媒体相似度和搜索记录中的一个, 且所述第二信息与所述第一信息不同; 所述用 户相似度为目标用户与每一个其他用户之间的相似度; 所述多媒体相似度为第一多媒体与 每一个其他多媒体之间的相似度, 所述第一多媒体为所述目标用户在第一预设时间段播放 的多媒体; 所述搜索记录为所述目标用户在第二预设时间段内的搜索记录; 处理模块, 用于。

8、根据所述获取模块获取的所述第一信息, 确定第一多媒体集合, 以及根 据所述获取模块获取的根据所述第二信息, 确定第二多媒体集合; 所述处理模块, 还用于确定至少一个待推荐多媒体, 所述至少一个待推荐多媒体属于 所述第一多媒体集合和所述第二多媒体集合的交集; 所述处理模块, 还用于为所述目标用户推荐所述至少一个待推荐多媒体。 8.根据权利要求7所述的多媒体推荐装置, 其特征在于, 所述获取模块, 还用于获取第 三信息; 所述第三信息为所述用户相似度、 所述多媒体相似度和所述搜索记录中的一个, 所 述第三信息与所述第一信息不同, 且所述第三信息与所述第二信息不同; 所述处理模块, 还用于根据所述获。

9、取模块获取的所述第三信息, 确定第三多媒体集合; 所述确定至少一个待推荐多媒体, 包括: 确定所述至少一个待推荐多媒体, 所述至少一个待推荐多媒体属于所述第一多媒体集 合、 所述第二多媒体集合以及所述第三多媒体集合的交集。 9.根据权利要求7或8所述的多媒体推荐装置, 其特征在于, 所述第一信息为所述用户 相似度; 所述获取第一信息, 包括: 确定至少一条目标路径, 所述目标路径为预先建立的网络中包括所述目标用户和第一 用户的路径, 所述第一用户为任一其他用户; 根据预设算法, 确定所述至少一条目标路径的每条目标路径中, 所述目标用户与所述 第一用户之间的子相似度; 根据确定出的所有子相似度,。

10、 确定所述目标用户与所述第一用户之间的相似度。 10.根据权利要求9所述的多媒体推荐装置, 其特征在于, 所述根据所述第一信息, 确定 第一多媒体集合, 包括: 根据所述第一信息, 确定第二用户, 所述第二用户与所述目标用户之间的相似度大于 预设阈值; 获取所述第二用户的播放多媒体记录; 从所述第二用户的播放多媒体记录中, 选取N个多媒体, 所述第一多媒体集合包括所述 N个多媒体, N为正整数。 11.根据权利要求7或8所述的多媒体推荐装置, 其特征在于, 所述第一信息为所述多媒 体相似度, 所述获取模块还用于根据预设算法, 获取所述第一多媒体的词向量以及其他每 一多媒体的词向量; 所述处理模。

11、块还用于计算所述获取模块获取的所述第一多媒体的词向量以及其他每 一多媒体的词向量之间的相似度, 得到所述多媒体相似度。 权利要求书 2/3 页 3 CN 111191056 A 3 12.根据权利要求7或8所述的多媒体推荐装置, 其特征在于, 所述第一信息为所述搜索 记录, 所述处理模块还用于在搜索记录中确定满足预设条件的多媒体; 确定所述第一多媒体集合包括所述满足预设条件的多媒体。 13.一种多媒体推荐装置, 其特征在于, 包括处理器; 其中, 当所述多媒体推荐装置运行 时, 所述处理器运行指令, 使得所述多媒体推荐装置执行如权利要求1-6任一项所述多媒体 推荐方法。 14.一种计算机可读存。

12、储介质, 包括指令, 其特征在于, 当所述指令在计算机上运行时, 使得所述计算机执行如权利要求1-6任一项所述多媒体推荐方法。 15.一种计算机程序产品, 其特征在于, 所述计算机程序产品包括指令代码, 所述指令 代码用于执行如权利要求1-6任一项所述多媒体推荐方法。 权利要求书 3/3 页 4 CN 111191056 A 4 一种多媒体推荐方法及装置 技术领域 0001 本申请的实施例涉及多媒体领域, 尤其涉及一种多媒体推荐方法及装置。 背景技术 0002 多媒体推荐是近年来较为常见和热门的课题之一。 目前, 主要采用机器学习中常 用的推荐算法为用户推荐多媒体。 0003 常用的推荐算法包。

13、括基于内容的推荐(即根据用户与多媒体之间的关系推荐)、 协 同过滤推荐(即根据用户与用户之间的关系推荐, 或者根据多媒体与多媒体之间关系推 荐)、 基于关联规则推荐(即根据多媒体与多媒体之间关系推荐)等。 0004 上述推荐算法均在对用户进行多媒体推荐时仅考虑某一个维度, 因此, 采用上述 算法进行多媒体推荐时, 存在推荐不准确的问题。 发明内容 0005 本申请提供一种多媒体推荐方法及装置, 解决了多媒体推荐的准确度较低的问 题。 0006 第一方面, 提供一种多媒体推荐方法, 多媒体推荐装置先获取第一信息和第二信 息, 这里的第一信息和第二信息分别为用户相似度(目标用户与每一个其他用户之间。

14、的相 似度)、 多媒体相似度(第一多媒体与每一个其他多媒体之间的相似度, 第一多媒体为目标 用户在第一预设时间段播放的多媒体)和搜索记录(目标用户在第二预设时间段内的搜索 记录)中的一个, 且第二信息与第一信息不同。 之后, 多媒体推荐装置根据第一信息, 确定第 一多媒体集合, 并根据第二信息, 确定第二多媒体集合, 以及确定第一多媒体集合和第二多 媒体集合的交集。 这样, 多媒体推荐装置即可为目标用户推荐上述交集中的至少一个待推 荐多媒体。 0007 可以看出, 本申请中的多媒体推荐装置综合考虑了用户相似度、 多媒体相似度和 搜索记录, 基于这些因素为目标用户确定待推荐多媒体。 相比于现有技。

15、术, 本申请提供的多 媒体推荐方法有效地提高了推荐的准确度。 0008 第二方面, 提供一种多媒体推荐装置, 该多媒体推荐装置包括获取模块和处理模 块。 上述获取模块, 用于获取第一信息和第二信息; 第一信息和第二信息分别为用户相似 度、 多媒体相似度和搜索记录中的一个, 且第二信息与第一信息不同; 用户相似度为目标用 户与每一个其他用户之间的相似度; 多媒体相似度为第一多媒体与每一个其他多媒体之间 的相似度, 第一多媒体为目标用户在第一预设时间段播放的多媒体; 搜索记录为目标用户 在第二预设时间段内的搜索记录。 上述处理模块, 用于根据上述获取模块获取的第一信息, 确定第一多媒体集合, 以及。

16、根据上述获取模块获取的根据第二信息, 确定第二多媒体集合。 上述处理模块, 还用于确定至少一个待推荐多媒体, 至少一个待推荐多媒体属于第一多媒 体集合和所述第二多媒体集合的交集。 上述处理模块, 还用于为目标用户推荐至少一个待 推荐多媒体。 说明书 1/10 页 5 CN 111191056 A 5 0009 第三方面, 提供一种多媒体推荐装置, 包括处理器; 其中, 当多媒体推荐装置运行 时, 处理器运行指令, 使得多媒体推荐装置执行第一方面所述的多媒体推荐方法。 0010 第四方面, 提供一种计算机可读存储介质, 包括指令。 当指令在计算机上运行时, 使得计算机执行指令以实施上述第一方面所。

17、述的多媒体推荐方法。 0011 第五方面, 提供一种计算机程序产品, 计算机程序产品包括指令代码, 指令代码用 于执行指令以实施上述第一方面所述的多媒体推荐方法。 0012 本申请中第二方面、 第三方面、 第四方面以及第五方面的描述, 可以参考第一方面 的详细描述; 并且, 第二方面、 第三方面、 第四方面以及第五方面的描述的有益效果, 可以参 考第一方面的有益效果分析, 此处不再赘述。 0013 在本申请中, 上述多媒体推荐装置的名字对设备或功能模块本身不构成限定。 在 实际实现中, 这些设备或功能模块可以以其他名称出现。 只要各个设备或功能模块的功能 和本申请类似, 属于本申请权利要求及其。

18、等同技术的范围之内。 0014 本申请的这些方面或其他方面在以下的描述中会更加简明易懂。 附图说明 0015 图1为本申请的实施例提供的通信系统的结构示意图; 0016 图2为本申请的实施例提供的一种包含用户和电影的异构信息网络; 0017 图3为本申请的实施例提供的一种包含电影的异构信息网络; 0018 图4为本申请的实施例提供的多媒体推荐方法的流程示意图一; 0019 图5为本申请的实施例提供的多媒体推荐方法的流程示意图二; 0020 图6为本申请的实施例提供的一种多媒体推荐装置获取第一信息的方法的流程示 意图; 0021 图7为本申请的实施例提供的多媒体推荐装置的结构示意图一; 0022。

19、 图8为本申请的实施例提供的多媒体推荐装置的结构示意图二。 具体实施方式 0023 下面结合附图对本申请的实施例进行详细地描述。 0024 本文中术语 “和/或” , 仅仅是一种描述关联对象的关联关系, 表示可以存在三种关 系, 例如, A和/或B, 可以表示: 单独存在A, 同时存在A和B, 单独存在B这三种情况。 0025 本申请的说明书以及附图中的术语 “第一” 和 “第二” 等是用于区别不同的对象, 或 者用于区别对同一对象的不同处理, 而不是用于描述对象的特定顺序。 0026 此外, 本申请的描述中所提到的术语 “包括” 和 “具有” 以及它们的任何变形, 意图 在于覆盖不排他的包含。

20、。 例如包含了一系列步骤或单元的过程、 方法、 系统、 产品或设备没 有限定于已列出的步骤或单元, 而是可选地还包括其他没有列出的步骤或单元, 或可选地 还包括对于这些过程、 方法、 产品或设备固有的其它步骤或单元。 0027 需要说明的是, 本申请实施例中,“示例性的” 或者 “例如” 等词用于表示作例子、 例 证或说明。 本申请实施例中被描述为 “示例性的” 或者 “例如” 的任何实施例或设计方案不应 被解释为比其它实施例或设计方案更优选或更具优势。 确切而言, 使用 “示例性的” 或者 “例 如” 等词旨在以具体方式呈现相关概念。 说明书 2/10 页 6 CN 111191056 A 。

21、6 0028 在本申请的描述中, 除非另有说明,“多个” 的含义是指两个或两个以上。 0029 多媒体推荐是近年来较为常见和热门的课题之一。 目前主要是运用机器学习中常 用的推荐算法来解决为特定用户推荐特定多媒体的问题。 常用的推荐算法主要包括基于内 容的推荐、 协同过滤推荐、 基于关联规则推荐。 这些算法分别研究了如用户与用户之间的关 系, 用户与多媒体之间的关系, 多媒体与多媒体之间关系。 但是, 这些推荐算法在为用户进 行多媒体推荐时仅考虑某一个维度, 推荐的准确度较低。 0030 为了解决上述问题, 本申请实施例提供一种多媒体推荐方法及装置, 多媒体推荐 装置基于用户相似度、 多媒体相。

22、似度和搜索记录中的至少两个为用户推荐多媒体, 有效地 提高了推荐的准确度。 0031 本申请实施例提供的多媒体推荐方法适用于通信系统。 该通信系统可以包括终端 和服务器。 如图1所示, 该通信系统包括终端10和服务器11。 0032 上述多媒体推荐装置可以为终端10。 该终端10可以是手机、 平板电脑、 可穿戴电子 设备等便携式设备, 也可以是车载设备、 智能机器人等设备。 例如, 终端10可以根据计算得 到的用户相似度、 多媒体相似度、 搜索记录等向用户推荐至少一个待推荐多媒体。 0033 终端10中可以安装用于多媒体推荐的客户端。 该客户端可以在登录管理账户后, 获取用户相似度、 多媒体相。

23、似度、 搜索记录等向用户推荐至少一个待推荐多媒体。 0034 上述用于多媒体推荐的客户端可以是安装在终端10中的嵌入式应用程序(即终端 10的系统应用)或者可下载应用程序。 其中, 嵌入式应用程序是作为终端10(如手机)实现的 一部分提供的应用程序。 可下载应用程序是一个可以提供自己的因特网协议多媒体子系统 (internet protocol multimedia subsystem, IMS)连接的应用程序, 该可下载应用程序是 可以预先安装在终端10中的应用或可以由用户下载并安装在终端10中的第三方应用。 0035 此外, 上述多媒体推荐装置还可以是个人计算机(personal comp。

24、uter, PC)、 个人 数字助理(personal digital assistant, PDA)、 上网本、 服务器等计算设备, 如图1中的服 务器11为例。 服务器11可以根据计算得到的用户相似度、 多媒体相似度、 搜索记录等确定至 少一个待推荐多媒体, 向终端10发送确定出的至少一个待推荐多媒体的信息(如待推荐多 媒体的标识)。 终端10在接收到至少一个待推荐多媒体的信息后, 终端10向用户推荐该至少 一个待推荐多媒体。 0036 本申请实施例中的多媒体, 包括但不限于文本、 图像、 动画、 声音、 视频等多种形式 的载体。 以下为了便于描述, 本申请实施例以多媒体为电影为例进行说明。

25、。 0037 由于上述 “用户相似度” 的应用环境是异构信息网络, 因此为了便于理解本申请中 的实施例, 如图2所示, 本申请的实施例预先构建一个包含用户和电影的异构信息网络。 0038 以下结合图2对一些概念进行解释: 0039 1、 信息网络: 信息网络是知识表示的结构化文本方式, 网络中包含一系列节点和 边, 边用来连接节点和节点。 节点表示对象, 边表示关系, 其结构反映了储存在节点里的信 息的结构, 所以称为信息网络。 0040 2、 异构信息网络: 是指信息网络中的节点的类型至少有2种及以上, 网络中的关系 的类型也至少有2种及以上。 0041 以图2中包含用户和电影的异构信息网络。

26、为例, 该异构信息网络中的节点包括节 点用户、 电影、 演员、 电影类型和导演这五种类型。 其中, 节点211表示用户1, 节点212表示用 说明书 3/10 页 7 CN 111191056 A 7 户2; 节点221表示电影1, 节点222表示电影2, 节点223表示电影3; 节点231表示演员1, 节点 232表示演员2, 节点233表示演员3; 节点241表示电影类型1, 节点242表示电影类型2; 节点 251表示导演1, 节点252表示导演2。 其中, 以用户1作为目标用户(多媒体装置为该用户推荐 电影)。 0042 图2中的异构信息网络中的边包括用户连接电影、 电影连接演员、 电。

27、影连接导演、 电影连接电影类型这四种类型, 分别表示: 用户观看电影、 电影由演员演绎、 电影由导演拍 摄、 电影有多种电影类型(武侠、 家庭伦理、 悬疑、 警匪等)这四种关系。 0043 具体的, 在图2中, 节点211(用户1)连接节点221(电影1)和节点222(电影2), 表示 用户1观看过电影1和电影2。 节点212(用户2)连接节点222(电影2)和节点223(电影3), 表示 用户2观看过电影2和电影3。 节点221(电影1)连接节点231(演员1)、 节点232(演员2)、 节点 241(电影类型1)和节点251(导演1), 表示电影1是由演员1和演员2主演、 电影1属于电影类。

28、 型1、 电影1由导演1导演。 节点222(电影2)连接节点232(演员2)和节点233(演员3)、 节点242 (电影类型2)和节点252(导演2), 表示电影2是由演员2和演员3主演、 电影2属于电影类型2、 电影2由导演2导演。 节点223(电影3)连接节点233(演员3)、 节点242(电影类型2)和节点251 (导演1), 表示电影3是由演员3主演、 电影3属于电影类型2、 电影3由导演1导演。 0044 3、 元路径: 元路径是定义在异构信息网络中的连接2类节点的一条路径, 形式化定 义为Ai表示对象的类型, Ri表示关系的类型。 以图2中的异构信息网络为 例, 该异构信息网络包含。

29、用户和电影的对称元路径有: 用户-电影-用户、 用户-电影-演员- 电影-用户、 用户-电影-类型-电影-用户。 0045 4、 相同类型的对象的相似度计算: 0046 a.对于给定的1个对称元路径P, 定义计算2个相同类型的对象x和y之间的相似的 公式如下: 0047 0048 其中, pxy, pxx, pyy分别是x与y之间, x与x之间, y与y之间的路径实例。 0049 其中, 相同类型的对象是指, 从某种类型的对象出发, 最后回到该类型的对象, 例 如, 对称元路径 “用户-电影-演员-电影-用户” 是从用户这中类型的对象出发, 最后回到了 用户这个类型的对象。 0050 b.计算。

30、2个对象之间的相似度时涉及到矩阵乘法, 将元路径P(A1A2.Al)下的邻 接矩阵称为关系矩阵, 并定义其中为类型Ai和类型Aj之间的邻 接矩阵。 M(i,j)代表元路径P上对象xiA1和对象yiAl之间的路径实例数目。 0051 因此, 2个相同类型的对象之间相似度的计算公式可以转化为: 0052 0053 c.2个相同类型的对象之间的最终相似度需要将基于多个元路径下计算的相似度 组合起来计算。 给定r个从类型A出发又回到类型A的元路径P1,P2,P3.Pr, 及其相应的关 系矩阵M1,M2,M3.Mr, 元路径的长度不同表明2个对象关系的强度也不同, 定义赋予以上 说明书 4/10 页 8。

31、 CN 111191056 A 8 元路径的权重为w1,w2,w3.wr, 那么对象xi,xjA之间的相似度可以定义为: 0054 0055 由于上述 “电影相似度” 的应用环境是也是异构信息网络, 且该异构信息网络和图 2的异构信息网络相似。 因此, 如图3所示, 本实施例中还需要预先建立一个包含电影的异构 信息网络。 0056 根据图3的内容, 可以看出该异构信息网络中的节点包括语言、 电影、 演员、 电影类 型和导演这五种类型。 其中图3与图2的异构信息网络不同的是, 图3中包含电影的异构信息 网络的节点311表示语言1, 节点312表示语言2; 节点321表示电影1, 节点322表示电。

32、影2, 节 点323表示电影3; 其中, 以电影1作为目标电影(此处用来计算该电影与其他电影的相似度 的某一电影, 实际中可以为任意一部电影)。 0057 图3中的异构信息网络中的边包括语言连接电影、 电影连接演员、 电影连接导演、 电影连接电影类型这四种类型, 分别表示: 电影使用语言、 电影由演员演绎、 电影由导演拍 摄、 电影有多种电影类型(武侠、 家庭伦理、 悬疑、 警匪等)这四种关系。 与图2的异构信息网 络不同的是 “语言连接电影” , 其表示电影使用语言, 以节点311(语言1)连接节点321(电影 1)为例, 其表示电影1使用语言1。 0058 由于构建包含电影的异构信息网络与。

33、构建包含用户和电影的异构信息网络相类 似, 因此对于图3中的其他节点和关系可以参考图2中对应的描述, 此处不再赘述。 0059 下面结合附图对本申请实施例提供的多媒体推荐方法进行详细介绍。 0060 本申请实施例提供了一种多媒体推荐方法, 参考图4所示, 包括如下步骤: 0061 401、 多媒体推荐装置获取第一信息和第二信息。 0062 第一信息和第二信息分别为用户相似度、 电影相似度和搜索记录中的一个, 且第 二信息与第一信息不同。 0063 用户相似度为目标用户(多媒体推荐装置为该用户推荐多媒体)与每一个其他用 户之间的相似度。 0064 电影相似度为目标电影与每一个其他电影之间的相似度。

34、, 目标电影为目标用户在 第一预设时间段播放的电影。 0065 可选的, 第一预设时间段内的目标电影(目标用户可能感兴趣的某一电影)可以是 目标用户在某一时间段内观看的电影中最后一个; 也可以是目标用户在某一时间段内观看 的电影中最后N个电影, N为正整数; 也可以是用户在某一时间段内观看的电影中倒数第二 个。 第一预设时间段的时长可以根据实际情况设置, 此处不作限定。 0066 搜索记录为目标用户在第二预设时间段内的搜索记录。 0067 可选的, 第二预设时间段内的搜索记录可以是目标用户在某一时间段内搜索记录 中最后一个; 也可以是目标用户在某一时间段内搜索的电影中M个搜索记录, M为正整数。

35、; 也 可以是目标用户在某一时间段内的全部搜索记录。 具体第二预设时间段的时长可以根据实 际情况设置, 此处不作限定。 0068 402、 多媒体推荐装置根据第一信息, 确定第一电影集合, 以及根据第二信息, 确定 第二电影集合。 0069 可选的, 若第一信息为用户相似度, 则多媒体推荐装置选取与目标用户相似度高 说明书 5/10 页 9 CN 111191056 A 9 于预设阈值st1的用户(如用户A), 并获取用户A的电影观看记录。 之后, 多媒体推荐装置从 用户A的电影观看记录中选取S(S为正整数)个电影, 并将选取出的S个电影作为第一电影集 合。 0070 可选的, 多媒体推荐装置。

36、选取S个电影的方式可以为: 多媒体推荐装置对用户A的 电影观看记录中的电影按照评分从高到底的顺序排列, 然后, 选取评分位于前S个的电影。 0071 可选的, 若第一信息为电影相似度, 则多媒体推荐装置在与目标电影相似度高于 预设阈值st2的电影中选取Q个电影作为第一电影集合, 其中Q为正整数。 0072 可选的, 多媒体推荐装置选取Q个电影的方式可以为: 先对电影的相似度进行排 序, 并选取相似度从高到低的Q个电影。 0073 可选的, 若第一信息为搜索记录, 多媒体推荐装置根据搜索记录确定满足预设条 件的电影, 并确定第一电影集合。 该第一电影集合包含满足预设条件的电影。 0074 上述预。

37、设条件可以是以下一项或多项: 目标用户搜索次数最多的演员所主演的部 分或全部电影; 目标用户搜索次数最多的导演所拍摄的部分或全部电影; 目标用户搜索次 数最多的电影类型。 0075 可选的, 多媒体推荐装置在确定第一电影集合之前, 还可以对满足预设条件的电 影的上架时间进行排序, 选择最新上架的X个电影, X为正整数; 也可以对满足预设条件的电 影的评分进行排序, 选择评分从高到低的Y个电影, Y为正整数。 0076 多媒体推荐装置确定第二电影集合的方法与多媒体推荐装置确定第一电影集合 的方法类似, 这里不再一一赘述。 0077 403、 多媒体推荐装置确定至少一个待推荐电影, 至少一个待推荐。

38、电影属于第一电 影集合和第二电影集合的交集。 0078 404、 多媒体推荐装置为目标用户推荐至少一个待推荐电影。 0079 可以看出, 在本申请中多媒体推荐装置是通过用户相似度、 电影相似度和搜索记 录中的两个确定待推荐电影集合, 该待推荐电影集合为第一电影集合和第二电影集合的交 集, 因此, 本申请提供的多媒体推荐方法能够同时考虑多个关系, 最终为用户推荐更加准确 的电影。 0080 进一步可选的, 多媒体推荐装置还可以获取第三信息, 并根据第三信息确定第三 电影集合。 第三信息为用户相似度、 电影相似度和搜索记录中的一个, 且第三信息与上述第 一信息不同, 且第三信息与上述第二信息不同。。

39、 这种场景中, 多媒体推荐装置还可以结合第 三电影集合, 确定至少一个待推荐电影。 0081 现在对这种场景中本申请实施例提供的多媒体推荐方法进行描述。 结合图4, 如图 5所示, 本申请实施例提供的多媒体推荐方法还包括步骤501-步骤504。 0082 501、 多媒体推荐装置获取第三信息。 0083 第三信息为用户相似度、 电影相似度和搜索记录中的一个, 且第三信息与上述第 一信息不同, 且第三信息与上述第二信息不同。 0084 可选的, 步骤501中多媒体推荐装置获取第三信息可以在步骤401多媒体推荐装置 获取第一信息和第二信息之前, 也可以在步骤401之后, 也可以跟步骤401同时进行。

40、, 本实施 例在图5中以与步骤401同时进行为例。 0085 多媒体推荐装置获取第三信息的方法可以参考上述步骤401的描述, 这里不再进 说明书 6/10 页 10 CN 111191056 A 10 行详细赘述。 0086 502、 多媒体推荐装置根据第三信息确定第三电影集合。 0087 可选的, 步骤502中多媒体推荐装置根据第三信息确定第三电影集合可以在步骤 402多媒体推荐装置根据第一信息, 确定第一电影集合, 以及根据第二信息, 确定第二电影 集合之前, 也可以在步骤402之后, 也可以跟步骤402同时进行, 本实施例在图5中以与步骤 402同时进行为例。 0088 多媒体推荐装置确。

41、定第三电影集合的方法与多媒体推荐装置确定第一电影集合 的方法类似, 这里不再进行详细赘述。 0089 相应的, 图4中的步骤403可以替换为步骤503。 0090 503、 多媒体推荐装置确定至少一个待推荐电影, 该至少一个待推荐电影属于第一 电影集合、 第二电影集合以及第三电影集合的交集。 0091 相应的, 图4中的步骤404可以替换为步骤504。 0092 504、 多媒体推荐装置为目标用户推荐至少一个待推荐电影。 0093 这样, 在本申请中多媒体推荐装置是通过用户相似度、 电影相似度和搜索记录中 的三个确定待推荐电影集合, 因此, 本申请提供的多媒体推荐方法能够同时考虑多个关系, 最。

42、终为用户推荐更加准确的电影。 0094 从上面描述可知, 本申请实施例中的第一信息、 第二信息和第三信息分别为用户 相似度、 电影相似度、 搜索记录中的一个, 且三者不同。 多媒体推荐装置获取第一信息、 第二 信息和第三信息的方法均类似。 为了便于描述, 下面主要以多媒体推荐装置获取第一信息 为例进行说明。 0095 对第一信息为用户相似度的情况, 如图6所示, 多媒体推荐装置可以采用下述步骤 601-步骤603获取第一信息, 包括: 0096 601、 多媒体推荐装置确定至少一条目标路径, 目标路径为预先建立的网络中包括 目标用户和第一用户的路径, 第一用户为任一其他用户。 0097 在步骤。

43、601之前, 首先多媒体推荐装置需要建立一个包括目标用户和第一用户的 网络, 以图2的一种用户观看电影网络的异构信息网络为例, 目标路径是由目标用户开始以 任一其他用户结束的对称元路径, 目标用户和第一用户均为图2中的 “用户” 这种类型的对 象, 其中, 用户1是目标用户, 用户2是第一用户。 0098 602、 多媒体推荐装置根据预设算法, 确定至少一条目标路径的每条目标路径中, 目标用户与第一用户之间的子相似度。 0099 以图2中的异构信息网络中为例, 以目标用户出发以第一用户结束的对称元路径 中经过电影的目标路径包括: 0100 第一条目标路径: 目标用户-电影-第一用户; 0101。

44、 第二条目标路径: 目标用户-电影-演员-电影-第一用户; 0102 第三条目标路径: 目标用户-电影-类型-电影-第一用户。 0103步骤602即多媒体推荐装置根据公式分别计算上述3条目 标路径的相似度, 作为目标用户与第一用户之间的3个子相似度。 0104 603、 多媒体推荐装置根据确定出的所有子相似度, 确定目标用户与第一用户之间 说明书 7/10 页 11 CN 111191056 A 11 的相似度。 0105步骤603即多媒体推荐装置根据公式将步骤602中得到的3 个子相似度做加权计算, 得到目标用户与第一用户之间的相似度。 0106 对第一信息为电影相似度的情况, 多媒体推荐装。

45、置可以采用下述方法获取第一信 息, 包括: 0107 首先, 多媒体推荐装置根据预设算法, 获取目标电影的词向量以及其他每一电影 的词向量。 可选的, 预设算法可以为metapath2vec算法。 可选的, 目标电影的词向量是电影 的名称。 具体选择的算法跟实际情况相结合, 此处仅提供一种算法的示例。 0108 其次, 多媒体推荐装置计算目标电影的词向量以及其他每一电影的词向量之间的 相似度, 得到电影相似度。 例如, 多媒体推荐装置计算目标用户最近观看的一部电影的词向 量与网络中其他电影词向量的余弦相似度。 最后, 多媒体推荐装置将该余弦相似度作为目 标电影的词向量以及其他每一电影的词向量之。

46、间的电影相似度。 0109 本申请实施例可以根据上述方法示例对其对应的装置进行功能模块或者功能单 元的划分, 例如, 可以对应各个功能划分各个功能模块或者功能单元, 也可以将两个或两个 以上的功能集成在一个处理模块中。 上述集成的模块既可以采用硬件的形式实现, 也可以 采用软件功能模块或者功能单元的形式实现。 其中, 本申请实施例中对模块或者单元的划 分是示意性的, 仅仅为一种逻辑功能划分, 实际实现时可以有另外的划分方式。 0110 参照图7所示, 本申请的实施例提供一种多媒体推荐装置, 包括获取模块71、 处理 模块72。 0111 获取模块71, 用于获取第一信息和第二信息; 第一信息和。

47、第二信息分别为用户相 似度、 多媒体相似度和搜索记录中的一个, 且第二信息与第一信息不同; 用户相似度为目标 用户与每一个其他用户之间的相似度; 多媒体相似度为第一多媒体与每一个其他多媒体之 间的相似度, 第一多媒体为目标用户在第一预设时间段播放的多媒体; 搜索记录为目标用 户在第二预设时间段内的搜索记录。 0112 处理模块72, 用于根据获取模块71获取的第一信息, 确定第一多媒体集合, 以及根 据获取模块71获取的根据第二信息, 确定第二多媒体集合。 处理模块72, 还用于确定至少一 个待推荐多媒体, 至少一个待推荐多媒体属于第一多媒体集合和第二多媒体集合的交集。 处理模块72, 还用于。

48、为目标用户推荐至少一个待推荐多媒体。 0113 可选的, 获取模块71, 还用于获取第三信息; 第三信息为用户相似度、 多媒体相似 度和搜索记录中的一个, 第三信息与第一信息不同, 且第三信息与第二信息不同。 0114 可选的, 处理模块72, 还用于根据获取模块71获取的第三信息, 确定第三多媒体集 合。 其中, 处理模块72具体用于确定至少一个待推荐多媒体, 至少一个待推荐多媒体属于第 一多媒体集合、 第二多媒体集合以及第三多媒体集合的交集。 0115 可选的, 第一信息为用户相似度时, 处理模块72具体用于确定至少一条目标路径, 目标路径为预先建立的网络中包括目标用户和第一用户的路径, 。

49、第一用户为任一其他用 户。 根据预设算法, 确定至少一条目标路径的每条目标路径中, 目标用户与第一用户之间的 子相似度。 根据确定出的所有子相似度, 确定目标用户与第一用户之间的相似度。 0116 可选的, 处理模块72还用于根据第一信息, 确定第二用户, 第二用户与目标用户之 说明书 8/10 页 12 CN 111191056 A 12 间的相似度大于预设阈值。 相应的, 获取模块71还用于获取第二用户的播放多媒体记录, 从 第二用户的播放多媒体记录中, 选取N个多媒体, 第一多媒体集合包括N个多媒体, N为正整 数。 0117 可选的, 当第一信息为多媒体相似度时, 获取模块71还用于根。

50、据预设算法, 获取第 一多媒体的词向量以及其他每一多媒体的词向量。 相应的, 处理模块72还用于计算获取模 块71获取的第一多媒体的词向量以及其他每一多媒体的词向量之间的相似度, 得到多媒体 相似度。 0118 可选的, 当第一信息为搜索记录时, 处理模块72还用于在搜索记录中确定满足预 设条件的多媒体; 确定第一多媒体集合包括满足预设条件的多媒体。 0119 在另一种方案中, 上述如图7所示的多媒体推荐装置的获取模块71可以采用通信 接口实现, 处理模块72可以采用一个或者多个处理器实现; 此时参照图8所示, 提供多媒体 推荐装置, 包括: 处理器801, 其中处理器801用于执行程序或指令。

展开阅读全文
内容关键字: 多媒体 推荐 方法 装置
关于本文
本文标题:多媒体推荐方法及装置.pdf
链接地址:https://www.zhuanlichaxun.net/pdf/9339016.html
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1