人均日生活污水污染物产生量测算一体化装置及其方法.pdf
《人均日生活污水污染物产生量测算一体化装置及其方法.pdf》由会员分享,可在线阅读,更多相关《人均日生活污水污染物产生量测算一体化装置及其方法.pdf(13页完成版)》请在专利查询网上搜索。
1、(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910329149.7 (22)申请日 2019.04.23 (71)申请人 中国市政工程华北设计研究总院有 限公司 地址 300074 天津市河西区气象台路99号 (72)发明人 孙永利高晨晨张维刘静 (74)专利代理机构 无锡市大为专利商标事务所 (普通合伙) 32104 代理人 曹祖良屠志力 (51)Int.Cl. G01F 1/00(2006.01) G01F 23/00(2006.01) G01N 33/18(2006.01) G01N 1/10(2006.01)。
2、 (54)发明名称 人均日生活污水污染物产生量测算一体化 装置及其方法 (57)摘要 本发明提供一种人均日生活污水污染物产 生量测算一体化装置, 包括: 收集计量与取样系 统、 住宅人员流动监控系统、 数据处理平台系统, 所述的收集计量与取样系统和住宅人员流动监 控系统分别通过网络与数据处理平台系统连接; 所述收集计量与取样系统用于对监测楼宇一个 周期所产生的生活污水分时段收集及采样, 并将 各时段水量和时间节点数据传输至数据处理平 台系统; 所述住宅人员流动监控系统用于监控楼 宇进出人员数量和时间, 并传输至数据处理平台 系统; 所述数据处理平台系统计算出人均日生活 污水污染物产生量。 本发。
3、明还提出了一种人均日 生活污水污染物产生量的测算方法, 具有测算方 法科学、 测算结果准确等优点。 权利要求书3页 说明书8页 附图1页 CN 110057410 A 2019.07.26 CN 110057410 A 1.一种人均日生活污水污染物产生量测算一体化装置, 其特征在于, 包括: 收集计量与 取样系统(1)、 住宅人员流动监控系统(2)、 数据处理平台系统(3), 所述的收集计量与取样 系统(1)和住宅人员流动监控系统(2)分别通过网络与数据处理平台系统(3)连接; 所述收集计量与取样系统(1)用于对监测楼宇一个周期所产生的生活污水分时段收集 及采样, 并将各时段水量和时间节点数据。
4、传输至数据处理平台系统(3); 收集计量与取样系 统(1)包括相连接的收集取样装置(4)和自动控制装置(5); 所述住宅人员流动监控系统(2)用于监控楼宇进出人员数量和时间, 并传输至数据处 理平台系统(3); 所述数据处理平台系统(3)根据收集计量与取样系统(1)和住宅人员流动监控系统(2) 反馈的数据计算出人均日生活污水污染物产生量。 2.如权利要求1所述的人均日生活污水污染物产生量测算一体化装置, 其特征在于, 所述数据处理平台系统(3)根据收集计量与取样系统(1)传输的各时段取样时间节点 对住宅人员流动监控系统(2)传输的进出人员的时间进行分段对应, 并核算各时段人口当 量, 某一时段。
5、人口当量按上一时段结束时人口数加该时段新增人口当量减去该时段减少人 口当量计算, 上一时段结束时人口数按照上一时段起始时人口数加上一时段进入人口数减 上一时段离开人口数计算, 某一时段增加的人口当量按照累计所有人员进入时长除以相应 时段的总时长计算, 进入时长为人员进入至该时段结束时的累计时长, 减少的人口当量按 照累计所有离开人员离开时长除以相应时段的总时长计算, 离开时长为人员离开至该时段 结束时的累积时长, 起始时段人口数通过住宅人员流动监控系统启动时入户调查确定。 3.如权利要求1所述的人均日生活污水污染物产生量测算一体化装置, 其特征在于, 收集取样装置(4)包括: 蓄水调节池(6)。
6、、 污水收集计量池(7)、 进水阀(9)、 蓄水调节池 出水阀(11)、 搅拌器(12)、 连续自动取样器(13)、 自动液位计(14)、 出水阀(15)、 溢流管线 (19)、 溢流监测仪表(20); 所述蓄水调节池(6)设置在污水收集计量池(7)上方; 蓄水调节池(6)底部出水口与污 水收集计量池(7)顶部之间通过管线连接; 在蓄水调节池(6)与污水收集计量池(7)之间管 线上设置蓄水调节池出水阀(11); 进水阀(9)的一端连接居民住宅楼宇生活污水排放管道(23), 另一端通过管线接蓄水 调节池(6)底部的出水口和蓄水调节池出水阀(11)上端; 蓄水调节池(6)上部设有溢流口(18), 。
7、溢流口(18)通过溢流管线(19)连接下水道(24); 在溢流管线(19)上设置溢流监测仪表(20); 污水收集计量池(7)设有搅拌器(12)、 连续自动取样器(13)、 自动液位计(14); 污水收集计量池(7)底部的出水口通过管线连接出水阀(15)一端, 出水阀(15)另一端 通过管线接下水道(24); 所述自动控制装置(5)分别连接进水阀(9)、 蓄水调节池出水阀(11)、 出水阀(15)、 以及 搅拌器(12)、 连续自动取样器(13)、 自动液位计(14)、 溢流监测仪表(20)。 4.如权利要求3所述的人均日生活污水污染物产生量测算一体化装置, 其特征在于, 进水阀(9)另一端通向。
8、蓄水调节池出水阀(11)的管线上靠进水阀(9)一侧设有粉碎装 置; 粉碎装置连接并受控于自动控制装置(5)。 5.如权利要求3所述的人均日生活污水污染物产生量测算一体化装置, 其特征在于, 权利要求书 1/3 页 2 CN 110057410 A 2 进水阀(9)之前的居民住宅楼宇生活污水排放管道(23)通过超越管线(17)连接下水道 (24), 在超越管线(17)上设置超越管线控制阀(16); 超越管线控制阀(16)连接并受控于自 动控制装置(5)。 6.如权利要求3所述的人均日生活污水污染物产生量测算一体化装置, 其特征在于, 蓄水调节池(6)顶部设有蓄水调节池排气孔(21), 污水收集计。
9、量池(7)顶部设有污水收 集计量池排气孔(22), 所述蓄水调节池排气孔(21)和污水收集计量池排气孔(22)分别通过 管线连接除臭装置(8)。 7.如权利要求1所述的人均日生活污水污染物产生量测算一体化装置, 其特征在于, 自动控制装置(5)能够设置取样程序的控制参数和控制条件; 取样程序的控制参数是: 最高运行液位、 最低运行液位和设定进水时间; 运行液位是指 污水收集计量池(7)中的运行液位; 取样程序的控制条件是: 达到自动控制装置(5)设定的进水时间且液位超过最低运行 液位时启动取样程序; 超过设定进水时间未达到最低运行液位时延续至达到最低运行液位 时启动取样程序; 进水时间不足设定。
10、进水时间50%液位达到最高运行液位80%时启动取样程 序。 8.一种人均日生活污水污染物产生量的测算方法, 其特征在于, 包括以下步骤: a、 自动控制装置(5)启动, 关闭出水阀(15), 开启蓄水调节池出水阀(11), 起始时段启 动程序时, 还需关闭超越管线控制阀(16), 开启进水阀(9)和粉碎性格栅(10), 开始进水, 住 宅人员流动监控系统(2)同步监控进出人员人数和时间, 并传送至数据处理平台系统(3), 根据入户调查确定起始时段开始进水时监测楼宇内人口数, 并录入数据处理平台系统(3); b、 步骤a进水过程中自动液位计(14)实时上传液位数据至自动控制装置(3), 达到设定。
11、 的控制条件时, 自动关闭蓄水调节池出水阀(11), 开启溢流监测仪表(20), 一个时段进水结 束, 同步向数据处理平台系统(3)传送该时段时间节点和收集水量数据, 数据处理平台系统 (3)根据时间节点数据对住宅人员流动监控系统(2)传输的进出人员数量和时间计算该时 段人口当量, 若取样过程中蓄水调节池溢流监测仪表(20)监测到有污水溢流, 本测试周期 作废; c、 步骤b一个时段进水结束后进入取样程序, 自动启动搅拌器(12)运行数分钟后, 启动 连续自动采样器(13), 取样时间数分钟, 取样后对样品进行水质化验, 化验结果录入数据处 理平台系统(3), 数据处理平台系统(3)根据收集计。
12、量与取样系统(1)传输的水量和取样化 验的水质污染物浓度乘积计算各时段污染物产生量, 通过各时段污染物产生量除以相应时 段人口当量计算各时段人均污染物产生量, 通过各时段排水量除以相应时段人口当量计算 各时段人均排水量; d、 步骤c取样完成后, 自动开启出水阀(15), 随后关闭搅拌器(12), 放空完成后关闭出 水阀(15), 开启蓄水调节池出水阀(11), 继续下一个时段的工作流程; e、 一个周期取样结束后, 自动开启超越管线控制阀(16), 关闭其它与取样有关设施与 设备, 此次测试周期结束, 数据处理平台系统(3)将各时段人均污染物产生量加和得到人均 日生活污水污染物产生量, 将各。
13、时段人均排水量加和得到人均日生活污水排放量。 9.如权利要求8所述的人均日生活污水污染物产生量的测算方法, 其特征在于, 所述设定的控制条件包括: 权利要求书 2/3 页 3 CN 110057410 A 3 达到自动控制装置(5)设定的进水时间且液位超过最低运行液位时启动取样程序; 超 过设定进水时间未达到最低运行液位时延续至达到最低运行液位时启动取样程序; 进水时 间不足设定进水时间50%液位达到最高运行液位80%时启动取样程序。 权利要求书 3/3 页 4 CN 110057410 A 4 人均日生活污水污染物产生量测算一体化装置及其方法 技术领域 0001 本发明属于污水处理技术领域,。
14、 具体涉及一种人均日生活污水污染物产生量测算 一体化装置及其方法。 背景技术 0002 居民生活污水污染物人均当量, 也即城市居民每人每天产生并通过污水排放的污 染物量, 是一个重要的污水处理工程设计和运行管理基础指标, 对提升污水处理工程设计 和行业管理水平具有重要的指导和支撑作用。 0003 近年来, 我国城镇污水处理事业得到快速发展和全面普及, 据统计, 截至2018年9 月底, 全国城镇累计建成运行污水处理厂4306 座, 污水处理能力达1.93亿立方米/日。 随着 城镇污水处理设施覆盖不断提高的同时, 污水处理工程设计和行业管理已经由粗放式发展 向精细化转变, 对居民人均生活污水污染。
15、物产生量等基础数据的准确度和精度要求越来越 高。 0004 现阶段, 我国设计中采用的居民生活污水污染物当量多参考于发达国家数据或是 对现有污水厂经验值的估算, 相对比较权威的数据源自2010年生态环境部华南环境科学研 究所发布的 生活源污水污染物产生系数 , 距今也已近10年之久, 缺乏对现阶段国民生活 习惯和生活水平的考虑。 0005 传统的居民生活污水污染物人均当量测试方法主要是小区总排口测算法和居民 排放跟踪测算法, 两种测试方法均存在一定的弊端。 小区总排口测算法即以小区为测算单 元, 取瞬时样或24h混合样测定污染物浓度, 估算排水量和排水人口, 进而获得人均污染物 排放量, 该方。
16、法缺乏对小区出水水质的研究, 无法排除小区内部雨污管网错接混接对测试 结果的影响, 且采用瞬时样或24h混合样的测算方法无法对污染物浓度进行准确监测, 导致 测算结果与实际值存在偏差, 另外, 由于小区排水量和人口的测算存在一定的难度, 排水人 口的流动量与污染物产生量无法对应直接影响测算结果的准确性。 居民排放跟踪法即以人 员个体为测算单元, 跟踪收集全天污染物排放情况。 该方法虽排除了人口统计的误差, 但仅 能测算大小便的污染物排放量, 缺乏对餐饮和洗漱等过程产生的污水排放量统计, 且不同 个体之间也存在显著的差异。 0006 基于此, 为了科学准确地测算居民生活污水污染物实际产生量, 开。
17、发一种测算方 法科学、 操作流程简便、 自动化程度高、 便于推广应用的人均日生活污水污染物产生量测算 装置和方法是当前行业亟需解决的实际问题。 发明内容 0007 本发明的目的是克服现有技术中存在的不足, 提供一种人均日生活污水污染物产 生量测算一体化装置及其方法, 解决传统人均日生活污水污染物产生量测算存在的方法不 规范, 结果不准确等问题。 本发明采用的技术方案是: 一种人均日生活污水污染物产生量测算一体化装置, 包括: 收集计量与取样系统、 住宅 说明书 1/8 页 5 CN 110057410 A 5 人员流动监控系统、 数据处理平台系统, 所述的收集计量与取样系统和住宅人员流动监控 。
18、系统分别通过网络与数据处理平台系统连接; 所述收集计量与取样系统用于对监测楼宇一个周期所产生的生活污水分时段收集及 采样, 并将各时段水量和时间节点数据传输至数据处理平台系统; 收集计量与取样系统包 括相连接的收集取样装置和自动控制装置; 所述住宅人员流动监控系统用于监控楼宇进出人员数量和时间, 并传输至数据处理平 台系统; 所述数据处理平台系统根据收集计量与取样系统和住宅人员流动监控系统反馈的数 据计算出人均日生活污水污染物产生量。 0008 进一步地, 所述数据处理平台系统根据收集计量与取样系统传输的各时段取样时 间节点对住宅人员流动监控系统传输的进出人员的时间进行分段对应, 并核算各时段。
19、人口 当量, 某一时段人口当量按上一时段结束时人口数加该时段新增人口当量减去该时段减少 人口当量计算, 上一时段结束时人口数按照上一时段起始时人口数加上一时段进入人口数 减上一时段离开人口数计算, 某一时段增加的人口当量按照累计所有人员进入时长除以相 应时段的总时长计算, 进入时长为人员进入至该时段结束时的累计时长, 减少的人口当量 按照累计所有离开人员离开时长除以相应时段的总时长计算, 离开时长为人员离开至该时 段结束时的累积时长, 起始时段人口数通过住宅人员流动监控系统启动时入户调查确定。 0009 进一步地, 收集取样装置包括: 蓄水调节池、 污水收集计量池、 进水阀、 蓄水调节池 出水。
20、阀、 搅拌器、 连续自动取样器、 自动液位计、 出水阀、 溢流管线、 溢流监测仪表; 所述蓄水调节池设置在污水收集计量池上方; 蓄水调节池底部出水口与污水收集计量 池顶部之间通过管线连接; 在蓄水调节池与污水收集计量池之间管线上设置蓄水调节池出 水阀; 进水阀的一端连接居民住宅楼宇生活污水排放管道, 另一端通过管线接蓄水调节池底 部的出水口和蓄水调节池出水阀上端; 蓄水调节池上部设有溢流口, 溢流口通过溢流管线连接下水道; 在溢流管线上设置溢 流监测仪表; 污水收集计量池设有搅拌器、 连续自动取样器、 自动液位计; 污水收集计量池底部的出水口通过管线连接出水阀一端, 出水阀另一端通过管线接下 。
21、水道; 所述自动控制装置分别连接进水阀、 蓄水调节池出水阀、 出水阀、 以及搅拌器、 连续自 动取样器、 自动液位计、 溢流监测仪表。 0010 更优地, 进水阀另一端通向蓄水调节池出水阀的管线上靠进水阀一侧设有粉碎装 置; 粉碎装置连接并受控于自动控制装置。 0011 更优地, 进水阀之前的居民住宅楼宇生活污水排放管道通过超越管线连接下水 道, 在超越管线上设置超越管线控制阀; 超越管线控制阀连接并受控于自动控制装置。 0012 更优地, 蓄水调节池顶部设有蓄水调节池排气孔, 污水收集计量池顶部设有污水 收集计量池排气孔, 所述蓄水调节池排气孔和污水收集计量池排气孔分别通过管线连接除 臭装置。
22、。 0013 进一步地, 自动控制装置能够设置取样程序的控制参数和控制条件; 说明书 2/8 页 6 CN 110057410 A 6 取样程序的控制参数是: 最高运行液位、 最低运行液位和设定进水时间; 运行液位是指 污水收集计量池中的运行液位; 取样程序的控制条件是: 达到自动控制装置设定的进水时间且液位超过最低运行液位 时启动取样程序; 超过设定进水时间未达到最低运行液位时延续至达到最低运行液位时启 动取样程序; 进水时间不足设定进水时间50%液位达到最高运行液位80%时启动取样程序。 0014 一种人均日生活污水污染物产生量的测算方法, 包括以下步骤: a、 自动控制装置启动, 关闭出。
23、水阀, 开启蓄水调节池出水阀, 起始时段启动程序时, 还 需关闭超越管线控制阀, 开启进水阀和粉碎性格栅, 开始进水, 住宅人员流动监控系统同步 监控进出人员人数和时间, 并传送至数据处理平台系统, 根据入户调查确定起始时段开始 进水时监测楼宇内人口数, 并录入数据处理平台系统; b、 步骤a进水过程中自动液位计实时上传液位数据至自动控制装置, 达到设定的控制 条件时, 自动关闭蓄水调节池出水阀, 开启溢流监测仪表, 一个时段进水结束, 同步向数据 处理平台系统传送该时段时间节点和收集水量数据, 数据处理平台系统根据时间节点数据 对住宅人员流动监控系统传输的进出人员数量和时间计算该时段人口当量。
24、, 若取样过程中 蓄水调节池溢流监测仪表监测到有污水溢流, 本测试周期作废; c、 步骤b一个时段进水结束后进入取样程序, 自动启动搅拌器运行数分钟后, 启动连续 自动采样器, 取样时间数分钟, 取样后对样品进行水质化验, 化验结果录入数据处理平台系 统, 数据处理平台系统根据收集计量与取样系统传输的水量和取样化验的水质污染物浓度 乘积计算各时段污染物产生量, 通过各时段污染物产生量除以相应时段人口当量计算各时 段人均污染物产生量, 通过各时段排水量除以相应时段人口当量计算各时段人均排水量; d、 步骤c取样完成后, 自动开启出水阀, 随后关闭搅拌器, 放空完成后关闭出水阀, 开启 蓄水调节池。
25、出水阀, 继续下一个时段的工作流程; e、 一个周期取样结束后, 自动开启超越管线控制阀, 关闭其它与取样有关设施与设备, 此次测试周期结束, 数据处理平台系统将各时段人均污染物产生量加和得到人均日生活污 水污染物产生量, 将各时段人均排水量加和得到人均日生活污水排放量。 0015 所述设定的控制条件包括: 达到自动控制装置设定的进水时间且液位超过最低运行液位时启动取样程序; 超过设 定进水时间未达到最低运行液位时延续至达到最低运行液位时启动取样程序; 进水时间不 足设定进水时间50%液位达到最高运行液位80%时启动取样程序。 0016 本发明的优点在于: 1) 可分时段对监测楼宇一天 (24。
26、h) 产生的生活污水全收集, 对排水人口当量进行精确 统计, 并可通过数据处理平台直接获得测算结果, 具有测算方法科学、 测算结果准确等优 点。 0017 2) 对人均日生活污染物产生量的测算方法进行优化, 以监测楼宇为测试单元, 可 避免小区内污水渗漏和人员波动的影响, 以任意时间段内的污染物产生量和人口当量测算 人均污染物产生量, 可回避人员流动问题, 以分时段取样测量的方式, 代替一天取样或一次 性取样的测量误差, 有效提高结果的精准度。 0018 3) 收集取样与计量系统通过自动控制装置控制, 可实现监测楼宇污水的全自动收 集与取样, 自动化程度高、 操作方便。 说明书 3/8 页 7。
27、 CN 110057410 A 7 0019 4) 住宅人员流动监控系统可进行进出口人数和时间的实时监控, 实现排水人口当 量的精准统计。 附图说明 0020 图1为本发明的结构组成示意图。 具体实施方式 0021 下面结合具体附图和实施例对本发明作进一步说明。 0022 如图1所示, 本发明提出的一种人均日生活污水污染物产生量测算一体化装置, 包 括: 收集计量与取样系统1、 住宅人员流动监控系统2、 数据处理平台系统3, 所述的收集计量 与取样系统1和住宅人员流动监控系统2分别通过网络与数据处理平台系统3连接; 所述收集计量与取样系统1用于对监测楼宇一个周期 (设定为24h) 所产生的生活。
28、污水 分时段收集及采样, 并将各时段水量和时间节点数据传输至数据处理平台系统3; 所述住宅人员流动监控系统2用于监控楼宇进出人员数量和时间, 并传输至数据处理 平台系统3; 所述数据处理平台系统3根据收集计量与取样系统1和住宅人员流动监控系统2反馈的 数据计算出人均日生活污水污染物产生量。 0023 所述收集计量与取样系统1包括相连接的收集取样装置4和自动控制装置5; 其中 自动控制装置5中包括PLC控制器; 自动控制装置5与数据处理平台系统3连接; 收集取样装置4包括: 蓄水调节池6、 污水收集计量池7、 除臭装置8、 进水阀9、 粉碎性格 栅10、 蓄水调节池出水阀11、 搅拌器12、 连。
29、续自动取样器13、 自动液位计14、 出水阀15、 超越 管线控制阀16、 超越管线17、 溢流口18、 溢流管线19、 溢流监测仪表20、 蓄水调节池排气孔 21、 污水收集计量池排气孔22; 收集取样装置4分别连接居民住宅楼宇生活污水排放管道23、 下水道24; 所述蓄水调节池6设置在污水收集计量池7上方; 蓄水调节池6底部出水口与污水收集 计量池7顶部之间通过管线连接; 在蓄水调节池6与污水收集计量池7之间管线上设置蓄水 调节池出水阀11; 进水阀9的一端连接居民住宅楼宇生活污水排放管道23, 另一端通过管线接蓄水调节 池6底部的出水口和蓄水调节池出水阀11上端; 更优地, 进水阀9另一。
30、端通向蓄水调节池出水阀11的管线上靠进水阀9一侧设有粉碎性 格栅10; 蓄水调节池6上部设有溢流口18, 溢流口18通过溢流管线19连接下水道24; 在溢流管线 19上设置溢流监测仪表20; 污水收集计量池7设有搅拌器12、 连续自动取样器13、 自动液位计14; 污水收集计量池7底部的出水口通过管线连接出水阀15一端, 出水阀15另一端通过管 线接下水道24; 更优地, 进水阀9之前的居民住宅楼宇生活污水排放管道23通过超越管线17连接下水 道24, 在超越管线17上设置超越管线控制阀16; 更优地, 蓄水调节池6顶部设有蓄水调节池排气孔21, 污水收集计量池7顶部设有污水 说明书 4/8 。
31、页 8 CN 110057410 A 8 收集计量池排气孔22, 所述蓄水调节池排气孔21和污水收集计量池排气孔22分别通过管线 连接除臭装置8; 所述自动控制装置5分别连接进水阀9、 蓄水调节池出水阀11、 出水阀15、 超越管线控制 阀16, 以及粉碎性格栅10、 搅拌器12、 连续自动取样器13、 自动液位计14、 溢流监测仪表20; 自动控制装置5中主要包括PLC, 可控制收集取样装置4中各受控部件, 例如各阀、 搅拌 器12等的启闭状态, 设置取样程序的控制参数和控制条件; 收集取样装置4容积根据住宅楼宇内常住人口数人均最大排水量10 L/(ph)进行确 定, 蓄水调节池6污水停留时。
32、间按20 min设计, 污水收集计量池7污水停留时间按90 min设 计; 蓄水调节池6底部按漏斗形结构设计, 上部或中间部位出水, 顶部设置顶盖; 污水收集计量池7建议设计为圆柱形结构, 顶部设置顶盖; 连续自动取样器13需具有24个独立取样瓶, 带有冷藏功能, 每个取样瓶容积不小于 1000 mL; 连续自动取样器13不是本发明的重点, 因此介绍从略; 住宅人员流动监控系统2可采用视频监控装置与人体图像识别装置相结合的系统, 或 者, 在楼宇前安装雷达探测模块, 检测人员进出; 上述自动控制装置5可设置的取样程序的控制参数是: 最高运行液位、 最低运行液位和 设定进水时间; 运行液位是指污。
33、水收集计量池7中的运行液位; 取样程序的控制条件是: 达到自动控制装置5设定的进水时间且液位超过最低运行液 位时启动取样程序; 超过设定进水时间未达到最低运行液位时延续至达到最低运行液位时 启动取样程序; 进水时间不足设定进水时间50%液位达到最高运行液位80%时启动取样程 序; 后两个条件用于应对用水高峰和低谷问题设置强制启动时间; 取样化验的水质指标可包括CODCr、 BOD5、 NH3-N、 TP、 TN, 也可以是其中的一项或几项; 所述数据处理平台系统3根据收集计量与取样系统1传输的各时段取样时间节点对住 宅人员流动监控系统2传输的进出人员的时间进行分段对应, 并核算各时段人口当量,。
34、 某一 时段人口当量按上一时段结束时人口数加该时段新增人口当量减去该时段减少人口当量 计算, 上一时段结束时人口数按照上一时段起始时人口数加上一时段进入人口数减上一时 段离开人口数计算, 某一时段增加的人口当量按照累计所有人员进入时长除以相应时段的 总时长计算, 进入时长为人员进入至该时段结束时的累计时长, 减少的人口当量按照累计 所有离开人员离开时长除以相应时段的总时长计算, 离开时长为人员离开至该时段结束时 的累积时长, 起始时段人口数通过住宅人员流动监控系统启动时入户调查确定; 实施例一: 一种人均日生活污水污染物产生量的测算方法, 包括以下步骤: a、 各设备状态准备就绪, 自动控制装。
35、置5启动, 关闭出水阀15, 开启蓄水调节池出水阀 11, 起始时段启动程序时, 还需关闭超越管线控制阀16, 开启进水阀9和粉碎性格栅10, 开始 进水, 住宅人员流动监控系统2同步监控进出人员人数和时间, 并传送至数据处理平台系统 3, 根据入户调查确定起始时段开始进水时监测楼宇内人口数, 并录入数据处理平台系统3; b、 步骤a进水过程中自动液位计14实时上传液位数据至自动控制装置3, 达到自动控制 装置设定的进水时间且运行液位超过最低运行液位, 自动关闭蓄水调节池出水阀11, 开启 溢流监测仪表20, 一个时段进水结束, 同步向数据处理平台系统3传送该时段时间节点和收 集水量数据, 数。
36、据处理平台系统3根据时间节点数据对住宅人员流动监控系统2传输的进出 说明书 5/8 页 9 CN 110057410 A 9 人员数量和时间计算该时段人口当量, 若取样过程中蓄水调节池溢流监测仪表20监测到有 污水溢流, 本测试周期作废; 注意本发明中的时段是动态的, 三个控制条件下各自的一个时段的时长不同; 收集的水量可通过自动液位计14液位数据获得; c、 步骤b一个时段进水结束后进入取样程序, 自动启动搅拌器12运行3 min5 min后, 启动连续自动采样器13, 取样时间3 min, 取样后对样品进行水质化验, 化验结果录入数据 处理平台系统3, 数据处理平台系统3根据收集计量与取样。
37、系统1传输的水量和取样化验的 水质污染物浓度乘积计算各时段污染物产生量, 通过各时段污染物产生量除以相应时段人 口当量计算各时段人均污染物产生量, 通过各时段排水量除以相应时段人口当量计算各时 段人均排水量; d、 步骤c取样完成后, 自动开启出水阀15, 随后关闭搅拌器12, 放空完成后关闭出水阀 15, 开启蓄水调节池出水阀11, 继续下一个时段的工作流程; 开启蓄水调节池出水阀11后, 本时段暂存的污水会流入污水收集计量池7, 方便计入下 一时段的水量; e、 一个周期 (24h) 取样结束后, 自动开启超越管线控制阀16, 关闭其它与取样有关设施 与设备, 例如进水阀9、 粉碎性格栅1。
38、0、 蓄水调节池出水阀11、 搅拌器12、 连续自动取样器13、 自动液位计14、 出水阀15等; 此次测试周期结束, 数据处理平台系统3将各时段人均污染物 产生量加和得到人均日生活污水污染物产生量, 将各时段人均排水量加和得到人均日生活 污水排放量。 0024 实施例二: 一种人均日生活污水污染物产生量的测算方法, 包括以下步骤: a、 各设备状态准备就绪, 自动控制装置5启动, 关闭出水阀15, 开启蓄水调节池出水阀 11, 起始时段启动程序时, 还需关闭超越管线控制阀16, 开启进水阀9和粉碎性格栅10, 开始 进水, 住宅人员流动监控系统2同步监控进出人员人数和时间, 并传送至数据处理。
39、平台系统 3, 根据入户调查确定起始时段开始进水时监测楼宇内人口数, 并录入数据处理平台系统3; b、 步骤a进水过程中自动液位计14实时上传液位数据至自动控制装置3, 超过自动控制 装置5设定进水时间, 未达到最低运行液位时延续至达到最低运行液位时启动取样程序, 自 动关闭蓄水调节池出水阀11, 开启溢流监测仪表20, 一个时段进水结束, 同步向数据处理平 台系统3传送该时段时间节点和收集水量数据, 数据处理平台系统3根据时间节点数据对住 宅人员流动监控系统2传输的进出人员数量和时间计算该时段人口当量, 若取样过程中蓄 水调节池溢流监测仪表20监测到有污水溢流, 本测试周期作废; 注意本发明。
40、中的时段是动态的, 三个控制条件下各自的一个时段的时长不同; 收集的水量可通过自动液位计14液位数据获得; c、 步骤b一个时段进水结束后进入取样程序, 自动启动搅拌器12运行3 min5 min后, 启动连续自动采样器13, 取样时间3 min, 取样后对样品进行水质化验, 化验结果录入数据 处理平台系统3, 数据处理平台系统3根据收集计量与取样系统1传输的水量和取样化验的 水质污染物浓度乘积计算各时段污染物产生量, 通过各时段污染物产生量除以相应时段人 口当量计算各时段人均污染物产生量, 通过各时段排水量除以相应时段人口当量计算各时 段人均排水量; d、 步骤c取样完成后, 自动开启出水阀。
41、15, 随后关闭搅拌器12, 放空完成后关闭出水阀 说明书 6/8 页 10 CN 110057410 A 10 15, 开启蓄水调节池出水阀11, 继续下一个时段的工作流程; 开启蓄水调节池出水阀11后, 本时段暂存的污水会流入污水收集计量池7, 方便计入下 一时段的水量; e、 一个周期 (24h) 取样结束后, 自动开启超越管线控制阀16, 关闭其它与取样有关设施 与设备, 例如进水阀9、 粉碎性格栅10、 蓄水调节池出水阀11、 搅拌器12、 连续自动取样器13、 自动液位计14、 出水阀15等; 此次测试周期结束, 数据处理平台系统3将各时段人均污染物 产生量加和得到人均日生活污水污。
42、染物产生量, 将各时段人均排水量加和得到人均日生活 污水排放量。 0025 实施例三: 一种人均日生活污水污染物产生量的测算方法, 包括以下步骤: a、 各设备状态准备就绪, 自动控制装置5启动, 关闭出水阀15, 开启蓄水调节池出水阀 11, 起始时段启动程序时, 还需关闭超越管线控制阀16, 开启进水阀9和粉碎性格栅10, 开始 进水, 住宅人员流动监控系统2同步监控进出人员人数和时间, 并传送至数据处理平台系统 3, 根据入户调查确定起始时段开始进水时监测楼宇内人口数, 并录入数据处理平台系统3; b、 步骤a进水过程中自动液位计14实时上传液位数据至自动控制装置3, 进水时间不足 自动。
43、控制装置5设定进水时间50%, 液位达到最高运行液位80%时启动取样程序, 自动关闭蓄 水调节池出水阀11, 开启溢流监测仪表20, 一个时段进水结束, 同步向数据处理平台系统3 传送该时段时间节点和收集水量数据, 数据处理平台系统3根据时间节点数据对住宅人员 流动监控系统2传输的进出人员数量和时间计算该时段人口当量, 若取样过程中蓄水调节 池溢流监测仪表20监测到有污水溢流, 本测试周期作废; 注意本发明中的时段是动态的, 三个控制条件下各自的一个时段的时长不同; 收集的水量可通过自动液位计14液位数据获得; c、 步骤b一个时段进水结束后进入取样程序, 自动启动搅拌器12运行3 min5 。
44、min后, 启动连续自动采样器13, 取样时间3 min, 取样后对样品进行水质化验, 化验结果录入数据 处理平台系统3, 数据处理平台系统3根据收集计量与取样系统1传输的水量和取样化验的 水质污染物浓度乘积计算各时段污染物产生量, 通过各时段污染物产生量除以相应时段人 口当量计算各时段人均污染物产生量, 通过各时段排水量除以相应时段人口当量计算各时 段人均排水量; d、 步骤c取样完成后, 自动开启出水阀15, 随后关闭搅拌器12, 放空完成后关闭出水阀 15, 开启蓄水调节池出水阀11, 继续下一个时段的工作流程; 开启蓄水调节池出水阀11后, 本时段暂存的污水会流入污水收集计量池7, 方。
45、便计入下 一时段的水量; e、 一个周期 (24h) 取样结束后, 自动开启超越管线控制阀16, 关闭其它与取样有关设施 与设备, 例如进水阀9、 粉碎性格栅10、 蓄水调节池出水阀11、 搅拌器12、 连续自动取样器13、 自动液位计14、 出水阀15等; 此次测试周期结束, 数据处理平台系统3将各时段人均污染物 产生量加和得到人均日生活污水污染物产生量, 将各时段人均排水量加和得到人均日生活 污水排放量。 0026 最后所应说明的是, 以上具体实施方式仅用以说明本发明的技术方案而非限制, 尽管参照实例对本发明进行了详细说明, 本领域的普通技术人员应当理解, 可以对本发明 的技术方案进行修改或者等同替换, 而不脱离本发明技术方案的精神和范围, 其均应涵盖 说明书 7/8 页 11 CN 110057410 A 11 在本发明的权利要求范围当中。 说明书 8/8 页 12 CN 110057410 A 12 图1 说明书附图 1/1 页 13 CN 110057410 A 13 。
- 内容关键字: 人均 生活 污水 污染物 产生 测算 一体化 装置 及其 方法
硫磺或硫铁矿制酸低温废热回收装置.pdf
沙蚕养殖装置.pdf
木材生产加工的翻转输送装置.pdf
马铃薯贮藏装置.pdf
自动输送扎花机.pdf
便于下料的不锈钢板压弯装置.pdf
海洋潮汐的水位监测仪安装装置.pdf
采血冰浴盒及样本固定装置.pdf
基于活性炭吸附脱附的有机废气连续处理系统.pdf
水利勘测水位计.pdf
微型高压放气阀.pdf
燃气管内壁清洁设备.pdf
光伏支架表面热镀锌装置.pdf
软管收卷调节机构及收卷机.pdf
转子线圈绕线压线装置.pdf
陶瓷坯泥生产设备.pdf
FRID通道式扫描机.pdf
智能电网安全运维监测装置.pdf
密封性好的细胞培养皿.pdf
计算机散热装置降噪组件.pdf
间续进料机构.pdf
电解液配置系统.pdf
实验小鼠喂药装置.pdf
智能防脱机械手.pdf
槽钢的压延结构.pdf
局部集中载荷作用下的组合梁精细化应力位移分析方法.pdf
精准按摩机芯机构.pdf
位置自动调节的热压装置.pdf
用于糠醛生产的糠醛渣输送装置.pdf
硫酸钾镁盐添加剂饲料生产用搅拌式混合装置.pdf
AIP三维堆叠TR气密封装组件.pdf
应急储能电源系统及应急储能电源.pdf
沙发连接扣套件.pdf
一种可预铺/湿铺的高分子自粘防水卷材及其制备方法.pdf
一种秸秆水泥基微孔建筑材料及其制备方法.pdf
一种极薄板窄搭接缝焊机.pdf
用于自动光学检测的照明系统及其和成像系统的组合.pdf
一种多层工具箱.pdf
一种多功能照明钥匙.pdf
一种折叠式储物箱.pdf
一种可调节高度的笔记本电脑桌.pdf
一种保温桶.pdf
一种消防栓保护罩.pdf
弹簧卡安装装置.pdf
一种光纤告警显示方法及系统.pdf
塑料中六价铬的提取方法.pdf
一种多功能笔.pdf
一种胎心监护装置及系统.pdf
一种检修作业台.pdf
一种新型冲孔凸模的结构.pdf
馈纸装置的取纸结构.pdf