基于人工智能的干扰无人机通信的系统及方法.pdf

上传人:狗** 文档编号:14525164 上传时间:2024-05-19 格式:PDF 页数:20 大小:1.17MB
收藏 版权申诉 举报 下载
基于人工智能的干扰无人机通信的系统及方法.pdf_第1页
第1页 / 共20页
基于人工智能的干扰无人机通信的系统及方法.pdf_第2页
第2页 / 共20页
基于人工智能的干扰无人机通信的系统及方法.pdf_第3页
第3页 / 共20页
文档描述:

《基于人工智能的干扰无人机通信的系统及方法.pdf》由会员分享,可在线阅读,更多相关《基于人工智能的干扰无人机通信的系统及方法.pdf(20页完成版)》请在专利查询网上搜索。

1、(19)国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 202410019830.2(22)申请日 2024.01.06(71)申请人 北京领云时代科技有限公司地址 100083 北京市海淀区学清路8号1号楼6层B609室(72)发明人 王乐宁王宇盛金伟解春明朱浩楠王海盟郭丽(74)专利代理机构 北京春江专利商标代理事务所(普通合伙)11835专利代理师 张金荣(51)Int.Cl.H04K 3/00(2006.01)F41H 11/02(2006.01)G06N 3/0464(2023.01)G06N 3/08(2023.01)(54)发明名称一种基。

2、于人工智能的干扰无人机通信的系统及方法(57)摘要本发明涉及一种基于人工智能的干扰无人机通信的系统及方法,属于无人机管控数据处理技术领域。所述系统包括:攻击判断器件,用于在智能解析某一无人机对象为攻击型无人机时,计算所述某一无人机对象的地面攻击范围;定位干扰器件,用于在无人机反制点落在某一无人机对象的地面攻击范内时,向无人机反制点的正上方空域无线发送包括虚假定位数据的干扰信号。所述方法与所述系统对应。通过本发明,能够基于各项可视化基础数据采用人工智能模型智能判断地面上方空域的各个无人机是否为攻击型无人机、以及为攻击型无人机时确定其攻击范围,并仅在地面处于某一攻击型无人机的攻击范围内时,方采用相。

3、应的反制措置,从而兼顾反制效果和功耗节省。权利要求书4页 说明书12页 附图3页CN 117527137 A2024.02.06CN 117527137 A1.一种基于人工智能的干扰无人机通信的系统,其特征在于,所述系统包括:第一捕获器件,设置在无人机反制点,用于采用俯拍取模式获得所述无人机反制点的正上方空域的图像数据并作为定点俯拍图像输出;第二捕获器件,设置在无人机反制点,用于无线下载各类攻击型无人机分别对应的各份基准外形数据,每一类型攻击型无人机对应的基准外形数据为采用不同视角分别对所述类型攻击型无人机的出厂状态下的单机进行成像所获得的仅仅包括单机的不同图案;内容辨识器件,与所述第一捕获器。

4、件连接,用于基于无人机成像特征辨识接收到的定点俯拍图像中每一个无人机对象占据的图像分块以及每一个无人机对象对应的整体景深数值;智能解析器件,分别与所述第一捕获器件、所述第二捕获器件以及所述内容辨识器件连接,用于针对每一个无人机对象执行以下智能解析操作:采用卷积神经网络模型根据所述无人机对象占据的图像分块的各个像素点分别对应的各个像素值和各个坐标数值、所述无人机对象对应的整体景深数值以及各类攻击型无人机分别对应的各份基准外形数据智能解析所述无人机对象的当前飞行高度、是否为攻击型无人机的机型标识以及攻击型无人机的机型编号;攻击判断器件,与所述智能解析器件连接,用于在智能解析某一无人机对象为攻击型无。

5、人机时,根据智能解析的所述某一无人机对象对应的攻击型无人机的机型编号确定所述某一无人机对象对应的最大攻击角度,根据所述某一无人机对象的当前飞行高度以及所述某一无人机对象对应的最大攻击角度计算所述某一无人机对象的地面攻击范围;定位干扰器件,与所述攻击判断器件连接,用于在所述无人机反制点的定位信息落在某一无人机对象的地面攻击范围内时,向无人机反制点的正上方空域无线发送包括虚假定位数据的干扰信号;其中,所述虚假定位数据用于替换无人机反制点的正上方空域内各个无人机对象本体的真实定位数据以完成干扰处理;其中,采用所述某一无人机对象的地面攻击范围的范围边沿的各个点分别对应的各个定位数据对所述某一无人机对象。

6、的地面攻击范围进行数值表示;其中,所述卷积神经网络模型为完成固定数目的各次学习后的卷积神经网络,所述固定数目的取值与攻击型无人机的类型总数成正比,以及在固定数目的各次学习中,正向学习的次数与负向学习的次数相等。2.如权利要求1所述的基于人工智能的干扰无人机通信的系统,其特征在于:采用卷积神经网络模型根据所述无人机对象占据的图像分块的各个像素点分别对应的各个像素值和各个坐标数值、所述无人机对象对应的整体景深数值以及各类攻击型无人机分别对应的各份基准外形数据智能解析所述无人机对象的当前飞行高度、是否为攻击型无人机的机型标识以及攻击型无人机的机型编号包括:在智能解析获得的是否为攻击型无人机的机型标识。

7、为0B01时,代表所述无人机对象为攻击型无人机;其中,采用卷积神经网络模型根据所述无人机对象占据的图像分块的各个像素点分别对应的各个像素值和各个坐标数值、所述无人机对象对应的整体景深数值以及各类攻击型无人机分别对应的各份基准外形数据智能解析所述无人机对象的当前飞行高度、是否为攻击型无人机的机型标识以及攻击型无人机的机型编号还包括:在智能解析获得的是否为攻权利要求书1/4 页2CN 117527137 A2击型无人机的机型标识为0B00时,代表所述无人机对象为非攻击型无人机,智能解析获得的攻击型无人机的机型编号为默认数值零。3.如权利要求2所述的基于人工智能的干扰无人机通信的系统,其特征在于,所。

8、述系统还包括:学习执行器件,与所述智能解析器件连接,用于对卷积神经网络执行固定数目的各次学习,并将完成固定数目的各次学习后的卷积神经网络作为卷积神经网络模型发送给所述智能解析器件,以及在固定数目的各次学习中,正向学习的次数与负向学习的次数相等;其中,对卷积神经网络执行固定数目的各次学习,并将完成固定数目的各次学习后的卷积神经网络作为卷积神经网络模型发送给所述智能解析器件,以及在固定数目的各次学习中,正向学习的次数与负向学习的次数相等包括:在对卷积神经网络执行的每一次正向学习中,将已知属于攻击型无人机的单个无人机对象的当前飞行高度、为攻击型无人机的机型标识以及对应的攻击型无人机的机型编号作为卷积。

9、神经网络的逐项输出数据,将所述单个无人机对象占据的图像分块的各个像素点分别对应的各个像素值和各个坐标数值、所述单个无人机对象对应的整体景深数值以及各类攻击型无人机分别对应的各份基准外形数据作为卷积神经网络的逐项输入数据;其中,对卷积神经网络执行固定数目的各次学习,并将完成固定数目的各次学习后的卷积神经网络作为卷积神经网络模型发送给所述智能解析器件,以及在固定数目的各次学习中,正向学习的次数与负向学习的次数相等还包括:在对卷积神经网络执行的每一次负向学习中,将已知不属于攻击型无人机的单个无人机对象的当前飞行高度、不是攻击型无人机的机型标识以及取值为零的机型编号作为卷积神经网络的逐项输出数据,将所。

10、述单个无人机对象占据的图像分块的各个像素点分别对应的各个像素值和各个坐标数值、所述单个无人机对象对应的整体景深数值以及各类攻击型无人机分别对应的各份基准外形数据作为卷积神经网络的逐项输入数据。4.如权利要求2所述的基于人工智能的干扰无人机通信的系统,其特征在于,所述系统还包括:无线报警器件,分别与所述第一捕获器件以及所述定位干扰器件连接,用于在所述无人机反制点的定位信息落在某一无人机对象的地面攻击范围内时,通过无线通信链路向远端的应急防御服务器提供定点俯拍图像。5.如权利要求2所述的基于人工智能的干扰无人机通信的系统,其特征在于,所述系统还包括:实时定位器件,与所述定位干扰器件连接,用于为所述。

11、定位干扰器件提供无人机反制点的定位数据,以及为所述定位干扰器件提供虚假定位数据;其中,为所述定位干扰器件提供无人机反制点的定位数据,以及为所述定位干扰器件提供虚假定位数据包括:无人机反制点的定位数据与虚假定位数据二者分别对应的两处地理位置的直接距离超过或者等于设定长度阈值。6.如权利要求2所述的基于人工智能的干扰无人机通信的系统,其特征在于,所述系统还包括:特征存储器件,与所述内容辨识器件连接,用于预先存储无人机成像特征;其中,预先存储无人机成像特征包括:所述无人机成像特征为各类无人机的标准外形权利要求书2/4 页3CN 117527137 A3轮廓。7.如权利要求26任一所述的基于人工智能的。

12、干扰无人机通信的系统,其特征在于:采用卷积神经网络模型根据所述无人机对象占据的图像分块的各个像素点分别对应的各个像素值和各个坐标数值、所述无人机对象对应的整体景深数值以及各类攻击型无人机分别对应的各份基准外形数据智能解析所述无人机对象的当前飞行高度、是否为攻击型无人机的机型标识以及攻击型无人机的机型编号还包括:将所述无人机对象占据的图像分块的各个像素点分别对应的各个像素值和各个坐标数值、所述无人机对象对应的整体景深数值以及各类攻击型无人机分别对应的各份基准外形数据作为卷积神经网络模型的逐项输入数据。8.如权利要求7所述的基于人工智能的干扰无人机通信的系统,其特征在于:采用卷积神经网络模型根据所。

13、述无人机对象占据的图像分块的各个像素点分别对应的各个像素值和各个坐标数值、所述无人机对象对应的整体景深数值以及各类攻击型无人机分别对应的各份基准外形数据智能解析所述无人机对象的当前飞行高度、是否为攻击型无人机的机型标识以及攻击型无人机的机型编号还包括:运行所述卷积神经网络模型以获得其输出的所述无人机对象的当前飞行高度、是否为攻击型无人机的机型标识以及攻击型无人机的机型编号。9.如权利要求26任一所述的基于人工智能的干扰无人机通信的系统,其特征在于:采用卷积神经网络模型根据所述无人机对象占据的图像分块的各个像素点分别对应的各个像素值和各个坐标数值、所述无人机对象对应的整体景深数值以及各类攻击型无。

14、人机分别对应的各份基准外形数据智能解析所述无人机对象的当前飞行高度、是否为攻击型无人机的机型标识以及攻击型无人机的机型编号还包括:所述无人机对象占据的图像分块的各个像素点分别对应的各个坐标数值包括所述无人机对象占据的图像分块的各个像素点分别对应的各个水平坐标数值以及所述无人机对象占据的图像分块的各个像素点分别对应的各个垂直坐标数值。10.一种基于人工智能的干扰无人机通信的方法,其特征在于,所述方法包括:在无人机反制点处采用俯拍模式获取所述无人机反制点的正上方空域的图像数据并作为定点俯拍图像输出;无线下载各类攻击型无人机分别对应的各份基准外形数据,每一类型攻击型无人机对应的基准外形数据为采用不同。

15、视角分别对所述类型攻击型无人机的出厂状态下的单机进行成像所获得的仅仅包括单机的不同图案;基于无人机成像特征辨识接收到的定点俯拍图像中每一个无人机对象占据的图像分块以及每一个无人机对象对应的整体景深数值;针对每一个无人机对象执行以下智能解析操作:采用卷积神经网络模型根据所述无人机对象占据的图像分块的各个像素点分别对应的各个像素值和各个坐标数值、所述无人机对象对应的整体景深数值以及各类攻击型无人机分别对应的各份基准外形数据智能解析所述无人机对象的当前飞行高度、是否为攻击型无人机的机型标识以及攻击型无人机的机型编号;在智能解析某一无人机对象为攻击型无人机时,根据智能解析的所述某一无人机对象对应的攻击。

16、型无人机的机型编号确定所述某一无人机对象对应的最大攻击角度,根据所述权利要求书3/4 页4CN 117527137 A4某一无人机对象的当前飞行高度以及所述某一无人机对象对应的最大攻击角度计算所述某一无人机对象的地面攻击范围;在所述无人机反制点的定位信息落在某一无人机对象的地面攻击范围内时,向无人机反制点的正上方空域无线发送包括虚假定位数据的干扰信号;其中,所述虚假定位数据用于替换无人机反制点的正上方空域内各个无人机对象本体的真实定位数据以完成干扰处理;其中,采用所述某一无人机对象的地面攻击范围的范围边沿的各个点分别对应的各个定位数据对所述某一无人机对象的地面攻击范围进行数值表示;其中,所述卷。

17、积神经网络模型为完成固定数目的各次学习后的卷积神经网络,所述固定数目的取值与攻击型无人机的类型总数成正比,以及在固定数目的各次学习中,正向学习的次数与负向学习的次数相等。权利要求书4/4 页5CN 117527137 A5一种基于人工智能的干扰无人机通信的系统及方法技术领域0001本发明涉及无人机管控数据处理技术领域,尤其涉及一种基于人工智能的干扰无人机通信的系统及方法。背景技术0002无人机管控一般采用无人机反制模式对设定的无人机,例如攻击型无人机,进行定向反制处理,以避免其出现在设定的空域内,保证设定的空域内的设备和人员的安全性。无人机反制系统的工作原理可以分为侦测与追踪、识别和分类、干扰。

18、和干涉、拦截和破坏等关键步骤。首先,无人机反制系统通过使用雷达、光电跟踪设备、无线电侦测设备等进行侦测,并获取无人机的位置和动态信息,从而能够及早发现无人机的存在,并提供准确的目标数据。接下来,无人机反制系统根据侦测到的信号和传感器数据,对无人机进行识别和分类。最后,通过分析无人机的形态特征、飞行模式和传输信号等信息,无人机反制系统能够区别无人机是否违规飞行至禁飞区域,并做出相应的响应和决策。0003示例地,中国发明专利公开文本CN108737451A提出一种基于通信劫持的无人机攻击方法,所述方法包括:步骤1:采集无人机飞行控制指令信息以及无人机飞行状态信息;步骤2:分析无人机控制指令信息,检。

19、测通信指令是否进行加密,若无加密,转步骤4,若有,执行步骤3;步骤3:分析无人机的通信协议加密算法,对加密信息进行破解,若可破解,得出控制明文信息,转步骤4,若不可破解,转步骤5;步骤4:分析无人机控制信息格式及内容,结合无人机飞行状态信息进行对比,得出控制指令与无人机的飞行状态的映射关系,由无人机飞行控制指令格式为源伪造控制信息,并发送给无人机,转步骤6;步骤5:分析无人机的加密控制信息,构造大量控制指令数据包,阻塞通信链路,进行无人机干扰,结束;步骤6:执行对无人机的控制。0004示例地,中国发明专利公开文本CN116401808A提出的一种基于ABMS的对地攻击无人机自主能力SEM评估方。

20、法,所述方法包括以下步骤:构建Agent仿真架构;建立进攻方Agent模型;建立防御方Agent模型;基于结构方程的自主能力评估方法。以对地攻击无人机执行对地打击任务为例,对基于ABMS和SEM的自主能力评估方法进行仿真验证,仿真结果表明:基于Agent的仿真方法具备一定的可扩展性和通用性,根据能力需求和作战想定变更或修改模块及其参数,相较于传统方法,能够表征复杂作战系统内部特性;基于SEM的自主能力评估方法能够反映自主能力因素之间的协同交互关系,表征自主能力的整体涌现性,符合作战任务实际。0005然而,上述现有技术是根据攻击无人机的本身各项参数和各种配置进行飞行状态的调控以及攻击能力的评估,。

21、缺乏地面对攻击无人机的机型识别、各类参数的解析以及针对性反制措施的布置,例如,无法快速、有效地获得攻击无人机的飞行高度、攻击角度以及攻击范围,导致在无法有效应对攻击威胁的同时,地面需要进行持续地执行反制措施,进而形成地面防御系统大量功耗的浪费。说明书1/12 页6CN 117527137 A6发明内容0006为了解决现有技术中的技术问题,本发明提供了一种基于人工智能的干扰无人机通信的系统及方法,能够在可视化数据针对性辨识的基础上,获得可靠、全面的各项基础数据,并基于各项基础数据采用人工智能模型判断地面上方空域的各个无人机是否为攻击型无人机、以及为攻击型无人机时确定其攻击范围,以在地面处于某一攻。

22、击型无人机的攻击范围内时,方采用向上方空域中的各个无人机无线发送虚假定位的反制措置,从而在保证反制效果的同时尽量避免造成大量的反制功耗的浪费。0007根据本发明的第一方面,提供了一种基于人工智能的干扰无人机通信的系统,所述系统包括:0008第一捕获器件,设置在无人机反制点,用于采用俯拍模式获取所述无人机反制点的正上方空域的图像数据并作为定点俯拍图像输出;0009第二捕获器件,设置在无人机反制点,用于无线下载各类攻击型无人机分别对应的各份基准外形数据,每一类型攻击型无人机对应的基准外形数据为采用不同视角分别对所述类型攻击型无人机的出厂状态下的单机进行成像所获得的仅仅包括单机的不同图案;0010内。

23、容辨识器件,与所述第一捕获器件连接,用于基于无人机成像特征辨识接收到的定点俯拍图像中每一个无人机对象占据的图像分块以及每一个无人机对象对应的整体景深数值;0011智能解析器件,分别与所述第一捕获器件、所述第二捕获器件以及所述内容辨识器件连接,用于针对每一个无人机对象执行以下智能解析操作:采用卷积神经网络模型根据所述无人机对象占据的图像分块的各个像素点分别对应的各个像素值和各个坐标数值、所述无人机对象对应的整体景深数值以及各类攻击型无人机分别对应的各份基准外形数据智能解析所述无人机对象的当前飞行高度、是否为攻击型无人机的机型标识以及攻击型无人机的机型编号;0012攻击判断器件,与所述智能解析器件。

24、连接,用于在智能解析某一无人机对象为攻击型无人机时,根据智能解析的所述某一无人机对象对应的攻击型无人机的机型编号确定所述某一无人机对象对应的最大攻击角度,根据所述某一无人机对象的当前飞行高度以及所述某一无人机对象对应的最大攻击角度计算所述某一无人机对象的地面攻击范围;0013定位干扰器件,与所述攻击判断器件连接,用于在所述无人机反制点的定位信息落在某一无人机对象的地面攻击范围内时,向无人机反制点的正上方空域无线发送包括虚假定位数据的干扰信号;0014其中,所述虚假定位数据用于替换无人机反制点的正上方空域内各个无人机对象本体的真实定位数据以完成干扰处理;0015其中,采用所述某一无人机对象的地面。

25、攻击范围的范围边沿的各个点分别对应的各个定位数据对所述某一无人机对象的地面攻击范围进行数值表示;0016其中,所述卷积神经网络模型为完成固定数目的各次学习后的卷积神经网络,所述固定数目的取值与攻击型无人机的类型总数成正比,以及在固定数目的各次学习中,正向学习的次数与负向学习的次数相等。0017根据本发明的第二方面,提供了一种基于人工智能的干扰无人机通信的方法,所述方法包括以下步骤:说明书2/12 页7CN 117527137 A70018在无人机反制点处采用俯拍模式获取所述无人机反制点的正上方空域的图像数据并作为定点俯拍图像输出;0019无线下载各类攻击型无人机分别对应的各份基准外形数据,每一。

26、类型攻击型无人机对应的基准外形数据为采用不同视角分别对所述类型攻击型无人机的出厂状态下的单机进行成像所获得的仅仅包括单机的不同图案;0020基于无人机成像特征辨识接收到的定点俯拍图像中每一个无人机对象占据的图像分块以及每一个无人机对象对应的整体景深数值;0021针对每一个无人机对象执行以下智能解析操作:采用卷积神经网络模型根据所述无人机对象占据的图像分块的各个像素点分别对应的各个像素值和各个坐标数值、所述无人机对象对应的整体景深数值以及各类攻击型无人机分别对应的各份基准外形数据智能解析所述无人机对象的当前飞行高度、是否为攻击型无人机的机型标识以及攻击型无人机的机型编号;0022在智能解析某一无。

27、人机对象为攻击型无人机时,根据智能解析的所述某一无人机对象对应的攻击型无人机的机型编号确定所述某一无人机对象对应的最大攻击角度,根据所述某一无人机对象的当前飞行高度以及所述某一无人机对象对应的最大攻击角度计算所述某一无人机对象的地面攻击范围;0023在所述无人机反制点的定位信息落在某一无人机对象的地面攻击范围内时,向无人机反制点的正上方空域无线发送包括虚假定位数据的干扰信号;0024其中,所述虚假定位数据用于替换无人机反制点的正上方空域内各个无人机对象本体的真实定位数据以完成干扰处理;0025其中,采用所述某一无人机对象的地面攻击范围的范围边沿的各个点分别对应的各个定位数据对所述某一无人机对象。

28、的地面攻击范围进行数值表示;0026其中,所述卷积神经网络模型为完成固定数目的各次学习后的卷积神经网络,所述固定数目的取值与攻击型无人机的类型总数成正比,以及在固定数目的各次学习中,正向学习的次数与负向学习的次数相等。0027因此,本发明至少具备以下几处重要的有益效果:0028一、在设定的无人机反制点处,采用人工智能模型智能解析其正上方空域是否存在攻击型无人机,在存在攻击型无人机时,判断设定的无人机反制点是否落在攻击型无人机的攻击范围内,并在判断落在攻击型无人机的攻击范围时,向设定的无人机反制点的正上方空域中的各个无人机无线发送虚假定位以达到干扰目的,从而实现对攻击型无人机的定向反制,提升了各。

29、处无人机反制点的安全性;0029二、为人工智能模型的智能解析筛选针对性的各项基础数据,所述各项基础数据包括无人机对象在空域俯拍图像中占据的图像分块的各个像素点分别对应的各个像素值和各个坐标数值、无人机对象对应的整体景深数值以及各类攻击型无人机分别对应的各份基准外形数据,从而保证了智能解析的有效性;0030三、采用的人工智能模型为完成固定数目的各次学习后的卷积神经网络,所述固定数目的取值与攻击型无人机的类型总数成正比,以及在固定数目的各次学习中,正向学习的次数与负向学习的次数相等,从而实现人工智能模型的定制化设计;0031四、根据无人机对象的当前飞行高度以及无人机对象对应的最大攻击角度计算无说明。

30、书3/12 页8CN 117527137 A8人机对象的地面攻击范围,并仅仅在设定的无人机反制点的定位信息落在某一无人机对象的地面攻击范围内时,向无人机反制点的正上方空域无线发送包括虚假定位数据的干扰信号,从而在避免不停发送干扰信号以节省功耗的同时保证了攻击型无人机的定向反制效果。附图说明0032以下将结合附图对本发明的实施例进行描述,其中:0033图1为根据本发明的基于人工智能的干扰无人机通信的系统及方法的技术流程图。0034图2为根据本发明的第一实施例示出的基于人工智能的干扰无人机通信的系统的结构示意图。0035图3为根据本发明的第二实施例示出的基于人工智能的干扰无人机通信的系统的结构示意。

31、图。0036图4为根据本发明的第三实施例示出的基于人工智能的干扰无人机通信的系统的结构示意图。0037图5为根据本发明的第四实施例示出的基于人工智能的干扰无人机通信的系统的结构示意图。具体实施方式0038如图1所示,给出了根据本发明示出的基于人工智能的干扰无人机通信的系统及方法的技术流程图。0039如图1所示,本发明的具体的技术流程如下:0040技术流程一:设计用于智能解析无人机反制点正上方空域中无人机对象的当前飞行高度、是否为攻击型无人机的属性以及攻击型无人机编号的卷积神经网络模型;0041示例地,所述卷积神经网络模型为完成固定数目的各次学习后的卷积神经网络,所述固定数目的取值与攻击型无人机。

32、的类型总数成正比,以及在固定数目的各次学习中,正向学习的次数与负向学习的次数相等,从而实现人工智能模型的定制化设计;0042技术流程二:为所述卷积神经网络模型的智能解析筛选针对性的各项基础数据,所述各项基础数据包括无人机对象在空域俯拍图像中占据的图像分块的各个像素点分别对应的各个像素值和各个坐标数值、无人机对象对应的整体景深数值以及各类攻击型无人机分别对应的各份基准外形数据,从而保证了智能解析的有效性;0043如图1所示,无人机对象在空域俯拍图像中占据的图像分块的各个像素点分别对应的各个像素值和各个坐标数值、无人机对象对应的整体景深数值为视觉关联数据,作为筛选出来的部分基础数据提供给所述卷积神。

33、经网络模型;0044以及如图1所示,采用设置在无人机反制点处的俯拍器件,用于采用俯拍取模式获得所述无人机反制点的正上方空域的图像数据并作为定点俯拍图像输出,从而为后续的视觉关联数据的获取提供基础信息;0045技术流程三:采用技术流程一设计的卷积神经网络模型基于技术流程二筛选出来的各项基础数据智能解析无人机反制点正上方空域中无人机对象的当前飞行高度、是否为说明书4/12 页9CN 117527137 A9攻击型无人机的属性以及攻击型无人机编号,并在确定无人机反制点正上方空域中无人机对象为攻击型无人机时,基于攻击型无人机编号确定攻击型无人机编号对应的攻击型无人机类型的最大攻击角度,以作为无人机对象。

34、对应的最大攻击角度;0046如图1所示,卷积神经网络模型智能解析出来的智能解析数据包括无人机反制点正上方空域中无人机对象的当前飞行高度、是否为攻击型无人机的属性以及攻击型无人机编号;0047技术流程四:根据无人机对象的当前飞行高度以及无人机对象对应的最大攻击角度计算无人机对象的地面攻击范围,并仅仅在设定的无人机反制点的定位信息落在无人机对象的地面攻击范围内时,向无人机反制点的正上方空域无线发送包括虚假定位数据的干扰信号;0048如图1所示,通过攻击判断器件来执行根据无人机对象的当前飞行高度以及无人机对象对应的最大攻击角度计算无人机对象的地面攻击范围的计算操作;0049示例地,在虚假定位数据的设。

35、计方面,通过无人机反制点的定位数据与虚假定位数据二者分别对应的两处地理位置的直接距离超过或者等于设定长度阈值的设置,为所述定位干扰器件提供虚假定位数据,以将足够虚假的定位数据发送给攻击型无人机,完成对攻击型无人机的定位欺骗;0050由此可见,通过上述技术流程,在避免不停发送干扰信号以节省功耗的同时保证了攻击型无人机的定向反制效果。0051本发明的关键点在于:卷积神经网络模型的针对性结构设计以及针对性的正反训练机制、用于智能解析的各项基础数据的筛选、无人机对象的地面攻击范围的计算以及虚假定位数据的定制化设计。0052下面,将对本发明的基于人工智能的干扰无人机通信的系统及方法以实施例的方式进行具体。

36、说明。第一实施例0053图2为根据本发明的第一实施例示出的基于人工智能的干扰无人机通信的系统的结构示意图。0054如图2所示,所述基于人工智能的干扰无人机通信的系统包括以下部件:0055第一捕获器件,设置在无人机反制点,用于采用俯拍取模式获得所述无人机反制点的正上方空域的图像数据并作为定点俯拍图像输出;0056示例地,可以采用俯拍镜头以及图像传感器协作以完成采用俯拍取模式获得所述无人机反制点的正上方空域的图像数据并作为定点俯拍图像输出的成像处理;0057具体地,所述图像传感器可以为CMOS传感器或者CCD传感器,所述俯拍镜头可以在角度驱动单元的驱动下完成俯拍成像视角的设置;0058第二捕获器件。

37、,设置在无人机反制点,用于无线下载各类攻击型无人机分别对应的各份基准外形数据,每一类型攻击型无人机对应的基准外形数据为采用不同视角分别对所述类型攻击型无人机的出厂状态下的单机进行成像所获得的仅仅包括单机的不同图案;0059例如,无线下载各类攻击型无人机分别对应的各份基准外形数据,每一类型攻击型无人机对应的基准外形数据为采用不同视角分别对所述类型攻击型无人机的出厂状态说明书5/12 页10CN 117527137 A10下的单机进行成像所获得的仅仅包括单机的不同图案包括:通过频分双工通信链路或者时分双工通信链路无线下载各类攻击型无人机分别对应的各份基准外形数据,每一类型攻击型无人机对应的基准外形。

38、数据为采用不同视角分别对所述类型攻击型无人机的出厂状态下的单机进行成像所获得的仅仅包括单机的不同图案;0060示例地,可以从远端的大数据服务器处无线下载各类攻击型无人机分别对应的各份基准外形数据;0061内容辨识器件,与所述第一捕获器件连接,用于基于无人机成像特征辨识接收到的定点俯拍图像中每一个无人机对象占据的图像分块以及每一个无人机对象对应的整体景深数值;0062具体地,可以基于每一个无人机对象占据的图像分块的各个构成像素点分别对应的各个景深数值确定每一个无人机对象对应的整体景深数值;0063智能解析器件,分别与所述第一捕获器件、所述第二捕获器件以及所述内容辨识器件连接,用于针对每一个无人机。

39、对象执行以下智能解析操作:采用卷积神经网络模型根据所述无人机对象占据的图像分块的各个像素点分别对应的各个像素值和各个坐标数值、所述无人机对象对应的整体景深数值以及各类攻击型无人机分别对应的各份基准外形数据智能解析所述无人机对象的当前飞行高度、是否为攻击型无人机的机型标识以及攻击型无人机的机型编号;0064示例地,采用卷积神经网络模型根据所述无人机对象占据的图像分块的各个像素点分别对应的各个像素值和各个坐标数值、所述无人机对象对应的整体景深数值以及各类攻击型无人机分别对应的各份基准外形数据智能解析所述无人机对象的当前飞行高度、是否为攻击型无人机的机型标识以及攻击型无人机的机型编号包括:可以选择使。

40、用MATLAB工具箱完成采用卷积神经网络模型根据所述无人机对象占据的图像分块的各个像素点分别对应的各个像素值和各个坐标数值、所述无人机对象对应的整体景深数值以及各类攻击型无人机分别对应的各份基准外形数据智能解析所述无人机对象的当前飞行高度、是否为攻击型无人机的机型标识以及攻击型无人机的机型编号的数值处理过程;0065攻击判断器件,与所述智能解析器件连接,用于在智能解析某一无人机对象为攻击型无人机时,根据智能解析的所述某一无人机对象对应的攻击型无人机的机型编号确定所述某一无人机对象对应的最大攻击角度,根据所述某一无人机对象的当前飞行高度以及所述某一无人机对象对应的最大攻击角度计算所述某一无人机对。

41、象的地面攻击范围;0066定位干扰器件,与所述攻击判断器件连接,用于在所述无人机反制点的定位信息落在某一无人机对象的地面攻击范围内时,向无人机反制点的正上方空域无线发送包括虚假定位数据的干扰信号;0067示例地,所述无人机反制点的定位信息可以为所述无人机反制点的GPS定位信息、所述无人机反制点的伽利略定位信息或者所述无人机反制点的北斗星定位信息中的一种;0068其中,所述虚假定位数据用于替换无人机反制点的正上方空域内各个无人机对象本体的真实定位数据以完成干扰处理;0069其中,采用所述某一无人机对象的地面攻击范围的范围边沿的各个点分别对应的各个定位数据对所述某一无人机对象的地面攻击范围进行数值。

42、表示;0070其中,所述卷积神经网络模型为完成固定数目的各次学习后的卷积神经网络,所说明书6/12 页11CN 117527137 A11述固定数目的取值与攻击型无人机的类型总数成正比,以及在固定数目的各次学习中,正向学习的次数与负向学习的次数相等;0071示例地,所述固定数目的取值与攻击型无人机的类型总数成正比,以及在固定数目的各次学习中,正向学习的次数与负向学习的次数相等包括:攻击型无人机的类型总数为20,所述固定数目的取值为80,正向学习的次数与负向学习的次数均为40,攻击型无人机的类型总数为30,所述固定数目的取值为120,正向学习的次数与负向学习的次数均为60,攻击型无人机的类型总数。

43、为40,所述固定数目的取值为160,正向学习的次数与负向学习的次数均为80;0072其中,采用卷积神经网络模型根据所述无人机对象占据的图像分块的各个像素点分别对应的各个像素值和各个坐标数值、所述无人机对象对应的整体景深数值以及各类攻击型无人机分别对应的各份基准外形数据智能解析所述无人机对象的当前飞行高度、是否为攻击型无人机的机型标识以及攻击型无人机的机型编号包括:在智能解析获得的是否为攻击型无人机的机型标识为0B01时,代表所述无人机对象为攻击型无人机;0073以及其中,采用卷积神经网络模型根据所述无人机对象占据的图像分块的各个像素点分别对应的各个像素值和各个坐标数值、所述无人机对象对应的整体。

44、景深数值以及各类攻击型无人机分别对应的各份基准外形数据智能解析所述无人机对象的当前飞行高度、是否为攻击型无人机的机型标识以及攻击型无人机的机型编号还包括:在智能解析获得的是否为攻击型无人机的机型标识为0B00时,代表所述无人机对象为非攻击型无人机,智能解析获得的攻击型无人机的机型编号为默认数值零。第二实施例0074图3为根据本发明的第二实施例示出的基于人工智能的干扰无人机通信的系统的结构示意图。0075如图3所示,与图2中的实施例不同,所述基于人工智能的干扰无人机通信的系统还包括以下部件:0076学习执行器件,与所述智能解析器件连接,用于对卷积神经网络执行固定数目的各次学习,并将完成固定数目的。

45、各次学习后的卷积神经网络作为卷积神经网络模型发送给所述智能解析器件,以及在固定数目的各次学习中,正向学习的次数与负向学习的次数相等;0077示例地,可以选择采用可编程逻辑器件来实现所述学习执行器件,所述可编程逻辑器件可以为FPGA器件、CPLD器件或者GAL器件;0078其中,对卷积神经网络执行固定数目的各次学习,并将完成固定数目的各次学习后的卷积神经网络作为卷积神经网络模型发送给所述智能解析器件,以及在固定数目的各次学习中,正向学习的次数与负向学习的次数相等包括:在对卷积神经网络执行的每一次正向学习中,将已知属于攻击型无人机的单个无人机对象的当前飞行高度、为攻击型无人机的机型标识以及对应的攻。

46、击型无人机的机型编号作为卷积神经网络的逐项输出数据,将所述单个无人机对象占据的图像分块的各个像素点分别对应的各个像素值和各个坐标数值、所述单个无人机对象对应的整体景深数值以及各类攻击型无人机分别对应的各份基准外形数据作为卷积神经网络的逐项输入数据;说明书7/12 页12CN 117527137 A120079其中,对卷积神经网络执行固定数目的各次学习,并将完成固定数目的各次学习后的卷积神经网络作为卷积神经网络模型发送给所述智能解析器件,以及在固定数目的各次学习中,正向学习的次数与负向学习的次数相等还包括:在对卷积神经网络执行的每一次负向学习中,将已知不属于攻击型无人机的单个无人机对象的当前飞行。

47、高度、不是攻击型无人机的机型标识以及取值为零的机型编号作为卷积神经网络的逐项输出数据,将所述单个无人机对象占据的图像分块的各个像素点分别对应的各个像素值和各个坐标数值、所述单个无人机对象对应的整体景深数值以及各类攻击型无人机分别对应的各份基准外形数据作为卷积神经网络的逐项输入数据。第三实施例0080图4为根据本发明的第三实施例示出的基于人工智能的干扰无人机通信的系统的结构示意图。0081如图4所示,与图2中的实施例不同,所述基于人工智能的干扰无人机通信的系统还包括以下部件:0082无线报警器件,分别与所述第一捕获器件以及所述定位干扰器件连接,用于在所述无人机反制点的定位信息落在某一无人机对象的。

48、地面攻击范围内时,通过无线通信链路向远端的应急防御服务器提供定点俯拍图像;0083示例地,在所述无人机反制点的定位信息落在某一无人机对象的地面攻击范围内时,通过无线通信链路向远端的应急防御服务器提供定点俯拍图像包括:所述应急防御服务器可以为云计算服务器、区块链服务器或者大数据服务器。第四实施例0084图5为根据本发明的第四实施例示出的基于人工智能的干扰无人机通信的系统的结构示意图。0085如图5所示,与图2中的实施例不同,所述基于人工智能的干扰无人机通信的系统还包括以下部件:0086实时定位器件,与所述定位干扰器件连接,用于为所述定位干扰器件提供无人机反制点的定位数据,以及为所述定位干扰器件提。

49、供虚假定位数据;0087其中,为所述定位干扰器件提供无人机反制点的定位数据,以及为所述定位干扰器件提供虚假定位数据包括:无人机反制点的定位数据与虚假定位数据二者分别对应的两处地理位置的直接距离超过或者等于设定长度阈值;0088具体地,通过无人机反制点的定位数据与虚假定位数据二者分别对应的两处地理位置的直接距离超过或者等于设定长度阈值的设置,为所述定位干扰器件提供虚假定位数据,以将足够虚假的定位数据发送给攻击型无人机,完成对攻击型无人机的定位欺骗。第五实施例0089与图2中的实施例不同,根据本发明的第五实施例示出的基于人工智能的干扰无人机通信的系统还包括以下部件:0090特征存储器件,与所述内容。

50、辨识器件连接,用于预先存储无人机成像特征;说明书8/12 页13CN 117527137 A130091示例地,所述特征存储器件可以为FLASH存储器件、MMC存储器件或者TF存储器件中的一种;0092其中,预先存储无人机成像特征包括:所述无人机成像特征为各类无人机的标准外形轮廓。0093接着,继续对本发明的各个实施例进行详细的描述。0094在根据本发明各个实施例的基于人工智能的干扰无人机通信的系统中:0095采用卷积神经网络模型根据所述无人机对象占据的图像分块的各个像素点分别对应的各个像素值和各个坐标数值、所述无人机对象对应的整体景深数值以及各类攻击型无人机分别对应的各份基准外形数据智能解析。

展开阅读全文
内容关键字: 基于 人工智能 干扰 无人机 通信 系统 方法
关于本文
本文标题:基于人工智能的干扰无人机通信的系统及方法.pdf
链接地址:https://www.zhuanlichaxun.net/pdf/14525164.html
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1