基于雷达轨迹构建机坪场面运动目标运行意图识别的方法.pdf

上传人:徐敬 文档编号:11444474 上传时间:2021-09-27 格式:PDF 页数:16 大小:881.74KB
收藏 版权申诉 举报 下载
基于雷达轨迹构建机坪场面运动目标运行意图识别的方法.pdf_第1页
第1页 / 共16页
基于雷达轨迹构建机坪场面运动目标运行意图识别的方法.pdf_第2页
第2页 / 共16页
基于雷达轨迹构建机坪场面运动目标运行意图识别的方法.pdf_第3页
第3页 / 共16页
文档描述:

《基于雷达轨迹构建机坪场面运动目标运行意图识别的方法.pdf》由会员分享,可在线阅读,更多相关《基于雷达轨迹构建机坪场面运动目标运行意图识别的方法.pdf(16页完成版)》请在专利查询网上搜索。

1、(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910401652.9 (22)申请日 2019.05.15 (71)申请人 南京莱斯信息技术股份有限公司 地址 210014 江苏省南京市秦淮区永智路8 号 (72)发明人 庄青邵明珩张震亚张钟灵 苏祖辉黄琰章昆王钟慧 (74)专利代理机构 江苏圣典律师事务所 32237 代理人 贺翔 (51)Int.Cl. G08G 5/06(2006.01) G08G 5/04(2006.01) G06F 16/2458(2019.01) G06K 9/62(2006.01) (54。

2、)发明名称 基于雷达轨迹构建机坪场面运动目标运行 意图识别的方法 (57)摘要 本发明公开了一种基于雷达轨迹构建机坪 场面运动目标运行意图识别的方法, 基于向量机 (SVM) 统计分类理论实现运动目标雷达轨迹数据 运行路线聚类, 采用大数据Hadoop分布式运算架 构, 结合航空器或车辆的运动学模型, 建立目标 类型、 型号、 任务等属性特征和加速度、 轨迹角、 运动阶段等运动特征相结合的目标特征集; 通过 对目标特征集和运行意图信息的离线训练与在 线测试, 开展运行目标场面滑行路线意图分析, 构建机坪场面运动目标运行意图识别模型, 提高 了意图推理能力。 权利要求书2页 说明书10页 附图3。

3、页 CN 110111608 A 2019.08.09 CN 110111608 A 1.一种基于雷达轨迹构建机坪场面运动目标运行意图识别的方法, 其特征在于, 包括 步骤如下: 步骤1): 基于Hadoop的航空器或车辆运行目标特征集; 步骤2): 根据机坪场面场地环境, 构建该场地的场面运行意图模型, 在运动目标机坪场 面航行航迹样本库建立的基础上, 把航行航迹样本库与场面运行意图模型进行关联, 标注 出航行航迹样本库所属运行意图模型类别, 建立该机场机坪场面的运动目标运行意图识别 模型。 2.根据权利要求1所述的基于雷达轨迹构建机坪场面运动目标运行意图识别的方法, 其特征在于, 所述步骤。

4、1)具体包括: 11)对机坪场面航空器或车辆的航迹点记录的航迹数据做融合处理, 处理后的数据与 相应的运行路由计划信息匹配, 建立场面运行目标航程记录信息; 12)利用任务类型号和标示号作为唯一性标识, 按序列号排序相隔一个航迹点的两个 航迹点航程记录信息构建数据文件的映射模型; 13)建立运动目标机坪场面航迹点之间的航向角算法模型; 14)保存Reduce阶段结果数据作为运动目标机坪场面航行航迹样本库, 建立运动目标 机坪场面运行航迹样本库。 3.根据权利要求2所述的基于雷达轨迹构建机坪场面运动目标运行意图识别的方法, 其特征在于, 所述步骤11)中运行目标航程记录信息包括: 运行目标类型、。

5、 型号、 任务类型 号、 标示号、 航迹点、 坐标位置、 过点时间、 过点速度。 4.根据权利要求2所述的基于雷达轨迹构建机坪场面运动目标运行意图识别的方法, 其特征在于, 所述步骤13)具体包括: 雷达航迹三维位置观测数据采用WGS-84坐标系, BK为 WGS-84坐标系K航迹点的经度, LK为WGS-84坐标系K航迹点的纬度, HK为WGS-84坐标系K航迹 点的高度; 航迹表示为: TrajKBK, LK, HK, K1, ., N 首先将WGS-84坐标系转换到地心地固直角坐标系ECEF, 转换公式如下: XK(Ne+HK)COS(LK)COS(BK) YK(Ne+HK)COS(LK。

6、)SIN(BK) ZK(Ne(1-e2)+HK)SIN(LK) 式中, XK是ECEF坐标系x轴值; YK是ECEF坐标系y轴值; ZK是ECEF坐标系z轴值; Ne是主垂直 面的曲率半径,e是地球椭球偏心率,a是地球椭球的长 半轴, 即地球赤道半径, b是地球椭球的短半轴, 即地球极半径; 在ECEF坐标系下, 原心为地球质心, 航迹表示为: TrajKXK, YK, ZK, K1, ., N 然后, 采用TrajK-1和TrajK+1航迹点的ECEF坐标位置、 过点速度、 过点时间计算TrajK航迹 点的航向角和加速度ak, 并作为Reduce阶段结果数据保存; 航向角用来描述航行航迹在机。

7、坪场面上转弯机动特征, 公式如下: 权利要求书 1/2 页 2 CN 110111608 A 2 加速度ak用来描述航行航迹在机坪场面上加减速运动特征, 公式如下: 式中, VK和TK分别为场面运行目标航程记录信息中过点速度及过点时间。 5.根据权利要求1所述的基于雷达轨迹构建机坪场面运动目标运行意图识别的方法, 其特征在于, 所述步骤2)具体包括: 21)以交叉点为中心, 设定附近区域为运动意图识别区; 22)分析各类运动意图识别区的特点, 对运动意图识别区的运行意图类型进行分类; 23)把航行航迹样本库、 运动意图识别区与场面运行意图模型进行关联, 标注出航行航 迹样本库所属运行意图模型类。

8、别; 24)保存Reduce阶段结果数据作为经验数据模型, 利用运行目标特征集、 模拟或实时采 录现场航迹运行数据去修正, 同时结合航空器或车辆的运动学模型, 通过运行意图信息的 离线训练与在线测试开展自我学习, 保证识别模型的完整性和唯一性, 最终建立该机场机 坪场面运动目标运行意图识别模型。 权利要求书 2/2 页 3 CN 110111608 A 3 基于雷达轨迹构建机坪场面运动目标运行意图识别的方法 技术领域 0001 本发明属于民用航空空中交通管制(ATC)的机场机坪管制自动化技术领域, 具体 涉及一种基于雷达轨迹构建机坪场面运动目标运行意图识别的方法。 背景技术 0002 我国航空。

9、运输业处于高速发展期, 国内机场规模越来越大, 逐步形成了多跑道运 行、 双塔台协同等局面, 不断增长的航班量使得塔台管制的工作量逐年增加, 多跑道运行也 会增加地面引导难度。 按照统计, 中国民航的航空器起降次数从2003年的211.9万次增加到 2015年的856.5万次, 2015年的起降次数是2003年的4.04倍, 机场场面发生不安全事件的风 险随之变得越来越大。 0003 就现在而言, 国内一些大型机场装备高级场面活动引导与控制系统(A-SMGCS), 具 备监视、 告警功能, 一定程度上提高场面运行安全, 但是由于缺乏对航空器或车辆在场面运 行意图的预先识别, 尤其大部分机场还不。

10、具备对车辆运行的监视和预测能力, 场面冲突告 警不能满足管制员提前预警的要求, 因此避免飞机侵入运行跑道以及避免滑行道上各类运 行冲突主要依靠管制员通过场面监视雷达及目视观察完成。 0004 目前, 对机场场面活动目标进行自动化运行监控已成为世界各国大型机场建设的 主要目标之一。 一方面, 场面运行数据种类、 接口方式众多, 而且具有封闭性, 安全性要求 高; 如何在不影响机场场面管制运行安全的情况下采集各类数据, 体现数据价值成为重要 的关键点。 另一方面, 运行数据体量非常庞大, 数据分布特征多样; 尤其雷达航迹数据, 传统 的系统架构和运算方法已经难以满足目标运行意图识别和活动预测相关应。

11、用的计算要求。 0005 有鉴于此, 本发明的方法结合航空器或车辆的动力和运动学模型, 并通过基于 Hadoop的海量雷达轨迹数据, 分析航空器或车辆在场面活动全航行阶段中的速度、 位置等 信息, 构建场面运动目标运行意图识别模型, 并使用实际航迹数据进行实时修正, 最后在实 际工程项目中完成相关验证工作, 为提高了场面活动目标运行预测能力打下基础, 从而能 够提前解决潜在的冲突, 保障航班场面运行安全。 发明内容 0006 针对于上述现有技术的不足, 本发明的目的在于提供一种基于雷达轨迹构建机坪 场面运动目标运行意图识别的方法, 以解决现有技术中依靠管制员对航空器或车辆运行意 图识别、 运动。

12、位置进行人工预测, 很难区别实际环境下的各类航空器或车辆, 及对运行意图 识别和运动轨迹预测误差大, 预测结果偏离高, 数据可用性不强的问题。 0007 为达到上述目的, 本发明采用的技术方案如下: 0008 本发明的一种基于雷达轨迹构建机坪场面运动目标运行意图识别的方法, 包括步 骤如下: 0009 步骤1): 基于Hadoop的航空器或车辆运行目标特征集; 0010 步骤2): 根据机坪场面场地环境, 构建该场地的场面运行意图模型, 在运动目标机 说明书 1/10 页 4 CN 110111608 A 4 坪场面航行航迹样本库(简称航行航迹样本库)建立的基础上, 把航行航迹样本库与场面运 。

13、行意图模型进行关联, 标注出航行航迹样本库所属运行意图模型类别, 建立该机场机坪场 面(简称本场)的运动目标运行意图识别模型。 0011 进一步地, 所述步骤1)具体包括: 0012 11)对机坪场面航空器或车辆的航迹点记录的航迹数据做融合处理, 处理后的数 据与相应的运行路由计划信息匹配, 建立场面运行目标航程记录信息; 0013 12)利用任务类型号和标示号作为唯一性标识, 按序列号排序相隔一个航迹点的 两个航迹点航程记录信息构建数据文件的映射模型; 0014 13)建立运动目标机坪场面航迹点之间的航向角算法模型; 0015 14)保存Reduce(归约)阶段结果数据作为运动目标机坪场面航。

14、行航迹样本库, 建 立运动目标机坪场面运行航迹样本库。 0016 进一步地, 所述步骤11)中运行目标航程记录信息包括: 运行目标类型(航空器或 车辆)、 型号(机型或车型)、 任务类型号(航班号或任务单号)、 标示号(机尾号/起落地时间 或车牌号/任务发布时间)、 航迹点、 坐标位置、 过点时间、 过点速度。 0017 需要说明的是, 标示号: 如航空器由 “机尾号” 和 “起落地时间” 拼建, 如果为进港航 班则采用落地时间, 如果为出港航班则采用起飞时间; 如车辆由 “车牌号” 和 “任务发布时 间” 拼建。 0018 以及, 航迹数据和路由计划分为航空器和车辆两类; 0019 一、 航。

15、空器 0020 航迹数据(多条数据): 目标类型(航空器)、 任务类型号(航班号)、 航迹点、 坐标位 置、 过点时间、 过点速度; 0021 路由计划(单条数据): 目标类型(航空器)、 型号(机型)、 任务类型号(航班号)、 机 尾号、 起落地时间、 挡轮档时间(或撤轮档时间); 0022 航迹数据和路由计划通过目标类型和任务类型号建立关联, 如进港航班, 则取航 迹数据记录 “过点时间” 在路由计划记录 “落地时间” 和 “挡轮档时间” 之间数据; 如出港, 则 取路由计划记录 “撤轮档时间” 和 “起飞时间” 之间数据。 0023 二、 车辆 0024 航迹数据(多条数据): 目标类型。

16、(车辆)、 任务类型号(任务单号)、 航迹点、 坐标位 置、 过点时间、 过点速度; 0025 路由计划(单条数据): 目标类型(车辆)、 型号(车型)、 任务类型号(任务单号)、 车 牌号、 任务发布时间、 任务结束时间; 0026 航迹数据和路由计划通过目标类型和任务类型号建立关联, 取航迹数据记录 “过 点时间” 在路由计划记录 “任务发布时间” 和 “任务结束时间” 之间数据。 0027 进一步地, 所述步骤13)具体包括: 雷达航迹三维位置观测数据采用WGS-84坐标 系, BK为WGS-84坐标系K航迹点的经度, LK为WGS-84坐标系K航迹点的纬度, HK为WGS-84坐标 系。

17、K航迹点的高度; 航迹表示为: 0028 TrajKBK, LK, HK, K1, ., N 0029 首先将WGS84坐标系转换到地心地固直角坐标系ECEF, 转换公式如下: 0030 XK(Ne+HK)COS(LK)COS(BK) 说明书 2/10 页 5 CN 110111608 A 5 0031 YK(Ne+HK)COS(LK)SIN(BK) 0032 ZK(Ne(1-e2)+HK)SIN(LK) 0033 式中, XK是ECEF坐标系x轴值; YK是ECEF坐标系y轴值; ZK是ECEF坐标系z轴值; Ne是 主垂直面的曲率半径,e是地球椭球偏心率, 0034 其中, a是地球椭球的。

18、长半轴, 即地球赤道半径, a取6378137米; b是地球椭球的短 半轴, 即地球极半径, b取6356752.3米; 0035 在ECEF坐标系下, 原心为地球质心, 航迹表示为: 0036 TrajKXK, YK, ZK, K1, ., N 0037 然后, 采用TrajK-1和TrajK+1航迹点的ECEF坐标位置、 过点速度、 过点时间计算 TrajK航迹点的航向角和加速度ak, 并作为Reduce阶段结果数据保存; 0038航向角用来描述航行航迹在机坪场面上转弯机动特征, 公式如下: 0039 0040 加速度ak用来描述航行航迹在机坪场面上加减速运动特征, 公式如下: 0041 。

19、0042 式中, VK和TK分别为场面运行目标航程记录信息中 “过点速度” 及 “过点时间” 。 0043 进一步地, 所述步骤2)具体包括: 0044 21)在机场机坪场面道路图上, 航空器或车辆的运动意图改变基本在交叉路口区 域, 以交叉点为中心, 设定附近区域为运动意图识别区; 0045 22)分析各类运动意图识别区的特点, 对运动意图识别区的运行意图类型进行分 类; 0046 23)把航行航迹样本库、 运动意图识别区与场面运行意图模型进行关联, 标注出航 行航迹样本库所属运行意图模型类别; 0047 24)保存Reduce阶段结果数据作为经验数据模型, 利用运行目标特征集、 模拟或实 。

20、时采录现场航迹运行数据去修正, 同时结合航空器或车辆的运动学模型, 通过运行意图信 息的离线训练与在线测试开展自我学习, 保证识别模型的完整性和唯一性, 最终建立该机 场机坪场面运动目标运行意图识别模型。 0048 本发明的有益效果: 0049 1、 采用大数据分布式体系架构替代传统体系架构, 解决了传统体系架构对海量数 据难以运算的问题, 高效的获得运算结果; 0050 2、 通过大数据支撑获得的识别模型替代人工经验, 结合各种类型航空器和车辆运 动学模型, 细化了识别模型分类, 减少了意图模型识别属性单一性, 提高预测的精确性; 0051 3、 采用人工智能方法, 根据实际数据对意图识别模。

21、型不断实时修正, 进一步提升 航行预测准确度, 为下一工作提早做好规划, 大大降低乃至避免场面冲突, 提升场面运行安 说明书 3/10 页 6 CN 110111608 A 6 全。 0052 4、 高精度的意图识别和航行预测同时提高交通安全水平和效率水平, 在一定程度 上也会提升场面运行流量, 减轻管制员的工作负荷, 提升航空运输服务能力。 附图说明 0053 图1为机场机坪场面道路图; 0054 图2为动目标从路口R11经过四叉路R1的运行改变意图; 0055 图3为示例中运行目标以加速度ak识别运行意图模型图; 0056图4为示例中运行目标以航向角识别运行意图模型图; 0057 图5为地。

22、心地固直角坐标系图。 具体实施方式 0058 本发明的方法结合航空器或车辆动力和运动学模型, 并通过基于海量场面雷达轨 迹数据, 采用大数据Hadoop分布式运算框架, 分析航空器或车辆在场面活动全航行阶段中 的速度、 位置等信息, 建立目标类型、 型号、 任务等属性特征和加速度、 轨迹角、 运动阶段等 运动特征相结合的目标特征集; 通过对目标特征集和运行意图信息的离线训练与在线测 试, 开展运行目标场面滑行路线意图分析, 构建机坪场面运动目标运行意图识别模型, 模型 涉及主要关键因子包括目标类型、 型号、 任务属性、 运动意图、 位置、 航向角(即飞机和航天 飞机的纵轴与地球北极之间的夹角)。

23、和加速度识别范围等, 并在真实场景中使用本发明的 运动意图识别模型对轨迹预测进行实时修正, 取得非常好的效果, 为研究新型全面的场面 航空器和车辆轨迹预测打下基础。 这种推算的结果越准确, 就越有可能将场面活动目标之 间的冲突尽早探测出来, 并加以调整消解, 从而大大降低乃至避免场面冲突的可能性, 提升 场面运行安全; 而另一方面, 这种推算的结果越准确, 就越有利于在当前时间点之前对所有 场面运行情况进行总体把握, 从而可以较早的平滑交通流, 增加交通通过量, 提升了交通效 率。 所以说, 高精度的意图识别和航行预测是同时提高交通安全水平和效率水平的重要手 段, 在一定程度上也会提升场面运行。

24、流量, 减轻管制员的工作负荷, 产生较大的经济和社会 效益。 0059 为了便于本领域技术人员的理解, 下面结合实施例与附图对本发明作进一步的说 明, 实施方式提及的内容并非对本发明的限定。 0060 参照图1所示, 本发明的一种基于机坪场面运动目标雷达轨迹构建目标运行意图 识别模型的方法, 包括步骤如下: 0061 步骤1): 基于Hadoop的航空器或车辆运行目标特征集; 具体包括步骤如下: 0062 11)对机坪场面航空器或车辆的航迹点记录的航迹数据作融合处理, 清洗过后的 数据与相应的运行路由计划信息匹配, 建立机坪场面运行目标航程记录信息。 在关系型数 据库的海量场面运行目标滑行记录。

25、表中, 每一条机坪场面航程记录由运行目标类型(航空 器或车辆)、 型号(机型或车型)、 任务类型号(航班号或任务单号)、 标示号(机尾号/起落地 时间或车牌号/任务发布时间)、 航迹点、 坐标位置、 过点时间、 过点速度等属性组成。 删除记 录中有属性为空的无效记录; 增加序列号字段, 填写数值为此活动目标在场面运行过程中 按过点时间排序。 将序列号、 运行目标类型、 型号、 任务类型号、 标示号、 航迹点、 坐标位置、 说明书 4/10 页 7 CN 110111608 A 7 过点时间、 过点速度九个维度的场面航程记录迁移到Hadoop集群的分布式数据库HBase中; 0063 12)利用。

26、任务类型号和标示号作为唯一性标识, 按序列号排序相隔一个航迹点的 两个航迹点航程记录信息构建数据文件的映射模型; 参见表1, 其为HBase中场面航程记录 信息, 如下: 0064 表1 0065 说明书 5/10 页 8 CN 110111608 A 8 0066 0067 在映射模型的Map阶段, Map过程将存储于HBase中的原始数据映射为间隔两个航 迹点相关航程记录信息, Map的中间数据具体信息项如下表2; 0068 表2 说明书 6/10 页 9 CN 110111608 A 9 0069 0070 0071 13)建立机坪场面航迹点之间的航向角算法模型; 雷达航迹三维位置观测数。

27、据采 用WGS-84坐标系(WGS-84坐标系是目前国际上统一采用的大地坐标系, GPS广播星历是以 WGS-84坐标系为根据的), BK为WGS-84坐标系K航迹点的经度, LK为WGS-84坐标系K航迹点的 纬度, HK为WGS-84坐标系K航迹点的高度。 航迹表示为: 0072 TrajKBK, LK, HK, K1, ., N 0073 首先将WGS-84坐标系转换到地心地固直角坐标系ECEF, 转换公式如下: 0074 XK(Ne+HK)COS(LK)COS(BK) 0075 YK(Ne+HK)COS(LK)SIN(BK) 0076 ZK(Ne(1-e2)+HK)SIN(LK) 00。

28、77 图5为地心地固直角坐标系(Earth-Centered, Earth-Fixed, 简称ECEF)简称地心 坐标系, 是一种以地心为原点的地固坐标系(也称地球坐标系), ECEF坐标系与地球固联, 且 随着地球转动。 原点0(0, 0, 0)为地球质心, z轴与地轴平行指向北极点, x轴指向本初子午线 与赤道的交点, y轴垂直于xOz平面(即东经90度与赤道的交点)构成右手坐标系。 0078 式中, XK是ECEF坐标系x轴值; YK是ECEF坐标系y轴值; ZK是ECEF坐标系z轴值; Ne是 主垂直面的曲率半径,e是地球椭球偏心率, 0079 其中, a是地球椭球的长半轴, 即地球赤。

29、道半径, 取6378137米; b是地球椭球的短半 轴, 即地球极半径, 取6356752.3米; 0080 在ECEF坐标系下, 原心为地球质心, 航迹表示为: 0081 TrajKXK, YK, ZK, K1, ., N 0082 然后, 采用TrajK-1和TrajK+1航迹点的ECEF坐标位置、 过点速度、 过点时间计算 说明书 7/10 页 10 CN 110111608 A 10 TrajK航迹点的航向角和加速度ak, 并作为Reduce阶段结果数据保存; 0083航向角用来描述航行航迹在机坪场面上转弯机动特征, 公式如下: 0084 0085 加速度ak用来描述航行航迹在机坪场面。

30、上加减速运动特征, 公式如下: 0086 0087 式中, VK和TK分别为场面运行目标航程记录信息中 “过点速度” 及 “过点时间” 。 0088 14)保存Reduce阶段结果数据作为运动目标机坪场面航行航迹样本库, 建立机坪 场面运行航迹样本库, 具体记录信息包括序列号、 运行目标类型、 型号、 任务类型号、 标示 号、 航迹点、 坐标位置、 过点时间、 过点速度、 航向角和加速度等, 作为航行运动意图识别方 法的基础数据。 0089 步骤2): 根据机坪场面场地环境, 构建该场地的场面运行意图模型, 在运动目标机 坪场面航行航迹样本库建立的基础上, 把样本库与场面运行意图模型进行关联,。

31、 标注运动 目标机坪场面航行航迹样本库所属运行意图模型类别, 建立该机场机坪场面的运动目标运 行意图识别模型; 具体包括步骤如下: 0090 21)在机场机坪场面道路图上, 航空器或车辆的运动意图改变基本在交叉路口区 域, 我们以交叉点为中心, 设定附近区域为 “运动意图识别区” 。 参照图1, 图中黑点标注的位 置即为 “运动意图识别区” ; 0091 梳理整个机场机坪场面道路图, 建立运动意图识别区参数表, 主要包含2个属性, 分别为运动意图识别区号、 区域范围。 0092 22)分析各类 “运动意图识别区” 特点, 开展 “运动意图识别区” 运行意图类型分类; 0093 “运动意图识别区。

32、” 即交叉路口的设置基本分为四叉、 三叉和两叉三种类型。 图2为 动目标从路口R11经过四叉路R1的运行改变意图, 运动目标运行到P0点时, 会有四种运行改 变情况, 分别为停止、 左转、 直行和右转, 记为运行意图PR, I, R为道路口(或运动意图识别区) 编号, I为运行意图类型编号, 表3为动目标从路口R11经过四叉路R1的运行改变意图模型分 类示例, 如下: 0094 表3 0095 说明书 8/10 页 11 CN 110111608 A 11 0096 0097 因此, 航空器或车辆分别从不同路口经过四叉路就会有16种运行意图模型。 同理, 路过三叉、 两叉路口, 分别有九种、 。

33、四种运行改变情况。 0098 根据机坪场面的 “运动意图识别区” 和运行意图类别, 建立场面运行意图模型库, 主要包含3个属性, 分别为运行意图模型编号、 道路口、 运行意图模型描述。 0099 23)把航行航迹样本库、 运动意图识别区与场面运行意图模型进行关联, 标注出航 行航迹样本库所属运行意图模型类别, 特别注意样本库中同一标示号航迹运行路线与运行 意图模型类别向对应, 即航迹路线从哪个路口到哪个路口; 同时根据场面航行航迹样本数 据模拟补充运行意图模型类别缺少的航迹样本数据, 如在路口 “运行停止” 等情况。 并把关 联数据构建数据文件的映射模型, 在映射模型的Map阶段, Map过程。

34、将存储于HBase中的原始 数据映射为中间数据, 中间数据包括目标类型、 型号、 任务类型号、 航迹点、 坐标位置、 航向 角、 加速度、 运动意图识别区号和运行意图模型编号。 规约模型Reduce阶段获取Map的中间 数据, 使用k-means(硬聚类算法), 按照运行目标类型、 型号、 任务、 运动意图、 位置计算出航 向角和加速度识别范围作为结果信息。 0100 24)保存Reduce阶段结果数据作为经验数据模型, 利用运行目标特征集、 模拟或实 时采录现场航迹运行数据去修正, 同时结合航空器或车辆的运动学模型, 通过运行意图信 息的离线训练与在线测试开展自我学习, 保证识别模型的完整性。

35、和唯一性, 最终建立本场 运动目标运行意图识别模型, 识别模型主要包括运行目标类型、 型号、 任务、 运动意图、 位 置, 以及航向角和加速度识别范围等。 0101 示例: 波音B777飞机进港航班SC1224由跑道滑行至停机位, 经R11路口通过R1叉路 的四种情况识别示意图, 通过加速度ak模型和航向角模型结合识别。 0102 “运行停止” PR11, 1主要以通过加速度ak模型识别, 示意图如下图3所示, 当加速度ak 在K线以下为 “运行停止” PR11, 1, K线以上为 “左转” PR11, 2、“直行” PR11, 3和 “右转” PR11, 4; 0103“左转” PR11, 。

36、2、“直行” PR11, 和 “右转” PR11, 4主要以通过航向角模型识别, 示意图 如下图4, 当航向角在线1和线2之间为 “左转” PR11, 2, 线2和线3之间为 “运行停止” PR11, 1和 “直行” PR11, 3, 线3和线4之间为 “右转” PR11, 4。 0104 本发明方法经实践使用证明非常有效, 该方法构建了航空器和车辆的场面运动意 图识别模型, 模型涉及主要关键因子包括目标类型、 型号、 任务属性、 运动意图、 位置、 航向 角和加速度识别范围等, 并在真实场景中使用本发明的运动意图识别模型对轨迹预测进行 实时修正, 取得非常好的效果, 为研究新型全面的场面航空。

37、器和车辆轨迹预测打下基础。 确 保了对正在场面活动的和即将活动的航空器或车辆快速准确意图识别、 航迹运行预测, 在 提升场面运行流量、 减轻管制员的工作负荷的同时, 有效的提升机场场面交通安全水平和 效率水平。 0105 本发明具体应用途径很多, 以上所述仅是本发明的优选实施方式, 应当指出, 对于 说明书 9/10 页 12 CN 110111608 A 12 本技术领域的普通技术人员来说, 在不脱离本发明原理的前提下, 还可以作出若干改进, 这 些改进也应视为本发明的保护范围。 说明书 10/10 页 13 CN 110111608 A 13 图1 图2 说明书附图 1/3 页 14 CN 110111608 A 14 图3 图4 说明书附图 2/3 页 15 CN 110111608 A 15 图5 说明书附图 3/3 页 16 CN 110111608 A 16 。

展开阅读全文
内容关键字: 基于 雷达 轨迹 构建 场面 运动 目标 运行 意图 识别 方法
关于本文
本文标题:基于雷达轨迹构建机坪场面运动目标运行意图识别的方法.pdf
链接地址:https://www.zhuanlichaxun.net/pdf/11444474.html
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1