电采暖锅炉集中供暖的电力负荷精确预测方法及系统.pdf

上传人:sha****007 文档编号:14494091 上传时间:2024-04-10 格式:PDF 页数:9 大小:2.19MB
收藏 版权申诉 举报 下载
电采暖锅炉集中供暖的电力负荷精确预测方法及系统.pdf_第1页
第1页 / 共9页
电采暖锅炉集中供暖的电力负荷精确预测方法及系统.pdf_第2页
第2页 / 共9页
电采暖锅炉集中供暖的电力负荷精确预测方法及系统.pdf_第3页
第3页 / 共9页
文档描述:

《电采暖锅炉集中供暖的电力负荷精确预测方法及系统.pdf》由会员分享,可在线阅读,更多相关《电采暖锅炉集中供暖的电力负荷精确预测方法及系统.pdf(9页完成版)》请在专利查询网上搜索。

1、(19)国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 202311826831.X(22)申请日 2023.12.27(71)申请人 新疆信息产业有限责任公司地址 830000 新疆维吾尔自治区乌鲁木齐市高新区(新市区)河北东路430号上海大厦1栋A917室(72)发明人 贾秉健席小刚孙庆包彦明曹丽赵俊敏李慧娟李克明田灏(74)专利代理机构 成都睿道专利代理事务所(普通合伙)51217专利代理师 薛波(51)Int.Cl.G06F 18/20(2023.01)G06F 18/2433(2023.01)G06Q 50/06(2024.01)H02J 3。

2、/00(2006.01)(54)发明名称一种电采暖锅炉集中供暖的电力负荷精确预测方法及系统(57)摘要本发明涉及电力系统技术领域,具体而言,涉及一种电采暖锅炉集中供暖的电力负荷精确预测方法及系统,该方法的步骤包括:获取电采暖锅炉的实时运行数据;构建热力学模型,通过热力学模型对每个电采暖锅炉的实时运行数据进行评估,以获取各个电采暖锅炉的指标数据;基于LOF算法对各个电采暖锅炉的指标数据进行异常分析,结合异常分析结果对预设的电力负荷预测模型参数进行优化,完成电采暖锅炉的电力负荷精确预测。权利要求书2页 说明书5页 附图1页CN 117708543 A2024.03.15CN 117708543 A。

3、1.一种电采暖锅炉集中供暖的电力负荷精确预测方法,其特征在于,该方法的步骤包括:获取电采暖锅炉的实时运行数据;构建热力学模型,通过热力学模型对每个电采暖锅炉的实时运行数据进行评估,以获取各个电采暖锅炉的指标数据;基于LOF算法对各个电采暖锅炉的指标数据进行异常分析,结合异常分析结果对预设的电力负荷预测模型参数进行优化,完成电采暖锅炉的电力负荷精确预测。2.根据权利要求1所述的电采暖锅炉集中供暖的电力负荷精确预测方法,其特征在于,所述获取电采暖锅炉的实时运行数据,具体为:在各个电采暖锅炉的相应区域安装传感器模块,以获取电采暖锅炉的实时运行数据。3.根据权利要求2所述的电采暖锅炉集中供暖的电力负荷。

4、精确预测方法,其特征在于,所述传感器模块包括:温度传感器、流量传感器及电量传感器;所述温度传感器用于测量电采暖锅炉进出水管路的温度,流量传感器用于测量电采暖锅炉的通过水流量,电量传感器用于测量电采暖锅炉的电量。4.根据权利要求1所述的电采暖锅炉集中供暖的电力负荷精确预测方法,其特征在于,所述构建热力学模型,其计算公式为:其中,Qin(t)是时间t时刻的累积热能输入,Pinput(t)是时间t时刻的电功率,Qtrust(t)是时间t时刻的累积热能转移,是时间t时刻的水流量,cp是水的比热容,Tout(t)和Tin(t)分别是时间t时刻的出水和回水温度,Qloss(t)是时间t时刻的累积热能损失,。

5、Treturn(t)是返回锅炉的水温,Qenvironment(t)是由于环境因素导致的热能损失。5.根据权利要求4所述的电采暖锅炉集中供暖的电力负荷精确预测方法,其特征在于,所述各个电采暖锅炉的指标数据包括:电采暖锅炉的热效率、热损失率及供暖效率。6.根据权利要求5所述的电采暖锅炉集中供暖的电力负荷精确预测方法,其特征在于,所述电采暖锅炉的热效率为:其中,为热效率,Qtrans为累积热能转移,Qin为累积热能输入。7.根据权利要求6所述的电采暖锅炉集中供暖的电力负荷精确预测方法,其特征在于,所述热损失率为:权利要求书1/2 页2CN 117708543 A2其中,为热损失率,Qloss为累积。

6、热能损失,Qtrans为累积热能转移。8.根据权利要求7所述的电采暖锅炉集中供暖的电力负荷精确预测方法,其特征在于,所述供暖效率为:其中,为供暖效率。9.根据权利要求1所述的电采暖锅炉集中供暖的电力负荷精确预测方法,其特征在于,所述基于LOF算法对各个电采暖锅炉的指标数据进行异常分析,所述异常分析的计算过程为:ReachabilityDistancek(A,B)max(KDistance(B),dist(A,B)其中,A和B是数据集中的两个点,dist(A,B)是它们之间的距离,Distance(B)是点B到其第k个最近邻的距离,Nk(A)是点A的k个最近邻的集合,|Nk(A)|是邻居的数量,。

7、ReachabilityDistancek(A,B)为A、B两点的可达距离,LRDk(A)为点A的局部可达密度,LOFk(A)为点A的局部异常因子。10.一种电采暖锅炉集中供暖的电力负荷精确预测系统,其特征在于,包括:获取单元,获取电采暖锅炉的实时运行数据;评估单元,构建热力学模型,通过热力学模型对每个电采暖锅炉的实时运行数据进行评估,以获取各个电采暖锅炉的指标数据;分析单元,基于LOF算法对各个电采暖锅炉的指标数据进行异常分析,结合异常分析结果对预设的电力负荷预测模型参数进行优化,完成电采暖锅炉的电力负荷精确预测。权利要求书2/2 页3CN 117708543 A3一种电采暖锅炉集中供暖的电。

8、力负荷精确预测方法及系统技术领域0001本发明涉及电力系统技术领域,具体而言,涉及一种电采暖锅炉集中供暖的电力负荷精确预测方法及系统。背景技术0002随着全球能源结构的转型和对环境保护的重视,电采暖锅炉作为一种清洁、高效的供暖方式,逐渐成为替代传统燃煤、燃气锅炉的重要选择。就目前而言,现有的电采暖锅炉主要集中在利用智能控制系统来优化电采暖锅炉的运行,以及尝试通过不同程度的数据分析来改善电网负荷管理。这些技术通常采用静态的负荷预测模型,依赖历史数据和经验规则来调整电采暖系统的负荷,缺乏实时性和动态适应能力,且不具有针对单个设备的差异性。基于此,针对上述问题,我们设计了一种电采暖锅炉集中供暖的电力。

9、负荷精确预测方法及系统。发明内容0003本发明的目的在于提供一种电采暖锅炉集中供暖的电力负荷精确预测方法及系统,其通过结合实时监测数据和热力学模型,能够更准确地反映实际的能源使用情况和供热效率,从而提高负荷预测的准确性,并降低了对大量历史数据的依赖,提升了模型训练的效率。0004本发明的实施例通过以下技术方案实现:0005一种电采暖锅炉集中供暖的电力负荷精确预测方法,该方法的步骤包括:0006获取电采暖锅炉的实时运行数据;0007构建热力学模型,通过热力学模型对每个电采暖锅炉的实时运行数据进行评估,以获取各个电采暖锅炉的指标数据;0008基于LOF算法对各个电采暖锅炉的指标数据进行异常分析,结。

10、合异常分析结果对预设的电力负荷预测模型参数进行优化,完成电采暖锅炉的电力负荷精确预测。0009可选的,所述获取电采暖锅炉的实时运行数据,具体为:在各个电采暖锅炉的相应区域安装传感器模块,以获取电采暖锅炉的实时运行数据。0010可选的,所述传感器模块包括:温度传感器、流量传感器及电量传感器;所述温度传感器用于测量电采暖锅炉进出水管路的温度,流量传感器用于测量电采暖锅炉的通过水流量,电量传感器用于测量电采暖锅炉的电量。0011可选的,所述构建热力学模型,其计算公式为:00120013说明书1/5 页4CN 117708543 A4001400150016其中,Qin(t)是时间t时刻的累积热能输入。

11、,Pinput(t)是时间t时刻的电功率,Qtrans(t)是时间t时刻的累积热能转移,是时间t时刻的水流量,cp是水的比热容,Tout(t)和Tin(t)分别是时间t时刻的出水和回水温度,Qtoss(t)是时间t时刻的累积热能损失,Treturn(t)是返回锅炉的水温,Qenvironment(t)是由于环境因素导致的热能损失。0017可选的,所述各个电采暖锅炉的指标数据包括:电采暖锅炉的热效率、热损失率及供暖效率。0018可选的,所述电采暖锅炉的热效率为:00190020其中,为热效率,Qtrans为累积热能转移,Qin为累积热能输入。0021可选的,所述热损失率为:00220023其中,。

12、为热损失率,Qloss为累积热能损失,Qtrans为累积热能转移。0024可选的,所述供暖效率为:00250026其中,为供暖效率。0027可选的,所述基于LOF算法对各个电采暖锅炉的指标数据进行异常分析,所述异常分析的计算过程为:0028PeachabilityDistancek(A,B)max(KDistance(B),dist(A,B)002900300031其中,A和B是数据集中的两个点,dist(A,B)是它们之间的距离,KDistance(B)是点B到其第k个最近邻的距离,Nk(A)是点A的k个最近邻的集合,|Nk(A)|是邻居的数量,ReachabilityDistancek(A。

13、,B)为A、B两点的可达距离,LRDk(A)为点A的局部可达密度,LOFk(A)为点A的局部异常因子。0032一种电采暖锅炉集中供暖的电力负荷精确预测系统,包括:0033获取单元,获取电采暖锅炉的实时运行数据;0034评估单元,构建热力学模型,通过热力学模型对每个电采暖锅炉的实时运行数据说明书2/5 页5CN 117708543 A5进行评估,以获取各个电采暖锅炉的指标数据;0035分析单元,基于LOF算法对各个电采暖锅炉的指标数据进行异常分析,结合异常分析结果对预设的电力负荷预测模型参数进行优化,完成电采暖锅炉的电力负荷精确预测。0036本发明实施例的技术方案至少具有如下优点和有益效果:00。

14、37本发明实施例通过结合实时监测数据和热力学模型,能够更准确地反映实际的能源使用情况和供热效率,从而提高负荷预测的准确性,并降低了对大量历史数据的依赖,提升了模型训练的效率。附图说明0038图1为本发明实施例提供的一种电采暖锅炉集中供暖的电力负荷精确预测方法的逻辑示意图。具体实施方式0039为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。0040如图1所示,本发明提供了其中一。

15、种实施例:一种电采暖锅炉集中供暖的电力负荷精确预测方法,该方法的步骤包括:0041获取电采暖锅炉的实时运行数据;0042构建热力学模型,通过热力学模型对每个电采暖锅炉的实时运行数据进行评估,以获取各个电采暖锅炉的指标数据;0043基于LOF算法对各个电采暖锅炉的指标数据进行异常分析,结合异常分析结果对预设的电力负荷预测模型参数进行优化,完成电采暖锅炉的电力负荷精确预测。0044在本实施例中,所述获取电采暖锅炉的实时运行数据,具体为:在各个电采暖锅炉的相应区域安装传感器模块,以获取电采暖锅炉的实时运行数据。0045具体的,所述传感器模块包括:温度传感器、流量传感器及电量传感器;所述温度传感器用于。

16、测量电采暖锅炉进出水管路的温度,流量传感器用于测量电采暖锅炉的通过水流量,电量传感器用于测量电采暖锅炉的电量。0046实施中,首先,通过安装在每个电采暖锅炉上的传感器来获取关键的运行数据。这些数据包括锅炉的出水温度、回水温度、水流量、环境温度和电量消耗。这些传感器需要能够实时监测并传输数据,确保数据的准确性和及时性。例如,温度传感器可以安装在锅炉的进出水管路上,流量传感器用于测量通过锅炉的水流量,而电量消耗则通过电表或类似的装置进行测量。收集到的数据将为后续的分析和建模提供基础。0047在本实施例中,建立描述电采暖锅炉热效率和供热系统热损失的热力学模型。这个模型基于微分方程,结合能量守恒原理和。

17、热传递理论。模型需要考虑锅炉内热能的转换过程(从电能到热能),以及热能在供热系统中的传递和损失。热力学模型如下:0048锅炉能量输入:说明书3/5 页6CN 117708543 A600490050炉到供热系统的热能转移:00510052系统的热能损失:00530054综合能量平衡微分方程:00550056其中,Qin(t)是时间t时刻的累积热能输入,Pinput(t)是时间t时刻的电功率,Qtrans(t)是时间t时刻的累积热能转移,是时间t时刻的水流量,cp是水的比热容,Tout(t)和Tin(t)分别是时间t时刻的出水和回水温度,Qloss(t)是时间t时刻的累积热能损失,Treturn。

18、(t)是返回锅炉的水温,Qenvironment(t)是由于环境因素导致的热能损失。此方程描述了锅炉系统中热能的动态转换和损失过程。通过对该方程进行分析和求解,可以得到关于锅炉运行状态的重要信息,如热效率和热损失,这对于精准地评估和管理电采暖锅炉至关重要。0057进一步的,所述各个电采暖锅炉的指标数据包括:电采暖锅炉的热效率、热损失率及供暖效率。0058用建立的热力学模型和实时收集的传感器数据,对每个电采暖锅炉的运行参数进行评估。这包括锅炉的热效率、供热量、能源消耗等关键指标。这一步骤通过对实际运行数据与模型预测数据的比较,可以识别出锅炉的性能偏差,如热效率下降、热损失过大等问题。这对于及时维。

19、护和优化锅炉运行至关重要。其中可以获得的参数包括且不限于电采暖锅炉的热效率、热损失率及供暖效率。0059具体的,所述电采暖锅炉的热效率为:00600061其中,为热效率,Qtrans为累积热能转移,Qin为累积热能输入。0062具体的,所述热损失率为:00630064其中,为热损失率,Qloss为累积热能损失,Qtrans为累积热能转移。0065具体的,所述供暖效率为:00660067其中,为供暖效率。说明书4/5 页7CN 117708543 A70068在本实施例中,对收集到的大规模设备数据进行深入分析,特别是利用人工智能算法进行异常检测。通过这种分析,可以识别出个别锅炉的异常运行模式,如。

20、效率异常下降、能耗异常升高等。这不仅有助于及时发现并解决单个设备的问题,也为优化整个供暖系统的运行提供了依据,因此本实施例基于LOF算法对各个电采暖锅炉的指标数据进行异常分析,所述异常分析的计算过程为:0069ReachabilityDistancek(A,B)max(KDistance(B),dist(A,B)007000710072其中,A和B是数据集中的两个点,dist(A,B)是它们之间的距离,KDistance(B)是点B到其第k个最近邻的距离,Nk(A)是点A的k个最近邻的集合,|Nk(A)|是邻居的数量,ReachabilityDistancek(A,B)为A、B两点的可达距离,。

21、LRDk(A)为点A的局部可达密度,LOFk(A)为点A的局部异常因子,它是点A的邻居的局部可达密度与A自己的局部可达密度之比的平均值。0073通过计算每个锅炉数据点的LOF值,可以识别出那些在局部密度上显著偏离其他点的异常锅炉。一个较高的LOF值表明该锅炉在运行参数上与周围锅炉显著不同,可能需要进一步的检查和维护。0074最后,结合从热力学模型和人工智能分析中获得的参数,进行更加精确的未来负荷预测。这一步骤不仅基于历史数据,还考虑了实时的设备性能和环境变化,从而使得预测更加精确和适应实际情况。这种预测对于电网运营者来说至关重要,可以帮助他们更好地规划电网的负荷分配和能源供应。即该人工智能模型。

22、,包括且不限于经网络,可以接收历史温度、锅炉参数(上面评估的),天气预报数据,从而进行更加准确的负荷估计。这种精确的负荷估计在的电网负荷管理中起到重要作用。0075实施例20076一种电采暖锅炉集中供暖的电力负荷精确预测系统,包括:0077获取单元,获取电采暖锅炉的实时运行数据;0078评估单元,构建热力学模型,通过热力学模型对每个电采暖锅炉的实时运行数据进行评估,以获取各个电采暖锅炉的指标数据;0079分析单元,基于LOF算法对各个电采暖锅炉的指标数据进行异常分析,结合异常分析结果对预设的电力负荷预测模型参数进行优化,完成电采暖锅炉的电力负荷精确预测。0080本实施例所提供一种电采暖锅炉集中供暖的电力负荷精确预测系统与上述实施例所提供的一种电采暖锅炉集中供暖的电力负荷精确预测方法出于相同的发明构思,关于本发明实施例中各个模块更加具体的工作原理参考上述实施例,在本发明实施例中不做赘述。0081以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。说明书5/5 页8CN 117708543 A8图1说明书附图1/1 页9CN 117708543 A9。

展开阅读全文
内容关键字: 采暖 锅炉 集中 供暖 电力 负荷 精确 预测 方法 系统
关于本文
本文标题:电采暖锅炉集中供暖的电力负荷精确预测方法及系统.pdf
链接地址:https://www.zhuanlichaxun.net/pdf/14494091.html
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1