高低温自动切换的工业炉内温度测量装置.pdf
《高低温自动切换的工业炉内温度测量装置.pdf》由会员分享,可在线阅读,更多相关《高低温自动切换的工业炉内温度测量装置.pdf(10页完成版)》请在专利查询网上搜索。
1、(19)中华人民共和国国家知识产权局 (12)实用新型专利 (10)授权公告号 (45)授权公告日 (21)申请号 201921932636.4 (22)申请日 2019.11.11 (73)专利权人 长春蓝拓科技有限公司 地址 130012 吉林省长春市朝阳区前进大 街1244号科技厅科研园四楼402室 (72)发明人 徐立君陈福新刘欢聂文哲 王浩 (74)专利代理机构 北京轻创知识产权代理有限 公司 11212 代理人 刘红阳 (51)Int.Cl. G01J 5/10(2006.01) G01J 5/08(2006.01) G01J 5/02(2006.01) (ESM)同样的发明创造已。
2、同日申请发明专利 (54)实用新型名称 一种高低温自动切换的工业炉内温度测量 装置 (57)摘要 本实用新型涉及一种高低温自动切换的工 业炉内温度测量装置, 包括: 耐高温导光晶体管、 光学耦合设备、 第一测温组件、 第二测温组件和 显示设备, 所述耐高温导光晶体管的一端置于工 业炉内, 另一端连接所述光学耦合设备, 所述第 一测温组件、 第二测温组件均与所述光学耦合设 备相连接, 所述显示设备分别与所述第一测温组 件、 所述第二测温组件相连接。 本装置不仅能够 大温度范围测量工业炉内的温度, 而且能够高低 温之间自动切换显示, 无需人工更换滤光片, 节 省人力, 提高了装置的适用范围以及使用。
3、的便捷 性。 权利要求书1页 说明书5页 附图3页 CN 210664786 U 2020.06.02 CN 210664786 U 1.一种高低温自动切换的工业炉内温度测量装置, 其特征在于, 包括: 耐高温导光晶体 管、 光学耦合设备、 第一测温组件、 第二测温组件和显示设备, 所述耐高温导光晶体管的一 端置于工业炉内, 另一端连接所述光学耦合设备, 所述第一测温组件、 第二测温组件均与所 述光学耦合设备相连接, 所述显示设备分别与所述第一测温组件、 所述第二测温组件相连 接; 所述第一测温组件用于测量高温段温度; 所述第二测温组件用于测量低温段温度。 2.根据权利要求1所述的工业炉内温度。
4、测量装置, 其特征在于, 所述第一测温组件包 括: 第一光纤、 第二光纤、 第一滤光片、 第二滤光片、 第一光电探测器、 第二光电探测器和第 一测量设备, 所述第一光纤、 所述第二光纤连接所述光学耦合设备, 所述第一光纤、 所述第 一滤光片、 所述第一光电探测器依次连接, 所述第二光纤、 所述第二滤光片、 所述第二光电 探测器依次连接, 所述第一光电探测器、 所述第二光电探测器均与所述第一测量设备相连 接。 3.根据权利要求2所述的工业炉内温度测量装置, 其特征在于, 所述第二测温组件包 括: 第三光纤、 第四光纤、 第三滤光片、 第四滤光片、 第三光电探测器、 第四光电探测器和第 二测量设备。
5、, 所述第三光纤、 所述第四光纤连接所述光学耦合设备, 所述第三光纤、 所述第 三滤光片、 所述第三光电探测器依次连接, 所述第四光纤、 所述第四滤光片、 所述第四光电 探测器依次连接, 所述第三光电探测器、 所述第四光电探测器均与所述第二测量设备相连 接。 4.根据权利要求3所述的工业炉内温度测量装置, 其特征在于, 所述第一光纤、 所述第 二光纤、 所述第三光纤、 所述第四光纤与所述光学耦合设备的连接处形成一个截面以光纤 纤芯中心为顶点的正方形的光纤阵列。 5.根据权利要求1所述的工业炉内温度测量装置, 其特征在于, 所述光学耦合设备包 括: 桶型的外壁, 所述外壁内腔中嵌有两个透镜, 所。
6、述外壁外设有水冷设备。 6.根据权利要求5所述的工业炉内温度测量装置, 其特征在于, 所述光学耦合设备的一 端与所述水冷设备一端的内壁通过螺纹连接, 所述水冷设备的另一端通过螺纹连接于所述 耐高温导光晶体管上。 7.根据权利要求6所述的工业炉内温度测量装置, 其特征在于, 所述水冷设备的进水口 通过管路连接有水泵, 所述水泵连接一控制设备。 8.根据权利要求7所述的工业炉内温度测量装置, 其特征在于, 所述水冷设备上设有温 度传感器, 所述温度传感器连接所述控制设备。 9.根据权利要求1所述的工业炉内温度测量装置, 其特征在于, 所述耐高温导光晶体管 包括: 陶瓷外管, 所述陶瓷外管的内腔内设。
7、有导光晶体棒, 所述导光晶体棒与所述陶瓷外管 内壁之间填充有支撑物。 权利要求书 1/1 页 2 CN 210664786 U 2 一种高低温自动切换的工业炉内温度测量装置 技术领域 0001 本实用新型涉及温度测量设备领域, 尤其涉及高低温自动切换宽测温范围的工业 炉内温度连续在线测量装置。 背景技术 0002 通常的红外测温仪, 都有一定的测温范围, 通常是低温波段, 中温波段, 或者是高 温波段, 这是由于探测器件本身都有一定的探测能力, 超过这个探测能力, 探测器聚会饱 和, 或者无法进行探测, 所以, 探测器本身的探测能力, 决定了探测器的探测范围。 0003 当物体表面的温度大于绝。
8、对零度时, 就会向外辐射能量, 辐射能力的范围是随其 温度发生变化的, 通常情况下, 其辐照强度最大值对应的波长会随着温度的升高发生红移, 既随着温度的升高, 由红外波段辐射较强, 向可见光波段转移。 0004 为了拓展测温仪的测温范围, 通常采用更换滤光片, 或者是更换衰减片的方法进 行实现。 以满足一些工业环境下, 对宽范围温度测量的需求, 但这种测量档位的调整, 通常 要用人工进行。 因此, 现有技术中继续一种宽温度测量范围的工业炉内温度测量装置。 实用新型内容 0005 本实用新型为解决现有的工业炉内温度测量设备测温范围窄、 测温方位调整繁复 的问题, 所采用的技术方案是: 一种高低温。
9、自动切换的工业炉内温度测量装置, 包括: 耐高 温导光晶体管、 光学耦合设备、 第一测温组件、 第二测温组件和显示设备, 所述耐高温导光 晶体管的一端置于工业炉内, 另一端连接所述光学耦合设备, 所述第一测温组件、 第二测温 组件均与所述光学耦合设备相连接, 所述显示设备分别与所述第一测温组件、 所述第二测 温组件相连接; 0006 所述第一测温组件用于测量高温段温度; 0007 所述第二测温组件用于测量低温段温度。 0008 进一步改进为, 所述第一测温组件包括: 第一光纤、 第二光纤、 第一滤光片、 第二滤 光片、 第一光电探测器、 第二光电探测器和第一测量设备, 所述第一光纤、 所述第二。
10、光纤连 接所述光学耦合设备, 所述第一光纤、 所述第一滤光片、 所述第一光电探测器依次连接, 所 述第二光纤、 所述第二滤光片、 所述第二光电探测器依次连接, 所述第一光电探测器、 所述 第二光电探测器均与所述第一测量设备相连接。 0009 进一步改进为, 所述第二测温组件包括: 第三光纤、 第四光纤、 第三滤光片、 第四滤 光片、 第三光电探测器、 第四光电探测器和第二测量设备, 所述第三光纤、 所述第四光纤连 接所述光学耦合设备, 所述第三光纤、 所述第三滤光片、 所述第三光电探测器依次连接, 所 述第四光纤、 所述第四滤光片、 所述第四光电探测器依次连接, 所述第三光电探测器、 所述 第。
11、四光电探测器均与所述第二测量设备相连接。 0010 进一步改进为, 所述第一光纤、 所述第二光纤、 所述第三光纤、 所述第四光纤与所 述光学耦合设备的连接处形成一个截面以光纤纤芯中心为顶点的正方形的光纤阵列。 说明书 1/5 页 3 CN 210664786 U 3 0011 进一步改进为, 所述光学耦合设备包括: 桶型的外壁, 所述外壁内腔中嵌有两个透 镜, 所述外壁外设有水冷设备。 0012 进一步改进为, 所述光学耦合设备的一端与所述水冷设备一端的内壁通过螺纹连 接, 所述水冷设备的另一端通过螺纹连接于所述耐高温导光晶体管上。 0013 进一步改进为, 所述水冷设备的进水口通过管路连接有。
12、水泵, 所述水泵连接一控 制设备。 0014 进一步改进为, 所述水冷设备上设有温度传感器, 所述温度传感器连接所述控制 设备。 0015 进一步改进为, 所述耐高温导光晶体管包括: 陶瓷外管, 所述陶瓷外管的内腔内设 有导光晶体棒, 所述导光晶体棒与所述陶瓷外管内壁之间填充有支撑物。 0016 本实用新型的有益效果是: 0017 本实用新型提供的测温装置中, 通过耐高温导光晶体管对工业炉内的光通量进行 采集后, 光学耦合设备将光通量耦合到四根光纤上, 包含其中两根光纤的第一测温组件用 于测量高温段温度值, 包含另外两根光纤的第二测温组件用于测量低温段温度值。 如此, 工 业炉内温度为高温段温。
13、度值, 显示设备显示第一测温组件测得的温度, 若为低温段温度时, 显示设备显示第二测温组件测得的温度, 从而能够大温度范围测量工业炉内的温度, 并能 够高低温之间自动切换显示, 无需人工更换滤光片, 节省人力, 提高了装置的适用范围以及 使用的便捷性。 附图说明 0018 下面结合附图和实施例对本实用新型进一步说明。 0019 图1是本实用新型的高低温自动切换的工业炉内温度测量装置结构示意图; 0020 图2是本实用新型的中四根光纤组合方式示意图; 0021 图3是本实用新型的光学耦合设备结构示意图; 0022 图4是本实用新型的水冷设备结构示意图; 0023 图5是本实用新型的水冷循环示意图。
14、; 0024 图6是本实用新型的耐高温导光晶体管结构示意图。 具体实施方式 0025 现在结合附图对本实用新型作进一步详细的说明。 这些附图均为简化的示意图, 仅以示意方式说明本实用新型的基本结构, 因此其仅显示与本实用新型有关的构成。 0026 在实用新型的描述中, 需要理解的是, 术语 “中心” 、“纵向” 、“横向” 、“长度” 、“宽 度” 、“厚度” 、“上” 、“下” 、“前” 、“后” 、“左” 、“右” 、“竖直” 、“水平” 、“顶” 、“底”“内” 、“外” 、“顺 时针” 、“逆时针” 等指示的方位或位置关系为基于附图所示的方位或位置关系, 仅是为了便 于描述实用新型和简。
15、化描述, 而不是指示或暗示所指的装置或元件必须具有特定的方位、 以特定的方位构造和操作, 因此不能理解为对实用新型的限制。 0027 此外, 术语 “第一” 、“第二” 仅用于描述目的, 而不能理解为指示或暗示相对重要性 或者隐含指明所指示的技术特征的数量。 由此, 限定有 “第一” 、“第二” 的特征可以明示或者 隐含地包括一个或者更多个该特征。 在实用新型的描述中,“多个” 的含义是两个或两个以 说明书 2/5 页 4 CN 210664786 U 4 上, 除非另有明确具体的限定。 0028 在实用新型中, 除非另有明确的规定和限定, 术语 “安装” 、“相连” 、“连接” 、“固定” 。
16、等术语应做广义理解, 例如, 可以是固定连接, 也可以是可拆卸连接, 或一体地连接; 可以是 机械连接, 也可以是电连接; 可以是直接相连, 也可以通过中间媒介间接相连, 可以是两个 元件内部的连通。 对于本领域的普通技术人员而言, 可以根据具体情况理解上述术语在实 用新型中的具体含义。 0029 如图1所示, 本实用新型提供了一种高低温自动切换的工业炉内温度测量装置, 包 括: 耐高温导光晶体管1、 光学耦合设备2、 第一测温组件3、 第二测温组件4和显示设备5, 所 述耐高温导光晶体管1的一端置于工业炉100内, 用于采集炉内光线, 并将光线导向与耐高 温晶体管另一端连接所述光学耦合设备内。
17、, 所述第一测温组件、 第二测温组件均与所述光 学耦合设备相连接, 光学耦合设备将光线导向两个测温组件中, 所述显示设备分别与所述 第一测温组件、 所述第二测温组件相连接; 0030 所述第一测温组件用于测量高温段温度, 即用于测量温度在1500以上的炉内温 度; 0031 所述第二测温组件用于测量低温段温度, 及用于测量温度在1500以下的炉内温 度。 0032 本装置中, 通过耐高温导光晶体管对工业炉内的光通量进行采集后, 光学耦合设 备将光通量耦合到四根光纤上, 包含其中两根光纤的第一测温组件用于测量高温段温度 值, 包含另外两根光纤的第二测温组件用于测量低温段温度值。 如此, 工业炉内。
18、温度为高温 段温度值, 显示设备显示第一测温组件测得的温度, 若为低温段温度时, 显示设备显示第二 测温组件测得的温度, 从而能够大温度范围测量工业炉内的温度, 并能够高低温之间自动 切换显示, 无需人工更换滤光片, 节省人力, 提高了装置的适用范围以及使用的便捷性。 0033 进一步改进为, 所述第一测温组件3包括: 第一光纤31、 第二光纤32、 第一滤光片 33、 第二滤光片34、 第一光电探测器35、 第二光电探测器36和第一测量设备37, 所述第一光 纤31、 所述第二光纤32连接所述光学耦合设备2, 所述第一光纤31、 所述第一滤光片33、 所述 第一光电探测器35依次连接, 所述。
19、第二光纤32、 所述第二滤光片34、 所述第二光电探测器36 依次连接, 所述第一光电探测器35、 所述第二光电探测器36均与所述第一测量设备37相连 接。 其中, 可通过调整滤光片和光电探测器来调整第一测温组件的测温范围。 具体地, 在本 实施例中, 第一光纤所连接的第一滤光片为480nm的滤光片, 第二光纤所连接的第二滤光片 为650nm的滤光片, 而且与两个滤光片分别连接的光电探测器的探测波段也需与对应的滤 光片向对应, 使得两个光电探测器接收可见光范围内的光辐射。 第一测量设备接收到第一 光电探测器和第二光电探测器测得的两个数值的比值根据温度查找表得到温度值T1。 具体 地, 所述第一。
20、测温组件接硅基探测器。 且第一测量设备用于对光信号进行放大及模数转换, 将光信号转换为电信号。 0034 进一步改进为, 所述第二测温组件4包括: 第三光纤41、 第四光纤42、 第三滤光片 43、 第四滤光片44、 第三光电探测器45、 第四光电探测器46和第二测量设备47, 所述第三光 纤41、 所述第四光纤42连接所述光学耦合设备2, 所述第三光纤41、 所述第三滤光片43、 所述 第三光电探测器45依次连接, 所述第四光纤42、 所述第四滤光片44、 所述第四光电探测器46 依次连接, 所述第三光电探测器45、 所述第四光电探测器46均与所述第二测量设备47相连 说明书 3/5 页 5。
21、 CN 210664786 U 5 接。 具体地, 在本实施例中, 第三光纤所连接的第三滤光片为1600nm的滤光片, 第四光纤所 连接的第四滤光片为1600nm的滤光片, 而且与两个滤光片分别连接的光电探测器的探测波 段也需与对应的滤光片向对应, 从而第二测温组件能够测量的温度范围是: 500-1500。 具体地, 所述第二测温组件接锗探测器。 0035 如图2所示, 进一步改进为, 所述第一光纤31、 所述第二光纤32、 所述第三光纤41、 所述第四光纤42与所述光学耦合设备2的连接处形成一个截面以光纤纤芯中心为顶点的正 方形的光纤阵列。 为了确保辐照在四根光纤上的光通量是均匀并且是相同的。
22、, 本实施例中, 通过光学耦合设备将工业炉内的光通量汇聚到以O为圆心, 半径为R的圆内, 而四根光纤排 列成一个截面以光纤纤芯中心为顶点的正方形的光纤阵列, 四根光纤的纤芯中心连线构成 一个正方形, 这个正方形的中心点与上述圆心在同一个点上。 同时, 进一步地, 四根光纤与 光学耦合设备的连接端, 均位于光学耦合设备将光通量汇聚的以O为圆心, 半径为R的圆内。 0036 由于耐高温导光管被放置在炉内, 所以, 与其连接的光学耦合系统需要耐受很高 的温度, 光学耦合系统接收的热量主要由两个方面组成, 一部分是工业炉内通过陶瓷导光 管传导来的热量, 一部分是由于工业炉的外壁辐射来的热量。 而通常的。
23、光学元件在受到高 温辐照的时候, 会产生热透镜效益, 导致耦合效率下降, 也可能因为温度梯度不均匀而导致 光学镜片炸裂, 所以, 要对光学耦合系统进行水冷处理。 0037 如图3所示, 进一步改进为, 所述光学耦合设备2包括: 桶型的外壁21, 所述外壁21 内腔22中嵌有两个透镜23, 所述外壁21外设有水冷设备6。 该水冷设备通过循环水, 对光学 耦合设备进行持续降温。 0038 如图4所示, 进一步改进为, 所述水冷设备6沿光学耦合设备2延伸方向的一端设有 进水口61, 另一端设有出水口62。 进水口61与出水口62通过管路连接到蓄水池或其它容器 中。 0039 进一步改进为, 所述光学。
24、耦合设备2的一端与所述水冷设备6一端的内壁通过螺纹 连接, 所述水冷设备6的另一端通过螺纹连接于所述耐高温导光晶体管1上。 具体地, 如图所 示, 水冷设备6的右端内壁具有内螺纹63, 光学耦合设备2的右端外壁上具有与该内螺纹相 匹配的外螺纹24, 两者通过螺纹配合连接。 而且, 水冷设备6的左端具有外螺纹64, 通过该外 螺纹64连接于耐高温导光晶体管1上。 0040 如图5所示, 进一步改进为, 所述进水口61通过管路连接有水泵65, 所述水泵65连 接一控制设备67。 本实施例中, 控制设备为单片机, 用于控制水泵的工作状态, 通过水泵使 得水冷设备内的水循环更加迅速, 提高降温效率。 。
25、工业炉内通过耐高温导光晶体管传导来 的热量与水冷设备的前端相接触, 经过水冷循环被带走。 而工业炉的外壁辐射来的热量也 直接被水冷设备的外壁所吸收, 也经过水冷循环被带走, 所以光学耦合设备被有效的保护 起来, 虽然炉内温度达到1500以上, 工业炉的外壁也达到了150以上的温度, 但是都能被 水冷设备, 有效的保护, 能将炉内的辐射通量有效的传输出来。 0041 工业炉内的温度是随工业过程而发生变化的, 水冷系统的内部温度要保持在150 以下, 才能保证光学耦合系统正常工作。 而温度低时可能需要的水循环的速度低一点, 工 业炉内温度高时, 需要水循环的速度高一点。 为了控制水循环的速度, 本。
26、实施例中, 所述水 冷设备上设有温度传感器66, 所述温度传感器66连接所述控制设备67。 控制设备内预设有 至少一个温度值, 当温度传感器其测得的温度高于此温度值时, 控制设备提高水泵工作功 说明书 4/5 页 6 CN 210664786 U 6 率, 以提高其转速, 加快水冷设备内水循环的速度。 在另一实施例中, 控制设备内预设有多 个温度值, 如果测得的水温低于100, 水泵可以不用工作, 随着测量的温度值的升高, 水泵 的转速逐渐的增加, 当测量的温度超过150, 控制设备会驱动报警器发出报警, 此时可以 启动风扇, 风冷辅助降温。 具体为, 当温度传感器测得温度100时, 水泵转速。
27、为0(不工 作); 当100温度传感器测得温度110时, 水泵转速为1; 110温度传感器测得温度 120, 水泵转速为2; 120温度传感器测得温度130, 水泵转速为3; 130温度 传感器测得温度140, 水泵转速为4; 140温度传感器测得温度150, 水泵转速 为5; 150温度传感器测得温度时, 报警器发出报警。 0042 如图6所示, 进一步改进为, 所述耐高温导光晶体管1包括: 陶瓷外管11, 所述陶瓷 外管的内腔内有沿陶瓷外管延伸方向设置的导光晶体棒12, 所述导光晶体棒12与所述陶瓷 外管11内壁之间填充有支撑物13。 具体地, 陶瓷外管可采用氧化锆(ZrO2)基陶瓷或氧化。
28、锆 增韧氧化铝(ZTA)等, 导光晶体棒为氧化铝晶体棒, 导光晶体棒与所述陶瓷外管内壁之间填 充的支撑物可以为任一种耐高温的粉末, 例如: 氧化锆粉末或氧化铝粉末等。 本实施例中, 填充物采用氧化铝粉末, 因为晶体棒和填充粉末是同种材料时, 他们的膨胀、 吸收等参数都 相同, 能结合的较好, 产生的热应力也较小, 从而使得本耐高温导光晶体管具有很强的抗热 震和热冲击的能力。 0043 同时, 为了便于耐高温导光晶体管与光学耦合设备的连接, 耐高温导光晶体管的 一端安装有连接端14, 且导光晶体棒伸出于连接端内, 该连接端与光学耦合设备为螺纹连 接, 当光学耦合设备外设有水冷设备时, 连接端与设。
29、置在光学耦合设备外的水冷设备通过 螺纹连接的方式连接在一起。 0044 以上述依据本实用新型的理想实施例为启示, 通过上述的说明内容, 相关工作人 员完全可以在不偏离本项实用新型技术思想的范围内, 进行多样的变更以及修改。 本项实 用新型的技术性范围并不局限于说明书上的内容, 必须要根据权利要求范围来确定其技术 性范围。 说明书 5/5 页 7 CN 210664786 U 7 图1 图2 说明书附图 1/3 页 8 CN 210664786 U 8 图3 图4 图5 说明书附图 2/3 页 9 CN 210664786 U 9 图6 说明书附图 3/3 页 10 CN 210664786 U 10 。
- 内容关键字: 低温 自动 切换 工业炉 温度 测量 装置
顶升式芯片脱模结构及芯片固晶设备.pdf
U肋板转运机器人.pdf
农业种植架.pdf
洗水机用松布退卷输送机构.pdf
检测夹具.pdf
低压线圈中的气道撑条.pdf
自动上料调平的无机板切割设备.pdf
高压手动反冲洗过滤装置.pdf
烟气余热回收装置.pdf
具有受热均匀结构的电热恒温鼓风干燥箱.pdf
单手操作钢珠锁紧接头.pdf
实验动物大鼠拍摄CBCT的专用支架.pdf
自动检测码垛漏砖系统.pdf
挥发性有机物环保治理回收装置.pdf
消失模壳型精铸模型气化炉的壳型料架.pdf
综合性能好的节能预分支电缆.pdf
微型无阀压电泵.pdf
干式变压器绝缘垫块.pdf
煤粉吊装料仓.pdf
活塞加工用运输承载板.pdf
双目测距导盲装置.pdf
有色金属选矿废水回收处理装置.pdf
带有脱模机构的塑料瓶注塑机.pdf
粉尘精过滤滤芯.pdf
升降堰门.pdf
生产海绵钛带加热装置的反应器.pdf
炼铁原料白灰消化装置.pdf
塑料瓶用吹塑成形装置.pdf
LED器件及其制备方法.pdf
消融针尖端限位缓冲结构及其穿刺装置.pdf
光伏储能系统.pdf
基于多模态数据的封闭母线R-CNN温度故障监测方法.pdf
一种多循环回路的分体式空调机.pdf
对于增强物理下行链路控制信道(EPDCCH)的TDDPUCCHHARQ资源分配的方法和系统.pdf
一种快速更换辊筒的装置及其工作方法.pdf
芯体的制造装置以及芯体的制造方法.pdf
一体化防汛小车.pdf
基于用户生活习惯挖掘的智能家电联动控制方法.pdf
一种表面包覆碳的过渡金属硫化物以及制备方法和应用.pdf
一种具有自检功能的拾音装置及自检方法.pdf
智能手表.pdf
基于60坐标系的三相VIENNA整流器及控制方法.pdf
针对三小区联合传输的PDSCH资源要素映射.pdf
气阀、集成气泵及可穿戴地电子血压计.pdf
一种沉头万向摇摆螺母及其加工方法.pdf
一种车辆驱动装置.pdf
单相和三相全桥交流斩波工变补偿交流稳压电源.pdf
储能系统.pdf
一种发动机及其中冷器.pdf
具有增强的产量相关性状的植物及其制备方法.pdf
一种轿厢超载保护装置.pdf