基于导电电极电化学响应的液体流速测量装置及测量方法.pdf

上传人:小*** 文档编号:12060193 上传时间:2021-11-16 格式:PDF 页数:18 大小:1.10MB
收藏 版权申诉 举报 下载
基于导电电极电化学响应的液体流速测量装置及测量方法.pdf_第1页
第1页 / 共18页
基于导电电极电化学响应的液体流速测量装置及测量方法.pdf_第2页
第2页 / 共18页
基于导电电极电化学响应的液体流速测量装置及测量方法.pdf_第3页
第3页 / 共18页
文档描述:

《基于导电电极电化学响应的液体流速测量装置及测量方法.pdf》由会员分享,可在线阅读,更多相关《基于导电电极电化学响应的液体流速测量装置及测量方法.pdf(18页完成版)》请在专利查询网上搜索。

1、(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910092846.5 (22)申请日 2019.01.30 (71)申请人 北京师范大学 地址 100875 北京市海淀区新街口外大街 19号 (72)发明人 郑彝钧孙玲程国安 (74)专利代理机构 北京慕达星云知识产权代理 事 务 所( 特 殊 普 通 合 伙 ) 11465 代理人 崔自京 (51)Int.Cl. G01P 5/08(2006.01) (54)发明名称 一种基于导电电极电化学响应的液体流速 测量装置及测量方法 (57)摘要 本发明公开了一种基于导电电极。

2、电化学响 应的液体流速测量装置及测量方法, 通过将电化 学工作站与该液体流速测量装置连接, 并测量工 作电极在动静液体环境下的电流差和开路电势 差, 再根据标定曲线即可计算出液体的流速。 本 发明公开的液体流速测量装置不仅尺寸较小、 便 于携带, 而且灵敏度比目前市面上具有较高灵敏 度的超声波流速仪和光纤流速仪高了将近一个 数量级, 可以测量流速为2.2mm/s的液体。 另外, 本发明利用非常廉价的金属网作为工作电极, 不 仅价格便宜, 适用性广, 而且对于拓展电化学工 作站的应用领域、 发展新型超低流速液体的流速 监控技术具有重要的科学意义, 为其在化学合 成、 生物检测、 纳米材料等领域的。

3、应用奠定了基 础。 权利要求书1页 说明书8页 附图8页 CN 109946477 A 2019.06.28 CN 109946477 A 1.一种基于导电电极电化学响应的液体流速测量装置, 其特征在于, 包括外壳、 连接 架、 滑块、 滑道、 三电极和三引线; 所述连接架与所述三电极均安装于所述外壳的内部; 所述三电极与所述三引线对应, 且所述三电极包括参比电极、 工作电极和对电极; 所述滑道位于所述外壳上, 且所述滑道的两端有限位, 一端设有卡槽; 所述滑块与所述连接架固定连接, 并与所述滑道滑动连接。 2.根据权利要求1所述的一种基于导电电极电化学响应的液体流速测量装置, 其特征 在于,。

4、 还包括支撑柱和盖板; 所述盖板安装于所述外壳的一端, 且所述盖板将所述外壳密 封; 所述支撑柱一端与所述盖板连接, 另一端与所述连接件连接。 3.根据权利要求1所述的一种基于导电电极电化学响应的液体流速测量装置, 其特征 在于, 所述连接架为设有三孔结构的有机材料, 且所述三孔分别用于插放所述参比电极、 所 述工作电极和所述对电极。 4.根据权利要求1所述的一种基于导电电极电化学响应的液体流速测量装置, 其特征 在于, 所述卡槽与所述滑块相适配, 通过所述卡槽来限定所述滑块在所述滑道内的滑动。 5.根据权利要求1或3所述的一种基于导电电极电化学响应的液体流速测量装置, 其特 征在于, 所述工。

5、作电极选用铜网、 镍铬合金丝网、 不锈钢网、 FTO玻璃或任意一种导电电极材 料。 6.一种基于导电电极电化学响应的液体流速测量方法, 其特征在于, 所述的测量方法 具体包括如下步骤: (1)用去离子水清洗所述液体流速测量装置, 同时将三引线与电化学工作站对应连接, 将测量装置垂直置于需测流速的液体中,静置1-10分钟; (2)通过调节滑块在滑道内的滑动使得三电极在外壳内处于缩回状态, 稳定10300秒 钟后, 利用电化学工作站测量电极缩回时的开路电势和电流作为静态开路电势和电流; (3)通过调节滑块使得三电极伸出外壳内, 稳定10300秒钟后, 利用电化学工作站测 量电极伸出时的开路电势和电。

6、流作为动态开路电势和电流; (4)计算工作电极在动、 静液体环境下的开路电势差和电流差, 再根据开路电势差和电 流差与流速的标定曲线便可获得液体的流速。 7.根据权利要求6所述的一种基于导电电极电化学响应的液体流速测量方法, 其特征 在于, 所述步骤(1)中, 液体流速测量装置插入待测液体的深度不小于3厘米。 权利要求书 1/1 页 2 CN 109946477 A 2 一种基于导电电极电化学响应的液体流速测量装置及测量 方法 技术领域 0001 本发明属于液体流速测量领域, 涉及一种基于金属栅网开路电势的液体流速测量 装置及方法, 尤其涉及一种基于导电电极电化学响应的液体流速测量装置及测量方。

7、法。 背景技术 0002 微流芯片、 纳米材料合成等生物、 化学和材料前沿领域对于低流速传感器的开发 有着明确的需求, 因为过快的流速会影响芯片的分析精度、 纳米材料的现状和性能。 目前市 面上有各种各样的流速检测仪器, 按照其工作原理主要分为两种: 基于热式原理的流速传 感器和基于非热式原理的流速传感器。 0003 基于热式原理的流速传感器虽然具有工艺易控制、 检测较简单的优点, 但是存在 测量误差大、 工作功耗大和响应时间长等缺点。 而基于非热式原理的流速传感器是对于流 体速度相关的力学量进行检测, 并利用精密机械的加工手段对这些量进行反映的器件。 0004 常见的非热式液体流速传感器有电。

8、磁式传感器、 超声波传感器、 涡街传感器、 涡轮 传感器这四种。 其中电磁式传感器的测量精度低、 不可靠; 涡街传感器虽然测量精度较高, 但无法测量较高速或较低速及杂质较多的液体流速; 涡轮流速仪虽然具有高的精度和较好 的重复性, 且具有较宽的测量范围, 但是对于超低流速液体也不够灵敏。 因此低流速液体的 流速测量一直是一个难题, 由于流速低, 传感器产生的信号较弱, 信噪比较低, 测量信号常 常淹没在噪声中, 无法对其进行准确测量。 0005 目前对于低流速液体的流速测量主要采用两种非热式液体流速传感器: 超声波传 感器和光纤传感器。 其中超声波流速计主要是通过检测流体流动导致超声波产生的速。

9、度差 来测量流速。 而光纤流速计则是通过将光纤放置在流动液体中时, 光纤中传输的光的特性 (如强度、 相位、 频率等)会受流速的影响, 利用适当的光检测方法检测出光的变化就可以反 推出液体的流速。 并且市面上这两种流速检测仪能够检测的流速范围分别在0.0112m/s 和0.015m/s。 对于更低的流速还要开发新的测量方法和测量仪器。 发明内容 0006 有鉴于此, 本发明提供一种基于导电电极电化学响应的液体流速测量装置及测量 方法。 发明人通过对流动液体中电极材料电化学性质的研究, 发现电化学工作站工作电极 的开路电势和电流具有随液体流动速度的增加而增加的规律。 为此本发明通过测量金属栅 网。

10、工作电极开路电势差而开发一种新的液体流速传感器。 0007 为了实现上述目的, 本发明提供如下技术方案: 0008 一种基于导电电极电化学响应的液体流速测量装置, 包括外壳、 连接架、 滑块、 滑 道、 三电极和三引线; 0009 所述连接架与所述三电极均安装于所述外壳的内部; 所述三电极与所述三引线对 应, 且所述三电极包括参比电极、 工作电极和对电极; 说明书 1/8 页 3 CN 109946477 A 3 0010 所述滑道固设于所述外壳上, 且所述滑道的一端设有卡槽; 0011 所述滑块安装于所述滑道内部, 并与所述滑道滑动连接; 所述滑块与所述连接架 固定连接。 0012 通过采用。

11、上述技术方案, 本发明的有益效果如下: 0013 本发明公开的液体流速测量装置的灵敏度比目前市面上具有较高灵敏度的便携 式超声波流速仪和光纤流速仪高了将近5倍, 可以测量流速低至2.2mm/s的液体。 0014 另外, 本发明利用非常廉价的金属网作为工作电极, 不仅价格便宜, 适用性广, 而 且对于拓展电化学工作站的应用领域、 发展新型超低流速液体的流速监控技术具有重要的 科学意义, 为其在化学合成、 生物检测、 纳米材料等领域的应用奠定了基础。 0015 优选的, 所述液体流速测量装置还包括支撑柱和盖板; 所述盖板安装于所述外壳 的一端, 且所述盖板将所述外壳密封; 所述支撑柱一端与所述盖板。

12、连接, 另一端与所述连接 件连接。 0016 需要说明的是, 本发明将测量装置插入待测流速的液体中, 液体通过盖板与外壳 之间的缝隙, 进入外壳与盖板形成的空腔中, 并通过电化学工作站测量电极缩回时的开路 电势和电流, 以将其作为静态开路电势和电流, 而盖板的设计目的为避免液体流动对静态 开路电势和电流的影响, 以降低检测精确度。 0017 优选的, 所述连接架为设有三孔结构的有机材料, 且所述三孔分别用于插放所述 参比电极、 所述工作电极和所述对电极。 0018 优选的, 所述卡槽与所述滑块相适配, 通过所述卡槽来限定所述滑块在所述滑道 内的滑动。 0019 优选的, 所述工作电极选用铜网、。

13、 镍铬合金丝网、 不锈钢网、 FTO玻璃或任意一种导 电电极材料。 0020 值得说明的是, 本发明公开三电极与电化学工作站对应连接, 具体为: 将150目的 铜网、 镍铬合金丝网、 不锈钢网或FTO玻璃等导电电极裁成12cm的长方形作为工作电极, 并使用酒精、 丙酮或去离子水清洗表面油污后, 与电化学工作站的绿色接线头相连; 选用铂 丝电极与电化学工作站的红色接线头相连, 作为对电极; 选用银/氯化银电极与电化学工作 站的白色接线头相连, 作为参比电极。 0021 本发明还提供了一种基于导电电极电化学响应的液体流速测量方法。 0022 为了实现上述目的, 本发明提供如下技术方案: 0023 。

14、一种基于导电电极电化学响应的液体流速测量方法, 所述的测量方法具体包括如 下步骤: 0024 (1)用去离子水清洗所述液体流速测量装置, 同时将三引线与电化学工作站对应 连接, 将测量装置垂直置于需测流速的液体中,静置1-10分钟; 0025 (2)通过调节滑块在滑道内滑动到卡槽位置来使得三电极在外壳内的处于缩回状 态, 盖板封闭, 稳定10300秒钟后, 利用电化学工作站测量电极缩回时的开路电势和电流 作为静态开路电势和电流; 0026 (3)通过调节滑块滑动到最低端, 使得三电极完全伸出外壳内, 稳定10300秒钟 后, 利用电化学工作站测量电极伸出时的开路电势和电流作为动态开路电势和电流。

15、; 0027 (4)计算工作电极在动、 静液体状态下的开路电势差和电流差, 再根据开路电势差 说明书 2/8 页 4 CN 109946477 A 4 和电流差与流速的标定曲线便可获得液体的流速。 0028 优选的, 所述步骤(1)中, 液体流速测量装置插入待测液体的深度不小于3厘米。 0029 通过采用上述技术方案, 本发明的有益效果如下: 0030 本发明在流动液体和静止液体之间的开路电势差与液体流速成正比的基础上搭 建了一种新的液体流速传感器, 发现利用金属栅网电极在液体流动和静止情况下的开路电 势差能够测量低至2.2mm/s的最低流速, 比市面上最灵敏的光纤流速传感器能够测量的最 低极。

16、限流速还要低5倍左右。 0031 经由上述的技术方案可知, 与现有技术相比, 本发明提供的一种基于导电电极电 化学响应的液体流速测量装置及测量方法, 通过将电化学工作站与该液体流速测量装置连 接, 并测量工作电极在动静液体环境下的电流差和开路电势差, 再根据标定曲线即可计算 出液体的流速。 该液体流速测量装置不仅尺寸较小、 便于携带, 而且灵敏度比目前市面上具 有较高灵敏度的超声波流速仪和光纤流速仪高了将近5倍, 可以测量2.2mm/s的最低流速的 液体。 并且本发明公开的液体流速测量方法具有良好的普适性, 可以采用不同的电极测量 各种液体的流速, 在低流速液体的流速监控方面具有广泛的应用前景。

17、。 附图说明 0032 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施例或现 有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本 发明的实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据 提供的附图获得其他的附图。 0033 图1附图为液体流速测量装置的结构示意图。 0034 图2附图为NiCr合金网在离子水中对转子转速的电压电流响应。 0035 图3附图为不同电极材料在流动去离子水中的的开路电势响应。 0036 图4附图为流速标定装置。 0037 图5附图为开口槽的结构示意图。 0038 图6附图为金属网电极的。

18、流速标定结果。 0039 图7附图为不锈钢网电极在去离子水中的开路电势时间曲线。 0040 图8附图为NiCr合金网电极在NaCl溶液中的开路电势时间曲线。 具体实施方式 0041 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完 整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他 实施例, 都属于本发明保护的范围。 0042 本发明实施例公开了一种适用性广且具有较高灵敏度的基于导电电极电化学响 应的液体流速测量装置及测量方法, 该测量装置能够测量更。

19、低流速(流速2.2mm/s)的液 体。 0043 为更好地理解本发明, 下面通过以下实施例对本发明作进一步具体的阐述, 但不 可理解为对本发明的限定, 对于本领域的技术人员根据上述发明内容所作的一些非本质的 说明书 3/8 页 5 CN 109946477 A 5 改进与调整, 也视为落在本发明的保护范围内。 0044 结合参见附图1, 本发明公开了一种基于导电电极电化学响应的液体流速测量装 置, 包括外壳1、 连接架2、 滑块3、 滑道4、 三电极和三引线、 支撑柱9、 盖板10; 0045 连接架2与三电极均安装于外壳1的内部; 三电极与三引线对应, 且三电极包括参 比电极5、 工作电极6。

20、和对电极7; 0046 滑道4固设于外壳1上, 且滑道4的一端设有卡槽8; 0047 滑块3安装于滑道4内部, 并与滑道4滑动连接; 滑块3与连接架2固定; 0048 盖板10通过4个支撑柱9与连接架2固定。 0049 为了进一步实现本发明的技术效果, 连接架2为设有三孔结构的有机材料块, 且三 孔分别用于插放参比电极5、 工作电极6和对电极7。 0050 为了进一步实现本发明的技术效果, 卡槽8与滑块3相适配, 通过卡槽8来限定盖板 关闭情况下滑块3在滑道4内的滑动。 0051 为了进一步实现本发明的技术效果, 工作电极6选用铜网、 镍铬合金丝网、 不锈钢 网、 FTO玻璃或其他任意一种电极。

21、材料。 0052 本发明还有一个目的为提供一种基于导电电极电化学响应的液体流速测量方法, 所述的测量方法具体包括如下步骤: 0053 (1)用去离子水清洗所述液体流速测量装置, 同时将三引线与电化学工作站对应 连接; 0054 (2)通过调节滑块在滑道内的滑动来控制三电极在外壳内的伸缩状态, 并利用电 化学工作站对工作电极的电流响应进行检测, 以测量工作电极在动静液体环境下的电流和 开路电势差, 再根据标定曲线便计算出液体的超低流速。 0055 下面, 将结合具体实施例, 对本发明的技术方案进行进一步的说明。 0056 实施例1: 流速响应实验 0057 (1)试剂和实验仪器 0058 去离子。

22、水由实验室自制, 电阻率为12M*cm; NaCl(分析纯)购于西陇科学股份有 限公司; 搅拌子、 玻璃密封电解槽、 铁架台购于北京市化学仪器公司; 铂丝电极、 银/氯化银 电极购于徐州正浩电子科技公司; 不锈钢、 铜、 镍铬合金栅网目数均为150目, 购于蕾寇金属 公司。 电化学工作站采用上海辰华仪器公司生产的CHI660E型; 数显恒温磁力搅拌器采用金 坛市城东新瑞仪器公司生产的90-2型。 0059 (2)实验内容 0060 用去离子水清洗玻璃密封电解槽并将三个电极放入电解槽。 将150目的铜网、 镍铬 合金丝网、 不锈钢网、 FTO玻璃裁成12cm的长方形作为工作电极, 使用酒精、 丙。

23、酮和去离子 水清洗表面油污后, 与电化学工作站的绿色接线头相连。 选择铂丝电极与电化学工作站的 红色接线头相连, 作为对电极。 选择银/氯化银电极与电化学工作站的白色接线头相连, 作 为参比电极。 0061 加入不同液体, 使电极部分浸入液体中, 并保证三个电极都不触碰容器壁和搅拌 子。 打开电化学工作站开关预热5min, 并打开电脑上相应软件, 利用搭建的三电极体系, 通 过电化学工作站对工作的电化学响应进行检测。 实验时, 选择电流-时间模式或开路电势- 时间模式, 在静置状态下对体系电流进行30s检测, 得到静态的I-t或者V-t曲线。 然后通过 说明书 4/8 页 6 CN 10994。

24、6477 A 6 转动搅拌子使水流通过金属丝网30s, 重复多个循环得到I-t或者V-t曲线。 0062 为了探究电压/电流与不同的流速之间的定性关系, 分别在低、 中、 高三个转速下 进行测量。 测量结束之后将金属丝网取出, 对不同样品和不同溶液采用同样方式的测量, 得 到开路电压或者电流的流速响应曲线。 0063 (3)转子转速对电极开路电势和电流的影响 0064 图2是NiCr合金网在去离子水中对磁力搅拌转子转速的电压电流响应。 且图2(A) 为开路电势时间曲线; 图2(B)为电流时间曲线; 图2(C)为开路电势差转速关系; 图2 (D)为电流差转速关系。 0065 从图2中可以看出无论。

25、是开路电势还是NiCr合金网与对电极之间的电流都对液体 流速有明确的响应。 0066 开路电势指的是电流密度为零时的电极电位, 也就是不带负载时工作电极和参比 电极之间的电位差。 电流指的是工作电极和对电极之间的基线电流。 在磁力转子转动/停止 的瞬间, 开路电势和电流也表现出明显的变化。 这种变化有良好的重复性, 而且与液体中磁 力搅拌转子的启停一一对应。 0067 从图2中可以看出: 在330r/min的中等转速下, 开路电势产生了20mV左右的电压变 化(图2A); 同时电流产生了0.58 A的平均变化(图2B)。 开路电势和电流的变化方向正好相 反, 与电池的充电过程类似。 0068 。

26、在162r/min、 330r/min和495r/min三个转速下, 开路电势差的平均值分别为18mV、 20.6mV和23mV, 呈现出良好的线性, 如图2C所示。 而电流差平均值分别为0.44 A、 0.58 A和 0.779 A, 也呈现出了正相关关系, 如图2D所示。 虽然用转速代表流速有一定的误差, 但是这 些结果定性的反映了开路电势差和电流差与液体流速之间的正相关关系。 从这些测量结果 中可以看出: 随着流速的变化, 开路电势差的变化量较大, 而且测量过程中数据也比较稳 定。 但是电流差的变化较小, 在微安量级。 0069 (4)电极材料对开路电势的影响 0070 导电电极在流动液。

27、体中具有开路电势是一种普遍现象。 由于不同电极材料的电位 不同, 所以他们在相同流速的同一种溶液中的开路电势响应不同。 本发明针对铜网、 FTO玻 璃、 不锈钢网、 镍铬合金网均开展了相应的研究。 图3为不同导电电极在磁力转子每隔30秒 启停情况下的开路电势响应, 转子转速为330r/min。 且图3(A)为NiCr合金网开路电势时 间曲线; 图3(B)为不锈钢网开路电势时间曲线; 图3(C)为FTO玻璃开路电势时间曲线; 图3(D)为铜网开路电势时间曲线。 0071 从图3中可以看出: 随着液体的流动, 所有电极材料的开路电势均增加, 不过不同 电极材料的开路电势平均变化量不同。 NiCr合。

28、金网为20.6mV(图3A)、 不锈钢网为24.5mV(图 3B)、 FTO玻璃为2.1mV(图3C)、 铜网为10mV(图3D)。 磁力搅拌转子在启停过程中, 开路电势的 变化跟电极材料的表面电位、 表面积、 表面液体流速等因素有关。 不过开路电势变化的物理 化学机制来自于液体流动导致于材料表面双电层结构发生的变化。 根据Stern双电层模型, 金属表面的双电层包括紧密层和扩散层, 其电容分别为CH和CD。 双电层的总电容等于这两 个电容串联之后的电容 说明书 5/8 页 7 CN 109946477 A 7 0072 0073 随着液体流速的增加, 扩散层中的离子被带走, CD下降, 总电。

29、容C也下降。 而相对低 的流速下, 紧密层中的离子与金属表面之间的相互作用力较强, 不受液体流动的影响。 所以 紧密层中的电荷密度不变。 由于双电层的电容 0074 C /V (2) 0075 其中 是金属侧电荷密度, V是Zeta电位。 随着电容的下降, 材料表面的电极电位上 升。 0076 实施例2: 合金网流速传感器的标定 0077 本发明公开的流速标定装置包括循环水泵1、 开口槽2和电化学工作站3, 循环水泵 1和开口槽2通过管道连成液体流通回路, 如图4所示。 循环水泵1的出水口和开口槽2之间依 次设有水阀4和液体流量传感器5; 循环水泵1的进水口直接与开口槽2连接。 0078 电化。

30、学工作站3与液体流速测量装置(图1所示)的三电极对应连接, 用于对不同流 速下的工作电极的电流和开路电势响应进行检测, 再根据电流和液体流量传感器5示数标 定去工作电极的电流差和开路电势差对应的超低流速。 0079 另外, 本发明公开的液体流量传感器选用便于加工、 连接且测量精度高达0.5的 中科拓达DN10型流量计。 为了得到更小的水流速度, 设计了一个横截面积较大的开口槽与 液体流量传感器相连, 而为了使标定结果尽可能准确, 需要将流速检测系统中水流设计为 层流。 标定装置中采用内径100mm的铝开口槽2与内径10mm的不锈钢管道相连。 开口槽2起到 流体减速器的作用, 其结构如图5所示,。

31、 发明人根据圆形铝槽中流体的雷诺公式 (其中v为液体流速, d为圆管直径, 为液体的运动粘度系数), 25时水的运动粘度系数为 0.893710-6m2/s, 计算得到该铝开口槽中水流雷诺数远小于Rec2320, 其满足层流的条 件。 0080 通过控制进液和出液阀门, 使得在流速检测槽内去离子水的深度稳定在6.3cm, 可 以算出开口槽内通过水流的横截面积S53.83cm2。 在本发明中所用液体不可压缩, 因此流 量传感器的示数即为槽内液体的瞬时流量。 因此槽内水流速度与流量传感器示数满足关系 式: 0081 0082 其中Q是涡轮液体流量计的读数。 0083 使用电化学工作站持续采集开路电。

32、势数据, 调节循环水泵出水口的水阀改变槽内 水流速度, 流量传感器稳定后读数并记录。 不断调节水阀, 改变出水量大小, 以获得多个流 速。 由于水泵功率和流量传感器测量范围的限制, 涡轮液体流量计上能显示出的流量范围 在40-390L/h, 在该范围内可以观察到工作电极上均有明显的开路电势变化。 根据实验记录 所得的瞬时平均流量和开路电势信号, 用origin软件做出开路电势差与水流流速的散点 说明书 6/8 页 8 CN 109946477 A 8 图, 拟合曲线可以得到开路电势差与水流速度的关系。 0084 本发明选择化学性质比较稳定、 且具有较高刚度的的NiCr合金网和不锈钢网进行 流速。

33、标定, 标定结果如图6所示。 0085 图6(A)为NiCr合金网在去离子水中的开路电势标定结果; 图6(B)为不锈钢网在去 离子水中的开路电势标定结果; 图6(C)为NiCr合金网在自来水中的开路电势标定结果; 图6 (D)为不锈钢网在自来水中的开路电势标定结果; 图6(E)为NiCr合金网在0.1MNaCl溶液中 的开路电势标定结果; 图6(F)为不锈钢网在0.1M NaCl溶液中的开路电势标定结果; 图6(G) 为为NiCr合金网在去离子水中的电流标定结果。 0086 从图6中可以看出: 随着溶液中离子浓度的增加, 其线性度也在不断提高, 从90 左右(图6A, 图6B)提高到了95左右。

34、(图6E,F)。 除了开路电势差以外, NiCr合金丝网电极电 流差标定也获得了良好的线性度数据(图6G), 这也说明了基线电流与开路电势的线性关 系。 0087 两种电极在去离子水和自来水中的开路电势差变化不大, 均在0-14mV范围内(图 6A-D)。 但是在0.1M的NaCl溶液中开路电势差陡增到了20-60mV范围(图6E,F), 测量范围内 的灵敏度(可以用开路电势流速曲线的斜率表示)提高了几倍。 这是由于离子浓度的增加 降低了扩散层的电容, 根据公式2, 开路电势及其变化率都得到了相应的提高。 在去离子水 和NaCl溶液中都是304不锈钢网的灵敏度较好, 其开路电势流速的斜率0.8。

35、1和3.24分别 大于NiCr合金网在两种溶液中的开路电势流速斜率0.48和2.71。 但是在自来水中NiCr合 金网的灵敏度更高一些, 其开路电势流速曲线斜率0.68大于不锈钢的斜率0.30(图6C)。 这种现象估计与自来水中含有某些与NiCr合金相互作用力更强的离子有关。 0088 这两种流速测量装置中, NiCr合金网和不锈钢网电极上都能测量到毫伏级的开路 电势响应, 能较为明显地反映流速的变化, 且与流速大小成线性关系。 由于实验室水泵和涡 轮流量计的规格限制, 本发明主要检测了小于等于2cm/s的液体流速。 实际标定时测定的最 小流速是2.2mm/s。 甚至在流量计无法显示流量时, 。

36、金属网电极仍能检测到较为明显的电 流, 可见该流速检测装置在低流速下的灵敏度很高, 能够测量的极限流速非常小。 实验中购 置的流量计是市场上相同规格涡轮流量计中灵敏度最高的。 它的孔径是10毫米, 测量极限 是40L/h。 根据截面积比例换算, 其最低测量流速为14.15cm/s, 本发明所采用的金属电极流 量测量装置测量的最低极限流速比涡轮流量计降低了64倍。 与市面上销售的灵敏度较高的 便携式光纤传感器相比, 金属电极流量测量装置能够测量的最低流速极限降低了约5倍。 0089 实施例3: 液体流速的测量 0090 在所有测试的溶液中, 测试的液体流速范围内流速与金属网电极开路电势差之间 存。

37、在明显的线性关系, 说明采用金属网电极测量流速具有普遍适用性。 本发明采用图1所示 的流速测量装置测量了去离子水和氯化钠溶液的流速。 测量步骤如下: 0091 (1)用去离子水清洗所述液体流速测量装置, 同时将三引线与电化学工作站对应 连接, 将测量装置垂直置于需测流速的液体中, 装置深入液面不小于3厘米, 静置1分钟; 0092 (2)通过调节滑块在滑道内的滑动来使得三电极在外壳内的处于缩回状态, 稳定 60秒钟后, 利用电化学工作站测量电极缩回时的开路电势作为静态开路电势; 0093 (3)通过调节滑块使得三电极伸出外壳内, 稳定60秒钟后, 利用电化学工作站测量 电极伸出时的开路电势作为。

38、动态开路电势; 说明书 7/8 页 9 CN 109946477 A 9 0094 (4)调节液体流速, 测量出动、 静态开路电势随液体流速的变化; 0095 (5)计算工作电极在动、 静液体环境下的开路电势差, 再根据实施例2中开路电势 差与流速的标定曲线便可获得液体的流速。 0096 图7为流动去离子水中不锈钢丝网电极表面动、 静开路电势的变化, 图8为 0.1MNaCl溶液中NiCr合金丝网电极表面动、 静开路电势的变化曲线。 将动态和静态开路电 势差带入图6(B)和图6(E)中的线性拟合方程, 即可得到液体的实时流速。 与涡轮流量计的 换算结果相对照, 开路电势测量结果的偏离值在5以内。

39、。 此外, 可以看到去离子水中的开 路电势时间曲线呈现尖峰状波形(图7), 而在NaCl溶液中呈现方波波形(图8)。 说明去离 子水中离子的含量较低, 液体停止流动后扩散层中的离子恢复到平衡浓度的时间较长, 开 路电势的恢复较慢。 而在自来水和离子溶液中扩散层中的离子很快能够恢复到平衡浓度, 这就使得开路电势差的测量更加准确。 0097 对所公开的实施例的上述说明, 使本领域专业技术人员能够实现或使用本发明。 对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的, 本文中所定义的 一般原理可以在不脱离本发明的精神或范围的情况下, 在其它实施例中实现。 因此, 本发明 将不会被限制于本。

40、文所示的这些实施例, 而是要符合与本文所公开的原理和新颖特点相一 致的最宽的范围。 说明书 8/8 页 10 CN 109946477 A 10 图1 说明书附图 1/8 页 11 CN 109946477 A 11 图2 说明书附图 2/8 页 12 CN 109946477 A 12 说明书附图 3/8 页 13 CN 109946477 A 13 图3 图4 说明书附图 4/8 页 14 CN 109946477 A 14 图5 说明书附图 5/8 页 15 CN 109946477 A 15 说明书附图 6/8 页 16 CN 109946477 A 16 图6 说明书附图 7/8 页 17 CN 109946477 A 17 图7 图8 说明书附图 8/8 页 18 CN 109946477 A 18 。

展开阅读全文
内容关键字: 基于 导电 电极 电化学 响应 液体 流速 测量 装置 测量方法
关于本文
本文标题:基于导电电极电化学响应的液体流速测量装置及测量方法.pdf
链接地址:https://www.zhuanlichaxun.net/pdf/12060193.html
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1