快速制备AlN改性C/C-SiC摩擦材料的方法.pdf
《快速制备AlN改性C/C-SiC摩擦材料的方法.pdf》由会员分享,可在线阅读,更多相关《快速制备AlN改性C/C-SiC摩擦材料的方法.pdf(10页完成版)》请在专利查询网上搜索。
1、(19)国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 202310264085.3(22)申请日 2023.03.18(71)申请人 西北工业大学地址 710072 陕西省西安市友谊西路(72)发明人 李贺军黄启岳费杰李伟齐乐华付前刚(74)专利代理机构 西安凯多思知识产权代理事务所(普通合伙)61290专利代理师 王鲜凯(51)Int.Cl.C04B 35/80(2006.01)C04B 35/565(2006.01)C04B 35/622(2006.01)(54)发明名称一种快速制备AlN改性C/C-SiC摩擦材料的方法(57)摘要本发明涉及一种。
2、快速制备AlN改性C/CSiC摩擦材料的方法,首先通过模压的方式将混合均匀的短碳纤维、酚醛树脂、工业硅粉和铝粉等压制成纤维增强树脂块体,后经过碳化和陶瓷化热处理得到C/CAlNSiC摩擦材料。本发明利用活性金属铝与载气氮气或树脂碳化过程中生成的碳氢气体反应体积膨胀的特性,填补材料中因树脂碳化和硅碳反应收缩产生的孔隙,提升材料致密度,缩减致密化工艺周期,降低制备成本。权利要求书1页 说明书6页 附图2页CN 116354735 A2023.06.30CN 116354735 A1.一种快速制备AlN改性C/CSiC摩擦材料的方法,其特征在于步骤如下:步骤1:将短碳纤维、石墨粉、硅粉、酚醛树脂、氧。
3、化铝粉末和铝粉均匀分散,填入模具后模压成纤维增强树脂块体;所述上述原材料按体积百分比为1030短碳纤维、1040石墨粉、1030硅粉、1030酚醛树脂、小于20氧化铝粉末、1040铝粉,上述体积百分比之和为100;步骤2:将模压后得到的纤维增强树脂块体进行碳化热处理和陶瓷化热处理,载气气氛为N2,载气流量为2080ml/min,升温至9001100保温26h,再升温至14002100保温26h,降温至300后随炉冷却至室温,得到C/CAlNSiC复合材料;所述热处理时的升温和降温速率为15/min。2.根据权利要求1所述快速制备AlN改性C/CSiC摩擦材料的方法,其特征在于:所述步骤2的碳化。
4、热处理和陶瓷化热处理分为两步:先进行碳化热处理,随炉冷却至室温后,再进行陶瓷化热处理,得到C/CAlNSiC复合材料。3.根据权利要求2所述快速制备AlN改性C/CSiC摩擦材料的方法,其特征在于:所述碳化热处理的热处理温度为9001100,载气气氛为N2的载气流量为2080ml/min,保温时间为26h,降温至300后随炉冷却至室温;所述热处理时的升温和降温速率为15/min。4.根据权利要求2所述快速制备AlN改性C/CSiC摩擦材料的方法,其特征在于:所述陶瓷化热处理热处理温度为16002100,载气气氛为N2,载气流量为2080ml/min,保温时间为26h,降温至300后随炉冷却至室。
5、温;所述热处理时的升温和降温速率为15/min。5.根据权利要求1所述快速制备AlN改性C/CSiC摩擦材料的方法,其特征在于:所述步骤1中的模压压力为515MPa,模压温度为140200,时间为1060min。6.根据权利要求1所述快速制备AlN改性C/CSiC摩擦材料的方法,其特征在于:所述短碳纤维为T300碳纤维,长度为215mm,密度为1.78g/cm3。7.根据权利要求1所述快速制备AlN改性C/CSiC摩擦材料的方法,其特征在于:所述鳞片石墨粉纯度为99.9,目数为900目,密度为2.0g/cm3。8.根据权利要求1所述快速制备AlN改性C/CSiC摩擦材料的方法,其特征在于:所述。
6、工业硅粉目数为300目,密度为2.34g/cm3。9.根据权利要求1所述快速制备AlN改性C/CSiC摩擦材料的方法,其特征在于:所述酚醛树脂为腰果壳油改性酚醛树脂,密度为1.5g/cm3。10.根据权利要求1所述快速制备AlN改性C/CSiC摩擦材料的方法,其特征在于:所述氧化铝粉末为 Al2O3,纯度为99.9,粒度为1m,密度为3.9g/cm3;所述铝粉纯度为99.9,粒度为1 m,密度为2.7g/cm3。权利要求书1/1 页2CN 116354735 A2一种快速制备AlN改性C/CSiC摩擦材料的方法技术领域0001本发明属于制动摩擦材料领域,涉及一种碳纤维增强陶瓷基复合材料的制备方。
7、法,特别涉及一种低成本快速制备AlN改性短碳纤维增强C/CSiC摩擦材料的制备方法。背景技术0002C/CSiC摩擦材料是继粉末冶金摩擦材料和C/C摩擦材料之后的新一代摩擦材料,具有低密度、高比强、耐高温、高耐磨、摩擦性能稳定、环境适应性好等诸多优点。0003目前,制备C/CSiC摩擦材料主要途径为:使用连续碳纤维毡作为预制体,先采用化学气相渗透工艺在预制体表面沉积一层热解碳,后通过聚合物浸渍裂解或反应熔体浸渗工艺引入SiC基体并致密化。但是该法工序繁多,生产周期长,成本高,在一定程度上限制了C/CSiC摩擦材料在民用领域的应用。0004文献1“专利公开号为CN103553695A的中国专利”。
8、报道了一种采用短碳纤维作为增强体的碳陶复合材料制动盘制备方法。该方法先将短切碳纤维、硅粉、粘结剂、无水乙醇混合均匀后按设计的制动盘胚体压制成块,后将压制得到的碳纤维增强胚体碳化得到C/C多孔体,然后采用聚碳硅烷与二乙烯基苯的混合溶液浸渍C/C多孔体,固化之后生成SiC基体,重复浸渍固化至一定密度后对所得到的C/CSiC复合胚体进行25min的熔融硅浸渍,得到表面摩擦层为Si的C/CSiC摩擦材料。文献2“专利公开号为CN101486588A的中国专利”报道了一种短碳纤维增强C/CSiC摩擦材料的制备方法。该方法先将短切碳纤维、石墨粉、工业硅粉、粘结剂冷压成块体,后对制成的C/CSi块体进行机械。
9、破碎和造粒,再将颗粒温压成C/CSi素胚,对素胚碳化后制成C/CSi多孔体,最终对多孔体进行熔融硅浸渗制成C/CSiC摩擦材料。0005上述两种采用短碳纤维作为增强相,通过模压的方式将短纤维、树脂、填料压制成纤维增强树脂块体,经碳化与致密化处理后制成C/CSiC摩擦材料的工艺路线,不失为一种低成本快速制备C/CSiC摩擦材料的手段。但其中采用的重复浸渍固化和熔融硅浸渗工艺不仅需要诸如压力热处理炉等设备,还增加了数百或数十小时的制备周期。因此,开发一种无需后续致密化处理的C/CSiC摩擦材料制备工艺,对于缩短制备周期,降低生产成本,拓展摩擦材料的应用具有重要意义。发明内容0006要解决的技术问题。
10、0007为了避免现有技术的不足之处,本发明提出一种低成本快速制备AlN改性C/CSiC摩擦材料的制备方法,针对现有C/CSiC摩擦材料制备工艺中致密化处理周期长的不足之处,通过在模压过程中引入活性填料Al来增加热处理之后材料的致密度,从而缩减致密化周期,提升生产效率。0008技术方案0009一种低成本快速制备AlN改性C/CSiC摩擦材料的制备方法,其特征在于步骤如说明书1/6 页3CN 116354735 A3下:0010步骤1:将短碳纤维、石墨粉、硅粉、酚醛树脂、氧化铝粉末和铝粉均匀分散,填入模具后模压成纤维增强树脂块体;0011所述上述原材料按体积百分比为1030短碳纤维、1040石墨粉。
11、、1030硅粉、1030酚醛树脂、小于20氧化铝粉末、1040铝粉,上述体积百分比之和为100;0012步骤2:将模压后得到的纤维增强树脂块体进行碳化热处理和陶瓷化热处理,载气气氛为N2,载气流量为2080ml/min,升温至9001100保温26h,再升温至14002100保温26h,降温至300后随炉冷却至室温,得到C/CAlNSiC复合材料;0013所述热处理时的升温和降温速率为15/min。0014所述步骤2的碳化热处理和陶瓷化热处理分为两步:先进行碳化热处理,随炉冷却至室温后,再进行陶瓷化热处理,得到C/CAlNSiC复合材料。0015所述碳化热处理的热处理温度为9001100,载气。
12、气氛为N2的载气流量为2080ml/min,保温时间为26h,降温至300后随炉冷却至室温;所述热处理时的升温和降温速率为15/min。0016所述陶瓷化热处理热处理温度为16002100,载气气氛为N2,载气流量为2080ml/min,保温时间为26h,降温至300后随炉冷却至室温;所述热处理时的升温和降温速率为15/min。0017所述步骤1中的模压压力为515MPa,模压温度为140200,时间为1060min。0018所述短碳纤维为T300碳纤维,长度为215mm,密度为1.78g/cm3。0019所述鳞片石墨粉纯度为99.9,目数为900目,密度为2.0g/cm3。0020所述工业硅。
13、粉目数为300目,密度为2.34g/cm3。0021所述酚醛树脂为腰果壳油改性酚醛树脂,密度为1.5g/cm3。0022所述氧化铝粉末为 Al2O3,纯度为99.9,粒度为1 m,密度为3.9g/cm3;所述铝粉纯度为99.9,粒度为1 m,密度为2.7g/cm3。0023有益效果0024本发明提出的一种低成本快速制备AlN改性C/CSiC摩擦材料的制备方法,首先通过模压的方式将混合均匀的短碳纤维、酚醛树脂、工业硅粉和铝粉等压制成纤维增强树脂块体,后经过碳化和陶瓷化热处理得到C/CAlNSiC摩擦材料。本发明利用活性金属铝与载气氮气或树脂碳化过程中生成的碳氢气体反应体积膨胀的特性,填补材料中因。
14、树脂碳化和硅碳反应收缩产生的孔隙,提升材料致密度,缩减致密化工艺周期,降低制备成本。0025具体是:本发明首先通过模压的方式将混合均匀的短碳纤维、酚醛树脂、工业硅粉和铝粉压制成纤维增强树脂块体,后经过9001100碳化热处理将材料中的树脂与Al转化为树脂碳和AlN基体,再经过16002100陶瓷化热处理使材料中的Si与碳反应生成SiC基体,得到C/CAlNSiC摩擦材料。Al作为活性金属,可以与载气氮气或树脂碳化过程中生成的碳氢气体反应,该类反应会带来体积膨胀,有助于填补材料中因树脂碳化和硅碳反应收缩产生的孔隙,提升材料致密度,缩减致密化工艺周期。同时,铝与氮气反应的温度为1000左右,高于铝。
15、的熔点,即AlN的形核长大是在熔体中发生的,以该种方式发生的体积膨胀对周围基体的损伤作用较固态相变小,并不会在材料内部产生较大的内应力。0026本发明的主要优点如下:说明书2/6 页4CN 116354735 A400271:树脂基复合材料转化为树脂碳基复合材料的碳化热处理常采用较低的升降温速率(约1/min),以防止因树脂裂解碳化过程过于剧烈而在材料中产生孔隙与裂纹等缺陷。本发明通过减少树脂含量,添加一定石墨粉作为碳源,在使材料中Si完全转化为SiC时仍有部分石墨存在以调整材料摩擦系数的前提下,增加碳化热处理的升降温速率,以缩减制备周期。本发明将碳化热处理的升降温速率由1/min提高到5/m。
16、in,材料表面并未出现变形和裂纹,模压方向膨胀1.88,垂直于模压方向收缩0.009。00282:采用将短碳纤维、酚醛树脂、工业硅粉和铝粉压制成块体后热处理制备C/CSiC复合材料的方法,利用Al在反应过程中体积膨胀的特点,直接在热处理的同时对材料进行致密化,省去致密化热处理工艺,缩短了制备周期。相较于再经过两次真空浸渍、交联固化、裂解碳化的制备方法,本发明制备周期由约118h缩短为约18h,为碳陶摩擦材料产业化,推进碳陶制动盘深入民用市场提供了有益思路。00293:通过引入活性金属Al,利用其与载气氮气或树脂碳化过程中生成的碳氢气体反应体积膨胀的现象,填补材料因热处理过程中树脂收缩和硅碳反应。
17、生成的孔隙。本发明相较于填料中未添加Al的C/CSiC复合材料孔隙率下降了33.2;相较于经过两次真空浸渍、交联固化、裂解碳化工艺后的C/CSiC复合材料孔隙率下降了24.9。该结果同时表明,真空浸渍、交联固化、裂解碳化工艺致密化效率低,而压力浸渍固化碳化工艺不仅对热处理设备提出了更高的要求,还增加了使用过程中水、电等能源的消耗。本发明提出的致密化工艺既能实现优异的致密化效果,也在一定程度上减轻了对高温高压设备的依赖。00304:AlN改性的C/CSiC复合材料的磨损率为1.2771015m3N1m1,相较于改性前样品34.7651015m3N1m1的磨损率下降了一个数量级,说明该方法制备的碳。
18、陶摩擦材料同样具有优异的摩擦磨损性能。附图说明0031附图中的对比例1为未经致密化工艺处理的原始样品;对比例2为在对比例1基础上经过两次真空浸渍、交联固化、裂解碳化工艺的样品;实施例1为在对比例1的基础上减少了10体积分数鳞片石墨粉,添加了10体积分数Al粉的样品;实施例2为在对比例1基础上减少了20体积分数鳞片石墨粉,添加了13体积分数Al粉,7体积分数Al2O3粉的样品。0032图1为四种C/CSiC摩擦材料制备周期对比图,图中可以看出,采用本文所述工艺可以很大程度上降低材料的致密化周期,制备周期由对比例2的118h缩减为实施例2的18h;0033图2为四种C/CSiC摩擦材料孔隙率对比图。
19、,图中可以看出,本文所述工艺在缩减生产周期的同时,材料的致密化度也得到了一定程度的提升,材料的孔隙率由对比例1的24.85下降为实施例2的16.6;0034图3为四种C/CSiC摩擦材料动摩擦系数与磨损率对比图,图中可以看出,采用本文所述工艺制备出的材料具有优良的摩擦磨损性能,实施例2的平均动摩擦系数为0.287,磨损率由对比例1的34.7651015m3N1m1下降为实施例2的1.2771015m3N1m1。0035图4为实施例2在摩擦磨损测试后磨痕区域的微观形貌图,图中可以看出,磨痕区域由少部分磨屑区与大部分摩擦膜区组成。摩擦膜产生于摩擦过程作用于材料表面的交变应力,该区域相较于原复合材料。
20、具有更高的强度与致密度。摩擦膜的形成在稳定动摩擦系说明书3/6 页5CN 116354735 A5数的同时,还能降低复合材料的磨损率。具体实施方式0036现结合实施例、附图对本发明作进一步描述:0037实施例1:0038一种AlN改性C/CSiC摩擦材料制备方法,包括的步骤如下:0039原材料组成为:短碳纤维12.3g,鳞片石墨粉24.2g,工业硅粉16.2g,酚醛树脂7.8g,铝粉9.3g。0040步骤1:将酚醛树脂放入烘箱中在70的条件下干燥1h,待用;0041步骤2:将称量好的鳞片石墨粉、工业硅粉、铝粉以及4.8g步骤1处理后的酚醛树脂置于研钵中研磨15min,待用;0042步骤3:将称。
21、量好的短碳纤维在设定转速为25000r/min的混料机中搅拌两次,每次开机2s,间隔5min;之后加入3g酚醛树脂,搅拌两次,每次开机5s,间隔5min;之后加入步骤2中制备好的粉体,搅拌两次,每次开机10s,间隔5min;0043步骤4:将步骤3混合均匀后的粉体填入模具后模压为密度2.0g/cm3的C/CAlSi块体,模压压力为7MPa,温度为170,保压时间15min;0044步骤5:将步骤4模压后的C/CAlSi块体置于管式热处理炉中碳化,热处理载气为氮气,常压,载气流量为50ml/min,以5/min的速率升温至1000,保温时间2h,以5/min的速率降温至300,随后随炉冷却至室温。
22、,使材料中的酚醛树脂和铝粉分别转化为树脂碳和AlN基体,得到密度为1.96g/cm3的C/CAlNSi块体;0045步骤6:将步骤5热处理后的C/CAlNSi块体置于管式热处理炉中陶瓷化,热处理载气为氮气,常压,载气流量为50ml/min,以5/min的速率升温至1600,保温时间2h,以5/min的速率降温至300,随后随炉冷却至室温,使材料中的工业硅粉与鳞片石墨粉或树脂碳反应生成SiC基体,得到密度为1.91g/cm3的C/CAlNSiC复合材料,其孔隙率为19.1,动摩擦系数为0.169,磨损率为15.6211015m3N1m1。0046实施例2:0047一种AlN改性C/CSiC摩擦材。
23、料制备方法,包括的步骤如下:0048原材料组成为:短碳纤维12.3g,鳞片石墨粉17.3g,工业硅粉16.2g,酚醛树脂7.8g,氧化铝粉9.4g,铝粉12.1g。0049步骤1:将酚醛树脂放入烘箱中在70的条件下干燥1h,待用;0050步骤2:将称量好的鳞片石墨粉、工业硅粉、氧化铝粉、铝粉以及4.8g步骤1处理后的酚醛树脂置于研钵中研磨15min,待用;0051步骤3:将称量好的短碳纤维在设定转速为25000r/min的混料机中搅拌两次,每次开机2s,间隔5min;之后加入3g酚醛树脂,搅拌两次,每次开机5s,间隔5min;之后加入步骤2中制备好的粉体,搅拌两次,每次开机10s,间隔5min。
24、;0052步骤4:将步骤3混合均匀后的粉体填入模具后模压为密度2.2g/cm3的C/CAlSi块体,模压压力为7MPa,温度为170,保压时间15min;0053步骤5:将步骤4模压后的C/CAlSi块体置于管式热处理炉中碳化和陶瓷化,热处理载气为氮气,常压,载气流量为50ml/min,以5/min的速率升温至1000,保温时间2h,说明书4/6 页6CN 116354735 A6以5/min的速率升温至1600,保温时间2h,以5/min的速率降温至300,随后随炉冷却至室温,得到密度为2.08g/cm3的C/CAlNSiC复合材料,其孔隙率为16.6,动摩擦系数为0.287,磨损率为1.2。
25、771015m3N1m1。0054对比例1:0055一种C/CSiC摩擦材料制备方法,包括的步骤如下:0056原材料组成为:短碳纤维12.3g,鳞片石墨粉27.6g,工业硅粉16.2g,酚醛树脂10.4g。0057步骤1:将酚醛树脂放入烘箱中在70的条件下干燥1h,待用;0058步骤2:将称量好的鳞片石墨粉、工业硅粉、以及5.4g干燥处理后的酚醛树脂置于研钵中研磨15min,待用;0059步骤3:将称量好的短碳纤维在设定转速为25000r/min的混料机中搅拌两次,每次开机2s,间隔5min;之后加入5g酚醛树脂,搅拌两次,每次开机5s,间隔5min;之后加入步骤2中制备好的粉体,搅拌两次,每。
26、次开机10s,间隔5min;0060步骤4:将步骤3中混合均匀后的粉体填入模具后模压为密度1.92g/cm3的C/CSi块体,模压压力为7MPa,温度为170,保压时间15min;0061步骤5:将步骤4中模压后的C/CSi块体置于管式热处理炉中碳化,热处理载气为氩气,常压,载气流量为80ml/min,以1/min的速率升温至900,保温时间2h,以1/min的速率降温至150,随后随炉冷却至室温,使材料中的酚醛树脂转化为树脂碳基体,得到密度为1.69g/cm3的C/CSi块体;0062步骤6:将步骤5中热处理后得到的C/CSi块体置于管式热处理炉中陶瓷化,热处理载气为氩气,常压,载气流量为5。
27、0ml/min,以5/min的速率升温至1600,保温时间2h,以5/min的速率降温至300,随后随炉冷却至室温,使材料中的工业硅粉与鳞片石墨粉或树脂碳反应生成SiC基体,得到密度为1.63g/cm3的C/CSiC复合材料,其孔隙率为24.8,动摩擦系数0.193,磨损率为34.7651015m3N1m1。0063对比例2:0064一种C/CSiC摩擦材料制备方法,包括的步骤如下:0065步骤1:选用对比例1中步骤6制备好的C/CSiC复合材料块体,将其浸于去离子水中煮沸至无气泡冒出,取出后放入烘箱在70的条件下干燥1h,待用;0066步骤2:采用无水乙醇作为溶剂配置酚醛树脂溶液,酚醛树脂的。
28、质量分数为15;0067步骤3:将步骤2中处理后的C/CSiC复合材料块体浸没于酚醛树脂溶液中,将其置于真空浸渍箱内,进行真空浸渍;浸渍时每隔1min使真空度下降0.01MPa,抽至0.08MPa,浸渍时间为20min,浸渍温度为25;浸渍完成后,缓慢升高真空度,每隔1min使真空度上升0.01MPa,将C/CSiC复合材料块体从酚醛树脂溶液中取出,置于烘箱内使树脂固化,固化温度为180,时间为2h;重复此步骤至C/CSiC复合材料块体每次质量增加小于0.05g;0068步骤4:将步骤3中浸渍有酚醛树脂的C/CSiC复合材料块体置于管式热处理炉中碳化,热处理载气为氩气,常压,载气流量为80ml。
29、/min,以1/min的速率升温至900,保温时间2h,以1/min的速率降温至150,随后随炉冷却至室温,使材料中的酚醛树脂转化为树脂碳基体;0069步骤5:步骤3与步骤4的浸渍碳化工艺重复2次,得到密度为1.65g/cm3的C/CSiC说明书5/6 页7CN 116354735 A7复合材料,其孔隙率为22.1,动摩擦系数0.172,磨损率为17.0531015m3N1m1。0070测试分析方法:0071密度与孔隙率的测定:0072采用阿基米德排水法测试试样密度与孔隙率,其步骤如下:0073步骤1:将试样浸没在盛满去离子水的烧杯中,然后加热至沸腾,保持加热直至试样表面没有气泡冒出,冷却至室。
30、温;0074步骤2:将冷却后的试样放入分析天平的吊篮中,称量试样浸没在水中的质量m1;0075步骤3:将试样从水中取出,用湿巾轻轻擦除试样表面多余的水滴,称量试样质量m2;0076步骤4:将试样置于烘箱中烘干,称量其干燥后的质量m3;0077通过公式(1)和(2)计算材料密度()和孔隙率(p):007800790080式中:0081m1:试样的浮重(g);0082m2:试样的湿重(g);0083m3:试样的干重(g)。0084动摩擦系数与磨损率的测定:0085采用HSR2M型高速往复摩擦磨损试验机对试样的摩擦磨损性能进行测试和分析:摩擦方式为点面接触;对偶为直径5mm的氮化硅球;载荷为20N;往复距离为5mm,摩擦速度1.33m/s。通过公式(3)和(4)计算动摩擦系数()和磨损率(V)008600870088f:摩擦力(N);0089T:载荷(N);0090n:磨损量(m3)0091v:摩擦速度(m/s)0092t:测试时间(s)。说明书6/6 页8CN 116354735 A8图1图2说明书附图1/2 页9CN 116354735 A9图3图4说明书附图2/2 页10CN 116354735 A10。
- 内容关键字: 快速 制备 AlN 改性 SiC 摩擦 材料 方法
茶叶加工用的上料装置.pdf
便于装卸的储料桶.pdf
智能化多腔体入料数量检测机构及高速计数筛选装置.pdf
焊接辅助装置.pdf
无纺布切边装置.pdf
阀门用端面打磨装置.pdf
推砖装置.pdf
污染水体水藻清理装置.pdf
调整木板输送姿态的输送装置.pdf
切边刀装配总成.pdf
液压油过滤器.pdf
用于检测育苗水体中弧菌含量的培养装置.pdf
自动配料加料装置.pdf
电加热器超导热管用烘箱.pdf
避免交叉感染的门诊采血车.pdf
压力管道承压检测装置.pdf
多功能彩妆盒.pdf
激光增强的纳米线电子源组件.pdf
旋转型空气净化消毒灯.pdf
无人机智能电力线路巡检系统.pdf
消防器械生产用焊接装置.pdf
基于工业互联网的电力数据挖掘与分析系统.pdf
条码扫描机.pdf
基于TDS-Unet网络的地震速度模型重构方法、介质和设备.pdf
纺织弹性带生产自动卷绕装置及其方法.pdf
基于BIM的轨道交通运维方法、系统、电子设备及存储介质.pdf
电子封装用导电银胶及其制备方法.pdf
基于虚拟编组计算列车数的方法、设备及存储介质.pdf
菌落计数样本的优化方法、装置、设备及存储介质.pdf
高压断路器机械合闸闭锁装置.pdf
竖井采矿用罐笼旋调升降装置.pdf
热升级方法、装置及电子设备.pdf