多波束相控阵天线的外场测试系统与方法.pdf
《多波束相控阵天线的外场测试系统与方法.pdf》由会员分享,可在线阅读,更多相关《多波束相控阵天线的外场测试系统与方法.pdf(16页完成版)》请在专利查询网上搜索。
1、(19)国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 202410017306.1(22)申请日 2024.01.05(71)申请人 湖南卫导信息科技有限公司地址 410005 湖南省长沙市高新开发区尖山路18号长沙中电软件园二期B2栋10层1001-1010室(72)发明人 张勇虎谢淳芳戴志春蒋双全张宇(74)专利代理机构 长沙智嵘专利代理事务所(普通合伙)43211专利代理师 黄海波(51)Int.Cl.G01S 19/23(2010.01)G01R 29/10(2006.01)(54)发明名称一种多波束相控阵天线的外场测试系统与方法(57)摘要。
2、本申请公开了一种多波束相控阵天线的外场测试系统与方法,所述系统包括辅助天线设备组、多输出卫星信号模拟器、信号接收设备、自动化测试设备,所述辅助天线设备组包括环形滑轨、均匀间隔地设置在环形滑轨上随环形滑轨同步转动的N根天线杆,各天线杆上均设置有可在所述天线杆两端之间往复移动的发射天线,所述发射天线和待测的多波束相控阵天线之间的距离满足最小远场测试距离条件。本申请采用通用测量仪器搭建,不需要专用测量仪器,易于实现,成本低;本申请降低了对大型多波束相控阵天线性能测量的复杂度,节省了测试时间、提高了测试效率、节省测试成本、测量精度高,可满足不同类型多波束相控阵天线的测试需要,具有较广的市场应用前景。权。
3、利要求书3页 说明书10页 附图2页CN 117518207 A2024.02.06CN 117518207 A1.一种多波束相控阵天线的外场测试系统,其特征在于,包括:辅助天线设备组,包括可转动的环形滑轨(4)、均匀间隔地设置在所述环形滑轨(4)上随所述环形滑轨(4)同步转动的N根天线杆(7),且其中一根天线杆(7)在环形滑轨(4)所在平面上的投影长度等于环形滑轨(4)的半径r,其余天线杆(7)在环形滑轨(4)所在平面上的投影长度小于环形滑轨(4)的半径r,各天线杆(7)上均设置有可在所述天线杆(7)两端之间往复移动的发射天线(6),测试时,待测的多波束相控阵天线(5)放置于环形滑轨(4)中。
4、央,所述发射天线(6)和待测的多波束相控阵天线(5)之间的距离满足最小远场测试距离条件;多输出卫星信号模拟器(1),用于根据需求设置的信号频率、信号轨迹、信号功率播发与自由空间环境中真实卫星信号同步的N路伪卫星导航信号,所播发的N路伪卫星导航信号从不同的信号通道单独输出,通过射频线缆连接至对应天线杆(7)底部预留的信号接口上,并由对应天线杆(7)上的发射天线(6)向外播发;信号接收设备(3),与待测的多波束相控阵天线(5)电路连接,用于接收和测量待测的多波束相控阵天线(5)的输出信号的参数信息,所述参数信息包括信号功率、载噪比;自动化测试设备(2),分别与辅助天线设备组、多输出卫星信号模拟器(。
5、1)、信号接收设备(3)和待测的多波束相控阵天线(5)电路连接,用于控制辅助天线设备组中的环形滑轨(4)的转动和所有发射天线(6)的移动、控制多输出卫星信号模拟器(1)的信号播发参数、控制和读取信号接收设备(3)的信号接收参数、控制待测的多波束相控阵天线(5)的信号接收转发及波束指向,以及自动存储、分析测试数据,生成待测的多波束相控阵天线(5)的外场测试结果,得到待测的多波束相控阵天线(5)的性能参数,所述性能参数包括波束增益、波束宽度、波束零点、副瓣电平、副瓣位置。2.根据权利要求1所述的多波束相控阵天线的外场测试系统,其特征在于,待测的多波束相控阵天线(5)的相位中心位于环形滑轨(4)的圆。
6、心或正上方,所述发射天线(6)的法线方向始终对准待测的多波束相控阵天线(5)的相位中心。3.根据权利要求1所述的多波束相控阵天线的外场测试系统,其特征在于,待测的多波束相控阵天线(5)的形态包括球阵、半球阵、圆柱形阵、平面阵。4.根据权利要求1所述的多波束相控阵天线的外场测试系统,其特征在于,所述天线杆(7)的为L形状或弧形,其中,投影长度小于环形滑轨(4)的半径r的各天线杆(7)的投影长度为rr,r的取值为使得所有安装于环形滑轨(4)上的天线杆(7)自由端不产生碰撞、多个发射天线(6)移动到天线杆自由端时也不产生碰撞的最小长度。5.一种多波束相控阵天线的外场测试方法,基于如权利要求1至4中任。
7、一项所述的多波束相控阵天线的外场测试系统,其特征在于,包括步骤:S1、标定外场测试系统使用的发射天线(6)的增益G 、标定外场测试系统使用的连接待测的多波束相控阵天线(5)与信号接收设备(3)的射频线缆的线损S;S2、控制多输出卫星信号模拟器(1)输出一路伪卫星导航信号,使用射频线缆连接给信号接收设备(3)接收,以功率步进量P逐步调整伪卫星导航信号功率大小,测量出信号接收设备(3)接收载噪比线性变化的信号区间,接着调整多输出卫星信号模拟器(1)播发的伪卫星导航信号功率大小,使得信号接收设备(3)的接收载噪比处于线性区间中由大到小排序的四分之一位置,记录此时的接收载噪比为CT、此时信号接收设备(。
8、3)入口的输入功率为PT;权利要求书1/3 页2CN 117518207 A2S3、标定多输出卫星信号模拟器(1)输出至每个发射天线(6)入口的功率;S4、以待测的多波束相控阵天线(5)的相位中心为坐标原点建立三维笛卡尔坐标系,所述三维笛卡尔坐标系的X轴指向正东方、Y轴指向正北方,Z轴指向对天方位,方位角 为方向矢量在XY平面的投影与Y轴的夹角,其取值范围为0360;俯仰角为方向矢量和XY平面的夹角,其取值范围为090;S5、按照方位角 和俯仰角在各自的取值范围内按各自的扫描步进量 和得到的所有方位角 和俯仰角取值两两组合后得到所有指向角度(i,i),控制多输出卫星信号模拟器(1)开始播发伪卫。
9、星导航信号,自动化测试设备(2)控制辅助天线设备组中的环形滑轨(4)和所有发射天线(6)间歇移动使发射天线(6)遍历所有指向角度(i,i),遍历过程中,自动化测试设备(2)不断调整N路伪卫星导航信号功率,直至信号接收设备(3)接收的N路伪卫星导航信号载噪比均为CT止,记录此时多输出卫星信号模拟器(1)输出至各个发射天线(6)入口的功率大小Pi、测量并记录此时各个发射天线(6)与待测的多波束相控阵天线(5)之间的距离Li、测量并记录各个发射天线(6)所在的指向角度(i,i),完成所有位置的数据采集,记录采集的四维数据列(i,i,Pi,Li),其中i为数据采集个数;S6、根据增益G、射频线缆线损S。
10、、四维数据列(i,i,Pi,Li)计算得到待测的多波束相控阵天线(5)的性能参数,所述性能参数包括波束增益、波束宽度、波束零点、副瓣电平、副瓣位置。6.根据权利要求5所述的多波束相控阵天线的外场测试方法,其特征在于,步骤S2中,所述功率步进量P的取值范围为0.3dB1dB。7.根据权利要求5所述的多波束相控阵天线的外场测试方法,其特征在于,步骤S5中,各个发射天线(6)与待测的多波束相控阵天线(5)之间的距离Li通过激光测距仪或标尺进行测量得到;或者,步骤S5中,各个发射天线(6)与待测的多波束相控阵天线(5)之间的距离Li通过预先测量出的设备尺寸参数,根据发射天线(6)所在的位置进行空间几何。
11、计算得出。8.根据权利要求5所述的多波束相控阵天线的外场测试方法,其特征在于,步骤S5中,扫描步进量 和的取值范围均为0.53。9.根据权利要求5所述的多波束相控阵天线的外场测试方法,其特征在于,所述步骤S5具体包括步骤:S51、自动化测试设备(2)控制环形滑轨(4)转动,使得投影长度等于环形滑轨(4)的半径r的天线杆(7)位于方位角为0 的位置,再控制所有发射天线(6)全部移动至各天线杆(7)的自由端;S52、自动化测试设备(2)控制待测的多波束相控阵天线(5)的波束指向角度为(0、0),生成一个波束的信号,并控制信号接收设备(3)开始接收信号;S53、自动化测试设备(2)设置多输出卫星信号。
12、模拟器(1)仅向连接至投影长度等于环形滑轨(4)的半径r的天线杆(7)上的发射天线(6)播发一路伪卫星导航信号,设置该路伪卫星导航信号频率为F、轨迹点为待测的多波束相控阵天线(5)的相位中心点,并不断调整该路伪卫星导航信号功率,直至信号接收设备(3)的接收载噪比为CT止,记录此时多输出卫星信号模拟器(1)输出至发射天线(6)入口的功率大小P1、测量并记录此时所述发射天线(6)权利要求书2/3 页3CN 117518207 A3与待测的多波束相控阵天线(5)之间的距离L1,测量并记录所述发射天线(6)所在的指向角度(1,1),控制自动化测试设备(2)记录测量的四维数据列(1,1,P1,L1);S。
13、54、自动化测试设备(2)控制投影长度等于环形滑轨(4)的半径r的天线杆(7)上的发射天线(6)向远离天线杆(7)自由端的方向移动r,与其它天线杆(7)上发射天线(6)的位置齐平;S55、自动化测试设备(2)控制多输出卫星信号模拟器(1)播发N路伪卫星导航信号,与N个发射天线(6)一一对应,并控制信号接收设备(3)同时接收N路伪卫星导航信号;S56、自动化测试设备(2)不断调整N路伪卫星导航信号功率,直至信号接收设备(3)接收的N路伪卫星导航信号载噪比均为CT时为止,记录此时多输出卫星信号模拟器(1)输出至各个发射天线(6)入口的功率大小Pj、测量并记录此时各个发射天线(6)与待测的多波束相控。
14、阵天线(5)之间的距离Lj,测量并记录各个发射天线(6)所在的指向角度(j,j),其中j为各发射天线(6)的编号,取值为1N,控制自动化测试设备(2)记录测量的四维数据列(j,j,Pj,Lj),完成N个位置数据的同步采集;S57、自动化测试设备(2)保持环形滑轨(4)静止,再以设置的俯仰角的扫描步进量控制所有天线杆(7)上的N个发射天线(6),在天线杆(7)底部至投影长度为rr的位置范围内,从一端同步移动至另一端,每移动一次发射天线(6),则重复一次步骤S56,依次完成当前N个方位角条件下对应所有俯仰角方位的数据遍历采集;S58、自动化测试设备(2)以设置的方位角扫描步进量 控制环形滑轨(4)。
15、转动M,其中M=360/N,环形滑轨(4)每转动一次,则重复一次步骤S57,最终以扫描步进量 和完成方位角0360、俯仰角090 范围内所有位置的数据采集,记录采集的四维数据列(i,i,Pi,Li),其中i为数据采集个数。10.根据权利要求9所述的多波束相控阵天线的外场测试方法,其特征在于,所述步骤S6具体包括步骤:S61、自动化测试设备(2)根据固定频率的信号在自由空间中传播的衰减公式,计算所测得数据中,伪卫星导航信号频率为F、距离为Li时对应的功率衰减Ki:其中,伪卫星导航信号频率F的单位MHz,距离Li的单位Km;S62、根据各发射天线(6)入口的功率Pi,依次经发射天线(6)的增益G、。
16、自由空闲衰减Ki、待测的多波束相控阵天线(5)的增益Xi、射频线缆线损S后,到达信号接收设备(3)入口的功率等于PT,计算待测的多波束相控阵天线(5)的增益Xi的计算公式为:Xi=PT(Pi+G Ki S );S63、自动化测试设备(2)根据所采集的四维数据列(i,i,Pi,Li)、自由空间中传播的衰减公式、增益Xi的计算公式,经数据处理得到待测的多波束相控阵天线(5)在指向角度(i,i)下的波束增益Xi,记为三维数据列(i,i,Xi);S64、在三维数据列(i,i,Xi)中查找角度(0、0)所对应的增益Xi,即为待测的多波束相控阵天线(5)的波束增益结果;S65、根据三维数据列(i,i,Xi。
17、)画出天线方向图,从天线方向图中得出待测的多波束相控阵天线(5)的性能参数结果,包括波束宽度、波束零点、副瓣电平、副瓣位置。权利要求书3/3 页4CN 117518207 A4一种多波束相控阵天线的外场测试系统与方法技术领域0001本申请涉及天线测试技术领域,特别地,涉及一种多波束相控阵天线的外场测试系统与方法。背景技术0002近年来,在卫星导航领域中,多波束相控阵天线的应用越来越广泛,相比较普通天线,多波束相控阵天线的波束增益要求高,组成阵面的天线单元数量多,无论天线形态以为球阵、半球阵、圆柱形阵、平面阵等方式实现,其尺寸都很大、重量也很重。0003在真实应用中,多波束相控阵天线在使用前,都。
18、需要对其波束增益、波束宽度、副瓣电平等指标进行验收测试。但是很难找到合适的微波暗室,一方面暗室尺寸普遍不大,静区小,不满足多波束相控阵的远场测试条件;另一方面,暗室近场测试系统造价昂贵,测试周期长,费用高,而多波束相控阵天线的体积大、重量重,也难以找到合适的转台来承重。0004目前对大型多波束相控阵天线性能参数的测量,常规的方法有三类:0005一是直接在自由空间中测试,控制待测的多波束相控阵天线的波束指向某颗真实可见的导航卫星信号,通过接收机的载噪比来推算波束增益。0006二是在自由空间测试环境,通过远场标校塔架设辅助天线,配备三轴转台带动待测的多波束相控阵天线按照既定的间隔转动,以机械扫描的。
19、方法获得远场方向图数据,通过方向图得出其性能参数状态;0007三是在自由空间测试环境,将辅助天线搭载在无人机上,控制无人机在待测天线的远场区域,按照既定的间隔全空域覆盖飞行,以机械扫描的方法获得远场方向图数据,拟合生成方向图后得出其性能参数状态。0008但是采用以上常规测量方法会遇到以下问题:00091、直接对天接收测试时,由于接收机的接收载噪比只有当信号功率在一定范围内时才会呈现线性关系,而对天信号功率一般都很小且无法控制,此时接收机接收到的信号大小不一定满足载噪比线性变化的要求。此测试方法也只能测试天线的基本接收功能和波束增益,无法测试副瓣电平、波束宽度等性能参数,测试误差很大且无法收敛。。
20、00102、自由空间测试环境中配备三轴转台转动待测天线的方法,需要根据多波束相控阵天线尺寸大、重量重的特点配备三轴机械伺服转台,并且控制伺服转台以极小的步进角度进行全空域覆盖转动,实现要求高、成本高昂;00113、自由空间测试环境中配置无人机搭载辅助天线的方法,每次只能播发1个测试信号采集1个天线数据,测试时间很长,同时其实现方式复杂,成本高昂,并且由于无人机飞行的控制精度、飞行震动等影响,所采集的数据会有一定的误差,拟合生成的方向图不能精确反映天线性能参数状态。发明内容0012针对上述技术问题,本申请提供了一种多波束相控阵天线的外场测试系统与方说明书1/10 页5CN 117518207 A。
21、5法,以达到降低成本、简化结构、测试结果准确可靠的目的。0013本申请采用的技术方案如下:0014一种多波束相控阵天线的外场测试系统,包括:0015辅助天线设备组,包括可转动的环形滑轨、均匀间隔地设置在所述环形滑轨上随所述环形滑轨同步转动的N根天线杆,且其中一根天线杆在环形滑轨所在平面上的投影长度等于环形滑轨的半径r,其余天线杆在环形滑轨所在平面上的投影长度小于环形滑轨的半径r,各天线杆上均设置有可在所述天线杆两端之间往复移动的发射天线,测试时,待测的多波束相控阵天线放置于环形滑轨中央,所述发射天线和待测的多波束相控阵天线之间的距离满足最小远场测试距离条件;0016多输出卫星信号模拟器,用于根。
22、据需求设置的信号频率、信号轨迹、信号功率播发与自由空间环境中真实卫星信号同步的N路伪卫星导航信号,所播发的N路伪卫星导航信号从不同的信号通道单独输出,通过射频线缆连接至对应天线杆底部预留的信号接口上,并由对应天线杆上的发射天线向外播发;0017信号接收设备,与待测的多波束相控阵天线电路连接,用于接收和测量待测的多波束相控阵天线的输出信号的参数信息,所述参数信息包括信号功率、载噪比;0018自动化测试设备,分别与辅助天线设备组、多输出卫星信号模拟器、信号接收设备和待测的多波束相控阵天线电路连接,用于控制辅助天线设备组中的环形滑轨的转动和所有发射天线的移动、控制多输出卫星信号模拟器的信号播发参数、。
23、控制和读取信号接收设备的信号接收参数、控制待测的多波束相控阵天线的信号接收转发及波束指向,以及自动存储、分析测试数据,生成待测的多波束相控阵天线的外场测试结果,得到待测的多波束相控阵天线的性能参数,所述性能参数包括波束增益、波束宽度、波束零点、副瓣电平、副瓣位置。0019进一步地,待测的多波束相控阵天线的相位中心位于环形滑轨的圆心或正上方,所述发射天线的法线方向始终对准待测的多波束相控阵天线的相位中心。0020进一步地,所述待测的多波束相控阵天线的形态包括球阵、半球阵、圆柱形阵、平面阵。0021进一步地,所述天线杆的为L形状或弧形,其中,投影长度小于环形滑轨的半径r的各天线杆的投影长度为rr,。
24、r的取值为使得所有安装于环形滑轨上的天线杆自由端不产生碰撞、多个发射天线移动到天线杆自由端时也不产生碰撞的最小长度。0022本申请另一方面还提供了一种多波束相控阵天线的外场测试方法,基于所述的多波束相控阵天线的外场测试系统,包括步骤:0023S1、标定外场测试系统使用的发射天线的增益G 、标定外场测试系统使用的连接待测的多波束相控阵天线与信号接收设备的射频线缆的线损S;0024S2、控制多输出卫星信号模拟器输出一路伪卫星导航信号,使用射频线缆连接给信号接收设备接收,以功率步进量P逐步调整伪卫星导航信号功率大小,测量出信号接收设备接收载噪比线性变化的信号区间,接着调整多输出卫星信号模拟器播发的伪。
25、卫星导航信号功率大小,使得信号接收设备的接收载噪比处于线性区间中由大到小排序的四分之一位置,记录此时的接收载噪比为CT、此时信号接收设备入口的输入功率为PT;0025S3、标定多输出卫星信号模拟器输出至每个发射天线入口的功率;说明书2/10 页6CN 117518207 A60026S4、以待测的多波束相控阵天线的相位中心为坐标原点建立三维笛卡尔坐标系,所述三维笛卡尔坐标系的X轴指向正东方、Y轴指向正北方,Z轴指向对天方位,方位角 为方向矢量在XY平面的投影与Y轴的夹角,其取值范围为0360;俯仰角为方向矢量和XY平面的夹角,其取值范围为090;0027S5、按照方位角 和俯仰角在各自的取值范。
26、围内按各自的扫描步进量 和得到的所有方位角 和俯仰角取值两两组合后得到所有指向角度(i,i),控制多输出卫星信号模拟器开始播发伪卫星导航信号,自动化测试设备控制辅助天线设备组中的环形滑轨和所有发射天线间歇移动使发射天线遍历所有指向角度(i,i),遍历过程中,自动化测试设备不断调整N路伪卫星导航信号功率,直至信号接收设备接收的N路伪卫星导航信号载噪比均为CT止,记录此时多输出卫星信号模拟器输出至各个发射天线入口的功率大小Pi、测量并记录此时各个发射天线与待测的多波束相控阵天线之间的距离Li、测量并记录各个发射天线所在的指向角度(i,i),完成所有位置的数据采集,记录采集的四维数据列(i,i,Pi。
27、,Li),其中i为数据采集个数;0028S6、根据增益G、射频线缆线损S、四维数据列(i,i,Pi,Li)计算得到待测的多波束相控阵天线的性能参数,所述性能参数包括波束增益、波束宽度、波束零点、副瓣电平、副瓣位置。0029进一步地,步骤S2中,所述功率步进量P的取值范围为0.3dB1dB。0030进一步地,步骤S5中,各个发射天线与待测的多波束相控阵天线之间的距离Li通过激光测距仪或标尺进行测量得到;0031或者,0032步骤S5中,各个发射天线与待测的多波束相控阵天线之间的距离Li通过预先测量出的设备尺寸参数,根据发射天线所在的位置进行空间几何计算得出。0033进一步地,步骤S5中,扫描步进。
28、量 和的取值范围均为0.53。0034进一步地,所述步骤S5具体包括步骤:0035S51、自动化测试设备控制环形滑轨转动,使得投影长度等于环形滑轨的半径r的天线杆位于方位角为0 的位置,再控制所有发射天线全部移动至各天线杆的自由端;0036S52、自动化测试设备控制待测的多波束相控阵天线的波束指向角度为(0、0),生成一个波束的信号,并控制信号接收设备开始接收信号;0037S53、自动化测试设备设置多输出卫星信号模拟器仅向连接至投影长度等于环形滑轨的半径r的天线杆上的发射天线播发一路伪卫星导航信号,设置该路伪卫星导航信号频率为F、轨迹点为待测的多波束相控阵天线的相位中心点,并不断调整该路伪卫星。
29、导航信号功率,直至信号接收设备的接收载噪比为CT止,记录此时多输出卫星信号模拟器输出至发射天线入口的功率大小P1、测量并记录此时所述发射天线与待测的多波束相控阵天线之间的距离L1,测量并记录所述发射天线所在的指向角度(1,1),控制自动化测试设备记录测量的四维数据列(1,1,P1,L1);0038S54、自动化测试设备控制投影长度等于环形滑轨4的半径r的天线杆上的发射天线向远离天线杆自由端的方向移动r,与其它天线杆上发射天线的位置齐平;0039S55、自动化测试设备控制多输出卫星信号模拟器播发N路伪卫星导航信号,与N个发射天线一一对应,并控制信号接收设备同时接收N路伪卫星导航信号;说明书3/1。
30、0 页7CN 117518207 A70040S56、自动化测试设备不断调整N路伪卫星导航信号功率,直至信号接收设备接收的N路伪卫星导航信号载噪比均为CT时为止,记录此时多输出卫星信号模拟器输出至各个发射天线入口的功率大小Pj、测量并记录此时各个发射天线与待测的多波束相控阵天线之间的距离Lj,测量并记录各个发射天线所在的指向角度(j,j),其中j为各发射天线的编号,取值为1N,控制自动化测试设备记录测量的四维数据列(j,j,Pj,Lj),完成N个位置数据的同步采集;0041S57、自动化测试设备保持环形滑轨静止,再以设置的俯仰角的扫描步进量控制所有天线杆上的N个发射天线,在天线杆底部至投影长度。
31、为rr的位置范围内,从一端同步移动至另一端,每移动一次发射天线,则重复一次步骤S56,依次完成当前N个方位角条件下对应所有俯仰角方位的数据遍历采集;0042S58、自动化测试设备以设置的方位角扫描步进量 控制环形滑轨转动M,其中M=360/N,环形滑轨每转动一次,则重复一次步骤S57,最终以扫描步进量 和完成方位角0360、俯仰角090 范围内所有位置的数据采集,记录采集的四维数据列(i,i,Pi,Li),其中i为数据采集个数。0043进一步地,所述步骤S6具体包括步骤:0044S61、自动化测试设备根据固定频率的信号在自由空间中传播的衰减公式,计算所测得数据中,伪卫星导航信号频率为F、距离为。
32、Li时对应的功率衰减Ki:00450046其中,伪卫星导航信号频率F的单位MHz,距离Li的单位Km;0047S62、根据各发射天线入口的功率Pi,依次经发射天线的增益G、自由空闲衰减Ki、待测的多波束相控阵天线的增益Xi、射频线缆线损S后,到达信号接收设备入口的功率等于PT,计算待测的多波束相控阵天线的增益Xi的计算公式为:0048Xi=PT(Pi+G Ki S );0049S63、自动化测试设备根据所采集的四维数据列(i,i,Pi,Li)、自由空间中传播的衰减公式、增益Xi的计算公式,经数据处理得到待测的多波束相控阵天线在指向角度(i,i)下的波束增益Xi,记为三维数据列(i,i,Xi);。
33、0050S64、在三维数据列(i,i,Xi)中查找角度(0、0)所对应的增益Xi,即为待测的多波束相控阵天线的波束增益结果;0051S65、根据三维数据列(i,i,Xi)画出天线方向图,从天线方向图中得出待测的多波束相控阵天线的性能参数结果,包括波束宽度、波束零点、副瓣电平、副瓣位置。0052相比现有技术,本申请具有以下有益效果:00531、本申请的外场测试系统在自由空间环境中搭建使用,不依赖使用环境,不需要搭建微波暗室,不需要配备天线机械伺服转台,便于布设,费用低,极大降低对大型多波束相控阵天线性能参数测量的复杂度,极大的节省测试成本。00542、本申请的测试系统使用N个发射天线并行播发N路。
34、测试信号,同时采集多波束相控阵天线N个位置点的数据,相比较于只有1个发射天线提供1路测试信号的技术措施,本申请需要的测试时间是现有措施的1/N,极大的节省了测试时间,提高了测试效率。00553、本申请具有通用性,本申请的测试对象适用于大多数多波束相控阵天线,如天说明书4/10 页8CN 117518207 A8线的外观可以呈现为球形形态、半球形形态、圆柱形形态、平面阵形态等,本申请对各种形态的多波束相控阵天线的波束增益、天线方向图相关的波束宽度、波束零点、副瓣电平、副瓣位置等性能参数测量,均可适用,功能强大,满足不同类型多波束相控阵天线的测试需要,具有广泛的市场应用前景。00564、本申请操作。
35、灵活,控制简单,以软件控制的方式实现自动化测试。完成系统搭建后,将标定的各设备参数输入至自动化测试设备中,设置初始化参数,软件可自动控制设备完成数据采集,自动存储和分析数据,输出天线的波束增益、方向图相关的波束宽度、波束零点、副瓣电平、副瓣位置等结果。00575、本申请的结果测量精度高,本申请测试过程中保持尺寸大、重量重的被测多波束相控阵天线静止,仅控制尺寸小、重量轻的辅助天线设备组移动,对测试中使用的移动机械要求相对很小,保证了机械移动精度,防止机械移动误差导致的测量误差。测试过程中保持信号接收设备接收载噪比恒定为CT,确保播发的信号功率处于信号接收设备的线性变化区间内,同时又远大于对天真实。
36、信号,防止了信号接收设备饱和、对天信号干扰等导致的测量误差。同时数据采集过程中不需要人工干预,避免了人工干预可能引入的操作误差。00586、本申请测试系统使用通用测量仪器搭建,不需要专用测量仪器,易于实现,成本低。0059除了上面所描述的目的、特征和优点之外,本申请还有其它的目的、特征和优点。下面将参照附图,对本申请作进一步详细的说明。附图说明0060构成本申请的一部分的附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:0061图1为本发明一种多波束相控阵天线的外场测试系统的结构示意图(辅助天线设备组为前视图视角)。0062图2。
37、为本发明一种多波束相控阵天线的外场测试系统的结构示意图(辅助天线设备组为俯视图视角)。0063图中:1、多输出卫星信号模拟器;2、自动化测试设备;3、信号接收设备;4、环形滑轨;5、多波束相控阵天线;6、发射天线;7、天线杆。具体实施方式0064需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。0065如图1和图2所示,本申请的优选实施例提供了一种多波束相控阵天线的外场测试系统,包括:0066辅助天线设备组,包括可转动的环形滑轨4、均匀间隔地设置在所述环形滑轨4上随所述环形滑轨4同步转动的N根天线杆7,N为可以被360整除。
38、的整数,其中一根天线杆7在环形滑轨4所在平面上的投影长度等于环形滑轨4的半径r,其余天线杆7在环形滑轨4所在平面上的投影长度小于环形滑轨4的半径r,各天线杆7上均设置有可在所述天线杆7两端之间往复移动的发射天线6,测试时,待测的多波束相控阵天线5放置于环形滑轨4中央,所述说明书5/10 页9CN 117518207 A9发射天线6和待测的多波束相控阵天线5之间的距离满足最小远场测试距离条件;0067多输出卫星信号模拟器1,用于根据需求设置的信号频率、信号轨迹、信号功率播发与自由空间环境中真实卫星信号同步的N路伪卫星导航信号,所播发的N路伪卫星导航信号从不同的信号通道单独输出,通过射频线缆连接至。
39、对应天线杆7底部预留的信号接口上,并由对应天线杆7上的发射天线6向外播发;0068信号接收设备3,与待测的多波束相控阵天线5电路连接,用于接收和测量待测的多波束相控阵天线5的输出信号的参数信息,所述参数信息包括信号功率、载噪比;0069自动化测试设备2,分别与辅助天线设备组、多输出卫星信号模拟器1、信号接收设备3和待测的多波束相控阵天线5电路连接,用于控制辅助天线设备组中的环形滑轨4的转动和所有发射天线6的移动、控制多输出卫星信号模拟器1的信号播发参数、控制和读取信号接收设备3的信号接收参数、控制待测的多波束相控阵天线5的信号接收转发及波束指向,以及自动存储、分析测试数据,生成待测的多波束相控。
40、阵天线5的外场测试结果,得到待测的多波束相控阵天线5的性能参数,所述性能参数包括波束增益、波束宽度、波束零点、副瓣电平、副瓣位置。0070优选地,待测的多波束相控阵天线5的相位中心位于环形滑轨4的圆心或正上方,所述发射天线6的法线方向始终对准待测的多波束相控阵天线5的相位中心,所述发射天线6可由自动化测试设备2控制,以固定的角度步进在相应天线杆7两端之间移动,移动过程中发射天线6的法线方向始终对准环形滑轨4中心处的待测的多波束相控阵天线5的相位中心,连接至发射天线的射频线缆和控制发射天线移动的控制线缆,均沿对应天线杆拉到天线杆底部,预留连接接口。0071本实施例需使得位于任意位置的发射天线6的。
41、法线方向均对准待测的多波束相控阵天线5的相位中心,待测的多波束相控阵天线5的相位中心位于环形滑轨4的圆心或正上方,从而简化自动化测试设备的控制,降低设备控制的复杂度。0072优选地,所述待测的多波束相控阵天线的形态包括球阵、半球阵、圆柱形阵、平面阵,满足不同类型多波束相控阵天线的测试需要,具有广泛的市场应用前景。0073优选地,所述天线杆7的为L形状或弧形,其中,投影长度小于环形滑轨4的半径r的各天线杆7的投影长度为rr,r的取值为使得所有安装于环形滑轨4上的天线杆7自由端不产生碰撞、多个发射天线6移动到天线杆自由端时也不产生碰撞的最小长度。0074本实施例既便于完成待测的多波束相控阵天线5顶。
42、点数据采集,同时,由于r足够小,可使用N根天线杆7上的所有发射天线6对准待测的多波束相控阵天线5的顶点之外的所有点播发测试信号,采集数据,以此完成待测的多波束相控阵天线5的顶点、顶点之外其它所有的数据采集,保证数据的完整性。0075上述实施例中,各天线杆7固定安装在环形滑轨4上,在方位遍历时,自动化测试设备2只需要控制环形滑轨4转动,就可带动N个发射天线6的方位角同步变化,不需要对N个天线杆7单独控制,操作简单,简化操作控制,提高设备控制的可靠性。0076综上所述,上述实施例提供的多波束相控阵天线的外场测试系统具有如下优点;0077上述实施例提供的测试系统在自由空间环境中搭建使用,不依赖使用环。
43、境,不需要搭建微波暗室,不需要配备天线机械伺服转台,便于布设,费用低,极大降低对大型多波束相控阵天线性能参数测量的复杂度,极大的节省测试成本。说明书6/10 页10CN 117518207 A100078上述实施例提供的测试系统使用N个发射天线并行播发N路测试信号,同时采集多波束相控阵天线N个位置点的数据,相比较于只有1个发射天线提供1路测试信号的方法,本实施例需要的测试时间是一般方法的1/N,极大的节省了测试时间,提高了测试效率。0079具有通用性,上述实施例的测试对象适用于大多数多波束相控阵天线,天线的外观可以呈现为球形形态、半球形形态、圆柱形形态、平面阵形态等,本发明对各种形态的多波束相。
44、控阵天线的波束增益、天线方向图相关的波束宽度、波束零点、副瓣电平、副瓣位置等性能参数测量,均可适用。0080上述实施例的结果测量精度高,测试过程中保持尺寸大、重量重的被测多波束相控阵天线静止,仅控制尺寸小、重量轻的辅助天线设备组移动,对测试中使用的移动机械要求相对很小,保证了的机械移动精度,防止机械移动误差导致的测量误差。测试过程中保持信号接收设备接收载噪比恒定为CT,确保播发的信号功率处于信号接收设备的线性变化区间内,同时又远大于对天真实信号,防止了信号接收设备饱和、对天信号干扰等导致的测量误差。同时数据采集过程中不需要人工干预,避免了人工干预可能引入的操作误差。0081上述实施例提供的测试。
45、系统使用通用测量仪器搭建,不需要专用测量仪器,易于实现,成本低。0082本申请另一优选实施例还提供了一种多波束相控阵天线的外场测试方法,基于所述的多波束相控阵天线的外场测试系统,包括步骤:0083S1、标定外场测试系统使用的发射天线6的增益G 、标定外场测试系统使用的连接待测的多波束相控阵天线5与信号接收设备3的射频线缆的线损S;0084S2、控制多输出卫星信号模拟器1输出一路伪卫星导航信号,使用射频线缆连接给信号接收设备3接收,以功率步进量P逐步调整伪卫星导航信号功率大小,测量出信号接收设备3接收载噪比线性变化的信号区间,接着调整多输出卫星信号模拟器1播发的伪卫星导航信号功率大小,使得信号接。
46、收设备3的接收载噪比处于线性区间中由大到小排序的四分之一位置,记录此时的接收载噪比为CT、此时信号接收设备3入口的输入功率为PT;0085S3、标定多输出卫星信号模拟器1输出至每个发射天线6入口的功率;0086S4、以待测的多波束相控阵天线5的相位中心为坐标原点建立三维笛卡尔坐标系,所述三维笛卡尔坐标系的X轴指向正东方、Y轴指向正北方,Z轴指向对天方位,方位角 为方向矢量在XY平面的投影与Y轴的夹角,其取值范围为0360;俯仰角为方向矢量和XY平面的夹角,其取值范围为090;0087S5、按照方位角 和俯仰角在各自的取值范围内按各自的扫描步进量 和得到的所有方位角 和俯仰角取值两两组合后得到所。
47、有指向角度(i,i),控制多输出卫星信号模拟器1开始播发伪卫星导航信号,自动化测试设备2控制辅助天线设备组中的环形滑轨4和所有发射天线6间歇移动使发射天线6遍历所有指向角度(i,i),遍历过程中,自动化测试设备2不断调整N路伪卫星导航信号功率,直至信号接收设备3接收的N路伪卫星导航信号载噪比均为CT止,记录此时多输出卫星信号模拟器1输出至各个发射天线6入口的功率大小Pi、测量并记录此时各个发射天线6与待测的多波束相控阵天线5之间的距离Li、测量并记录各个发射天线6所在的指向角度(i,i),完成所有位置的数据采集,记录采集的四维数据列(i,i,Pi,Li),其中i为数据采集个数;0088S6、根。
48、据增益G、射频线缆线损S、四维数据列(i,i,Pi,Li)计算得到待测的多波说明书7/10 页11CN 117518207 A11束相控阵天线5的性能参数,所述性能参数包括波束增益、波束宽度、波束零点、副瓣电平、副瓣位置。0089上述实施例的步骤S2中,取信号接收设备3接收载噪比处于线性区间中由大到小排序的四分之一位置附近的载噪比作为参考载噪比,一方面由于此时参考载噪比处于线性范围内并且其上有线性余量,可保证数据采集过程中不会出现信号功率过大导致信号接收设备载噪比饱和,导致测量结果不准确的问题;另一方面此时的参考载噪比对应的功率会远大于对天真实信号功率,可保证信号接收设备3接收到测试信号后不会。
49、接收对天真实卫星信号,防止对天真实卫星信号对测试结果的不利干扰,数据采集过程中不需要人工干预,避免了人工干预可能引入的操作误差,提高了测试结果的准确性和可靠性。0090上述实施例提供的多波束相控阵天线的外场测试方法操作灵活,控制简单,以软件控制的方式实现自动化测试。完成系统搭建后,将标定的各设备参数输入至自动化测试设备中,设置初始化参数,软件可自动控制设备完成数据采集,自动存储和分析数据,输出天线的波束增益、方向图相关的波束宽度、波束零点、副瓣电平、副瓣位置等结果,自动化程度高。0091优选地,步骤S2中,所述功率步进量P的取值范围为0.3dB1dB。0092在参考载噪比标定时,以P为功率步进。
50、量调整输出的伪卫星导航信号功率大小,测量信号接收设备3接收载噪比线性变化的信号区间,P的取值需根据信号接收设备3的载噪比测量精度、待测的多波束相控阵天线5的指标精度要求确定,本实施例所述功率步进量P的取值范围为0.3dB1dB,从而满足测试的需要。0093优选地,步骤S5中,各个发射天线6与待测的多波束相控阵天线5之间的距离Li通过激光测距仪或标尺进行测量得到,简单快捷,精度高。0094优选地,步骤S5中,各个发射天线6与待测的多波束相控阵天线5之间的距离Li通过预先测量出的设备尺寸参数,根据发射天线6所在的位置进行空间几何计算得出,无需利用精确测量设备,成本低,易实施。0095优选地,步骤S。
- 内容关键字: 波束 相控阵 天线 外场 测试 系统 方法
茶叶加工用的上料装置.pdf
便于装卸的储料桶.pdf
智能化多腔体入料数量检测机构及高速计数筛选装置.pdf
焊接辅助装置.pdf
无纺布切边装置.pdf
阀门用端面打磨装置.pdf
推砖装置.pdf
污染水体水藻清理装置.pdf
调整木板输送姿态的输送装置.pdf
切边刀装配总成.pdf
液压油过滤器.pdf
用于检测育苗水体中弧菌含量的培养装置.pdf
自动配料加料装置.pdf
电加热器超导热管用烘箱.pdf
避免交叉感染的门诊采血车.pdf
压力管道承压检测装置.pdf
多功能彩妆盒.pdf
激光增强的纳米线电子源组件.pdf
旋转型空气净化消毒灯.pdf
无人机智能电力线路巡检系统.pdf
消防器械生产用焊接装置.pdf
基于工业互联网的电力数据挖掘与分析系统.pdf
条码扫描机.pdf
基于TDS-Unet网络的地震速度模型重构方法、介质和设备.pdf
纺织弹性带生产自动卷绕装置及其方法.pdf
基于BIM的轨道交通运维方法、系统、电子设备及存储介质.pdf
电子封装用导电银胶及其制备方法.pdf
基于虚拟编组计算列车数的方法、设备及存储介质.pdf
菌落计数样本的优化方法、装置、设备及存储介质.pdf
高压断路器机械合闸闭锁装置.pdf
竖井采矿用罐笼旋调升降装置.pdf
热升级方法、装置及电子设备.pdf
机械零件打磨装置.pdf
PVA发泡材料及其发泡方法.pdf
连续制备樟脑的设备和方法.pdf
配网自动化隔离开关.pdf
弥补风电功率预测误差下实现风电厂收益最大化的方法.pdf
基于温度场变化的套筒灌浆缺陷的检测方法.pdf
可喷涂防水防腐抗冲蚀高强砂浆及其使用方法.pdf
纺织领域用布料熨烫机.pdf
CTCS-3列控系统无线超时降级故障诊断方法.pdf
检测FANCA基因第14号外显子突变位点c1235CT的引物和方法.pdf
大容量变压器的保护装置.pdf
带有腿部定位功能的妇科人流病床.pdf
工业水溶性带电荷污水的吸附处理方法.pdf
用于隐形眼镜封装的PP杯上料的机构.pdf
迷你电动抽氧泵.pdf
锂电池卷芯的智能加工装置及其方法.pdf
金属屑压块机的废液处理方法.pdf
可分插长短Pin针的针座连接器自动组装机.pdf
无螺丝铰链.pdf