车辆轨迹点识别方法及设备.pdf

上传人:磨** 文档编号:11028276 上传时间:2021-08-30 格式:PDF 页数:14 大小:618.98KB
收藏 版权申诉 举报 下载
车辆轨迹点识别方法及设备.pdf_第1页
第1页 / 共14页
车辆轨迹点识别方法及设备.pdf_第2页
第2页 / 共14页
车辆轨迹点识别方法及设备.pdf_第3页
第3页 / 共14页
文档描述:

《车辆轨迹点识别方法及设备.pdf》由会员分享,可在线阅读,更多相关《车辆轨迹点识别方法及设备.pdf(14页完成版)》请在专利查询网上搜索。

1、(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201911010527.1 (22)申请日 2019.10.22 (71)申请人 上海中旖能源科技有限公司 地址 200131 上海市浦东新区中国 (上海) 自由贸易试验区富特西一路115号2幢 8层8-26室 (72)发明人 刘冰张文强于修金周智宏 郑拓 (74)专利代理机构 北京卓唐知识产权代理有限 公司 11541 代理人 唐海力 (51)Int.Cl. G06K 9/62(2006.01) G06N 20/00(2019.01) G06Q 50/06(2012.01) 。

2、G01S 19/42(2010.01) (54)发明名称 车辆轨迹点识别方法及设备 (57)摘要 本申请公开了一种车辆轨迹点识别方法及 设备, 其中, 所述方法包括: 获取车辆轨迹点数 据; 根据所述车辆轨迹点数据计算车辆轨迹点的 类型特征; 根据所述轨迹点的类型特征利用机器 学习模型对所述车辆轨迹点进行预测, 以输出车 辆轨迹点分类结果, 其中所述机器学习模型是利 用已知类型特征的轨迹点样本进行训练得到的; 根据所述分类结果得到目标点。 基于机器学习, 以液化天然气运输车辆停车点数据为基础, 通过 独特的特征处理方法和模型挖掘液化天然气用 气点, 进而可以为天然气上游和中游企业建立竞 争优势。

3、以及合理调配液化天然气供给保障民生 提供可靠的数据支持。 权利要求书2页 说明书9页 附图2页 CN 110852354 A 2020.02.28 CN 110852354 A 1.一种车辆轨迹点识别方法, 其特征在于, 包括 获取车辆轨迹点数据; 根据所述车辆轨迹点数据计算车辆轨迹点的类型特征; 根据所述轨迹点的类型特征利用机器学习模型对所述车辆轨迹点进行预测, 以输出车 辆轨迹点分类结果, 其中所述机器学习模型是利用已知类型特征的轨迹点样本进行训练得 到的; 根据所述分类结果得到目标点。 2.如权利要求1所述的车辆轨迹点识别方法, 其特征在于, 所述获取车辆轨迹点数据包 括: 获取所述车辆。

4、轨迹点位置坐标; 对所述位置坐标进行降维处理, 得到位置标识。 3.如权利要求2所述的车辆轨迹点识别方法, 其特征在于, 所述对所述位置坐标进行降 维处理, 得到位置标识包括: 将所述位置坐标通过Geohash算法编码为一维字符串作为所述位置标识。 4.如权利要求1-3任意一项所述的车辆轨迹点识别方法, 其特征在于, 所述车辆轨迹点 数据包括: 车辆轨迹点的位置坐标和时间戳; 所述根据所述车辆轨迹点数据计算车辆轨迹点的第一特征包括: 基于所述位置坐标和所述时间戳得到所述第一特征, 所述第一特征包括: 停车时间点、 停车时长、 停车点所处区域、 停车动作以及停车点与预设兴趣点的关系中的至少之一。。

5、 5.一种车辆轨迹点识别模型训练方法, 其特征在于, 包括: 获取样本数据, 所述样本数据包括标记了类型特征的历史车辆轨迹点数据; 利用所述样本数据对机器学习模型进行训练, 以使所述机器学习模型从车辆轨迹点数 据中预测出车辆轨迹点的类型。 6.如权利要求5所述的车辆轨迹点识别模型训练方法, 其特征在于, 获取样本数据包 括: 获取第一样本数据, 所述第一样本数据包括历史车辆轨迹点数据; 对所述历史车辆轨迹点数据进行类型特征标注得到第二样本数据。 7.如权利要求6所述的车辆轨迹点识别模型训练方法, 其特征在于, 在对所述历史车辆 轨迹点数据进行类型特征标注得到第二样本数据之前包括: 获取所述历史。

6、车辆轨迹点位置坐标; 对所述位置坐标进行降维处理, 得到位置标识。 8.如权利要求7所述的车辆轨迹点识别模型训练方法, 其特征在于, 所述对所述位置坐 标进行降维处理, 得到位置标识包括: 将所述位置坐标通过Geohash算法编码为一维字符串作为所述位置标识。 9.一种车辆轨迹点识别设备, 其特征在于, 包括至少一个处理器; 以及与所述至少一个 处理器通信连接的存储器; 其中, 所述存储器存储有可被所述一个处理器执行的指令, 所述 指令被所述至少一个处理器执行, 以使所述至少一个处理器执行如权利要求1-4任意一项 所述的车辆轨迹点识别方法。 10.一种车辆轨迹点识别模型训练设备, 其特征在于,。

7、 包括至少一个处理器; 以及与所 权利要求书 1/2 页 2 CN 110852354 A 2 述至少一个处理器通信连接的存储器; 其中, 所述存储器存储有可被所述一个处理器执行 的指令, 所述指令被所述至少一个处理器执行, 以使所述至少一个处理器执行如权利要求 5-8任意一项所述的车辆轨迹点识别模型训练方法。 权利要求书 2/2 页 3 CN 110852354 A 3 车辆轨迹点识别方法及设备 技术领域 0001 本申请涉及数据分析技术领域, 具体而言, 涉及一种车辆轨迹点识别方法及设备。 背景技术 0002 随着环境的日益恶化, 人民群众对于环保的要求不断提升, 天然气消费量逐年攀 升。。

8、 2017年, 我国全年天然气消费量约2373亿方天然气, 同比增长15.31, 增量刷新我国天 然气消费增量历史记录, 但是天然气的供给却远远赶不上市场的需求, 2017年入冬以来, 京 津冀地区天然气供应偏紧, 天然气供应短缺问题凸显, 部分学校、 医院、 住宅区供暖不足。 面 对严峻的天然气 “气荒” 问题, 如何解决, 保证民生需求, 是目前亟需解决的问题。 0003 天然气按照其形态分为液化天然气(Liquefied Natural Gas)和压缩天然气 (Compressed Natural Gas), 液化天然气主要通过液化天然气槽车来运输, 属于危险化品 范畴中的2类1项(可燃。

9、烧气体)。 液化天然气运输车辆从上游液化工厂或接收站接货, 然后 在下游天然气用气终端卸货, 全国目前共有液化工厂和接收站200余家。 0004 随着天然气行业信息化的发展, 如何获取液化天然气用气点信息, 是当前天然气 上游和中游企业建立竞争优势的关键, 也是合理调配液化天然气供给, 保障民生的重要举 措。 当前市场上获取用气终端信息的方式主要有两种, 一种是依靠人为的搜集, 例如电话、 实地走访等等, 但这种方式效率较低, 而且无法获取比较全面的数据; 另外一种是依靠物联 网, 以获取精准的终端数据, 但是成本较高。 0005 因此, 如何实现较为便捷合理的获取用气点信息成为亟待解决的技术。

10、问题。 发明内容 0006 本申请的主要目的在于提供一种车辆轨迹点识别方法以实现较为便捷合理的获 取用气点信息。 0007 根据第一方面, 本发明实施例提供了一种车辆轨迹点识别方法, 包括: 获取车辆轨 迹点数据; 根据所述车辆轨迹点数据计算车辆轨迹点的类型特征; 根据所述轨迹点的类型 特征利用机器学习模型对所述车辆轨迹点进行预测, 以输出车辆轨迹点分类结果, 其中所 述机器学习模型是利用已知类型特征的轨迹点样本进行训练得到的; 根据所述分类结果得 到目标点。 0008 可选地, 所述获取车辆轨迹点数据包括: 获取所述车辆轨迹点位置坐标; 对所述位 置坐标进行降维处理, 得到位置标识。 000。

11、9 可选地, 所述对所述位置坐标进行降维处理, 得到位置标识包括: 将所述位置坐标 通过Geohash算法编码为一维字符串作为所述位置标识。 0010 可选地, 所述车辆轨迹点数据包括: 车辆轨迹点的位置坐标和时间戳; 所述根据所 述车辆轨迹点数据计算车辆轨迹点的第一特征包括: 基于所述位置坐标和所述时间戳得到 所述第一特征, 所述第一特征包括: 停车时间点、 停车时长、 停车点所处区域、 停车动作以及 停车点与预设兴趣点的关系中的至少之一。 说明书 1/9 页 4 CN 110852354 A 4 0011 根据第二方面, 本发明实施例提供了一种车辆轨迹点识别模型训练方法, 包括: 获 取样。

12、本数据, 所述样本数据包括标记了类型特征的历史车辆轨迹点数据; 利用所述样本数 据对机器学习模型进行训练, 以使所述机器学习模型从车辆轨迹点数据中预测出车辆轨迹 点的类型。 0012 可选地, 获取样本数据包括: 获取第一样本数据, 所述第一样本数据包括历史车辆 轨迹点数据; 对所述历史车辆轨迹点数据进行类型特征标注得到第二样本数据。 0013 可选地, 在对所述历史车辆轨迹点数据进行类型特征标注得到第二样本数据之前 包括: 获取所述历史车辆轨迹点位置坐标; 对所述位置坐标进行降维处理, 得到位置标识。 0014 可选地, 所述对所述位置坐标进行降维处理, 得到位置标识包括: 将所述位置坐标 。

13、通过Geohash算法编码为一维字符串作为所述位置标识。 0015 根据第三方面, 本发明实施例提供了一种车辆轨迹点识别设备, 其特征在于, 包括 至少一个处理器; 以及与所述至少一个处理器通信连接的存储器; 其中, 所述存储器存储有 可被所述一个处理器执行的指令, 所述指令被所述至少一个处理器执行, 以使所述至少一 个处理器执行如上述第一方面任意一项所述的车辆轨迹点识别方法。 0016 根据第四方面, 本发明实施例提供了一种车辆轨迹点识别模型训练设备, 其特征 在于, 包括至少一个处理器; 以及与所述至少一个处理器通信连接的存储器; 其中, 所述存 储器存储有可被所述一个处理器执行的指令, 。

14、所述指令被所述至少一个处理器执行, 以使 所述至少一个处理器执行如上述第二方面任意一项所述的车辆轨迹点识别模型训练方法。 0017 获取车辆轨迹点数据; 根据所述车辆轨迹点数据计算车辆轨迹点的类型特征; 根 据所述轨迹点的类型特征利用机器学习模型对所述车辆轨迹点进行预测, 以输出车辆轨迹 点分类结果, 其中所述机器学习模型是利用已知类型特征的轨迹点样本进行训练得到的; 根据所述分类结果得到目标点。 基于机器学习,以液化天然气运输车辆停车点数据为基础, 通过独特的特征处理方法和模型挖掘液化天然气用气点, 进而可以为天然气上游和中游企 业建立竞争优势以及合理调配液化天然气供给保障民生提供可靠的数据。

15、支持。 附图说明 0018 构成本申请的一部分的附图用来提供对本申请的进一步理解, 使得本申请的其它 特征、 目的和优点变得更明显。 本申请的示意性实施例附图及其说明用于解释本申请, 并不 构成对本申请的不当限定。 在附图中: 0019 图1是根据本申请实施例的车辆轨迹点识方法流程示意图; 0020 图2是根据本申请实施例的车辆轨迹点识别模型训练方法流程示意图; 0021 图3是根据本申请实施例的设备的示意图。 具体实施方式 0022 为了使本技术领域的人员更好地理解本申请方案, 下面将结合本申请实施例中的 附图, 对本申请实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅。

16、是 本申请一部分的实施例, 而不是全部的实施例。 基于本申请中的实施例, 本领域普通技术人 员在没有做出创造性劳动前提下所获得的所有其他实施例, 都应当属于本申请保护的范 围。 此外, 术语 “包括” 和 “具有” 以及他们的任何变形, 意图在于覆盖不排他的包含 说明书 2/9 页 5 CN 110852354 A 5 0023 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以相 互组合。 下面将参考附图并结合实施例来详细说明本申请。 0024 正如背景技术所述, 现有的用气点信息的获取通常采用人为搜集或互联网搜集, 其中, 人为搜集通常采用电话、 实地走访等手段进行,。

17、 导致效率极其低下, 而互联网方式通 常需要在各个用户端部署相关的设施, 其实施费时费力。 基于此, 发明人发现随着危险化品 运输车辆数字化的不断推动, 液化天然气运输车辆都安装了定位终端, 定位终端会以一定 频率上传车辆位置数据, 从而形成车辆轨迹数据和停车点数据。 发明人发现, 可以利用互联 网+大数据。 无需增加用户端部署即可完成用气点信息挖掘, 在本实施例中, 基于机器学习 理论, 以液化天然气运输车辆轨迹点数据为基础进行用气点识别。 具体的, 如图1所示, 该方 法可以包括: 0025 S11.获取车辆轨迹点数据; 行车数据车辆标识信息、 车辆轨迹点的位置坐标信息 和时间戳。 作为示。

18、例性的实施例, 车辆安装有定位装置, 尤其, 危化品运输车辆, 按照国家交 通部门的要求, 危化品运输车辆都安装了定位终端, 定位终端会以一定频率上传车辆位置 数据从而形成行车数据, 该行车数据可以包括车辆标识信息, 车辆轨迹点的位置坐标信息 及车辆轨迹点经度坐标和纬度坐标以及轨迹点时间戳。 0026 S12.根据车辆轨迹点数据计算车辆轨迹点的类型特征。 作为示例性的实施例, 可 以基于车辆轨迹点的基于位置坐标和时间戳得到第一特征, 第一特征包括: 停车时间点、 停 车时长、 停车点所处区域、 停车动作以及停车点与预设兴趣点的关系中的至少之一。 其中, 停车点与预设兴趣点关系可以包括: 与停车。

19、点距离最近的预设兴趣点的类型、 停车点附近 是否存在预设兴趣点, 其中预设兴趣点可以为工业用气点、 生活用气点以及加气站。 在本实 施例中, 车辆轨迹点是否为停车点, 以及停车点的类型可以根据车辆轨迹点数据得到。 作为 示例性的实施例, 可以先确定车辆轨迹点为停车点, 停车点的类型特征可以根据车辆轨迹 点数抽象得到, 下列表1示例性的示出了停车点的类型特征: 说明书 3/9 页 6 CN 110852354 A 6 0027 说明书 4/9 页 7 CN 110852354 A 7 0028 0029 表1轨迹点类型特征表 0030 其中, 表1中的POI(Point of Interest)。

20、兴趣点, AOI(area of interest), 即信息 面, 也叫兴趣面。 指的是地图数据中的区域状的地理实体。 说明书 5/9 页 8 CN 110852354 A 8 0031 S13.根据轨迹点的类型特征利用机器学习模型对车辆轨迹点进行预测, 以输出车 辆轨迹点分类结果, 其中机器学习模型是利用已知类型特征的轨迹点样本进行训练得到 的。 该机器学习模型是预先使用大量样本数据训练出的模型。 本发明中的机器学习模型可 以是神经网络模型、 深度学习模型等, 用于机器学习的分类检测有多种算法可以使用, 比如 R-CNN(Regions with ConvolutionalNeural N。

21、etwork, 卷积神经网络)、 Fast R-CNN、 Faster R-CNN、 DSOD(Deeply SupervisedObject Detectors, 学习型深度监督对象检测器) 以及GBDT(Gradient Boosting Decision Tree)等。 在本实施例中, 及其学习模型可以采用 GBDT(Gradient Boosting Decision Tree)模型。 0032 具体地, 机器学习模型是利用已知类型特征轨迹点样本进行训练得到的。 例如可 以先对轨迹点的类型特征进行离线计算, 然后由人工或其他自动识别方法对各个轨迹点的 类型特征进行标注, 并将其作为样本。

22、数据。 标记的内容可以是轨迹点的类型, 以及该类型下 ID和值范围等。 机器学习模型通过对大量的样本数据进行学习以改变内部参数, 终将可以 对未做标记的车辆轨迹点的类型进行识别, 输出车辆轨迹点的分类结果。 0033 S14.根据分类结果得到目标点。 在本实施例中, 可以针对分类结果得到得到待识 别的轨迹点的类型以及对应的特征, 进而根据该特征确定用气点的信息, 进而可以为天然 气上游和中游企业建立竞争优势以及合理调配液化天然气供给保障民生提供可靠的数据 支持。 0034 作为示例性的实施例, 为了提升模型训练与识别效率, 可以对获取的车辆轨迹点 数据进行预处理, 例如, 获取车辆轨迹点位置坐。

23、标; 对位置坐标进行降维处理, 得到位置标 识。 具体的, 可以将位置坐标通过Geohash算法编码为一维字符串作为位置标识。 在本实施 例中, 将轨迹点的经纬度坐标通过Geohash算法编码为一维字符串在进行类型特征计算, 可 以提升GBDT(Gradient Boosting Decision Tree)模型的训练以及识别效率。 0035 作为示例性的实施例, 根据车辆轨迹点数据计算车辆轨迹点类型特征, 可以先确 定轨迹点为停车点, 具体的, 车辆轨迹点数据可以包括车辆标识信息、 车辆轨迹点的位置坐 标信息和时间戳。 按照时间顺序, 以前一个轨迹点和后一轨迹点或后续连续的一系列轨迹 点进行。

24、距离计算得到第一距离。 由于定位数据存在一定的精度偏差, 即使车辆实际时停驶 状态, 仍有可能出现上传的轨迹点出现小幅度偏移的情况, 会导致误生成多个停车点, 因此 可以判断第一距离是否小于预设阈值; 当第一距离小于预设阈值时, 则根据相邻的轨迹点 生成停车位置。 当距离大于预设预设值时, 则生成新的欲停车点, 继续计算欲停车点与后续 相邻的轨迹点之间的第一距离, 从而确定新的停车点。 在本实施例中, 可以任意选取轨迹点 开始计算与后续轨迹点的第一距离。 0036 作为具体的实施例, 对于停车位置的确定可以计算第一距离小于预设阈值的所有 轨迹点的位置坐标信息的均值; 将均值作为作为停车位置。 。

25、示例性的, 在确定存在5个第一 距离小于预设阈值的轨迹点, 可以计算该5个轨迹点的经度坐标的平均值作为停车位置的 经度坐标, 计算该5个轨迹点的维度坐标的平均值作为停车位置的维度坐标。 作为另一示例 性的实施例, 由于车辆在停车过程中, 产生多个轨迹点是由于定位设备不稳定或定位精度 不准或定位信号较弱造成的位置漂移, 通常位置漂移均在一定范围内, 位置偏移较小, 因此 还可以将第一距离小于预设阈值的所有轨迹点中任一轨迹点的位置坐标信息作为停车位 置。 说明书 6/9 页 9 CN 110852354 A 9 0037 作为另一示例性的实施例, 还可以根据轨迹点之间的第一距离确定停车时长, 具 。

26、体的, 按照时间戳连续统计第一距离小于预设值的多个连续的轨迹点, 直至第一距离大于 预设值, 将统计的所有的轨迹点中的起始轨迹点和结束轨迹点之间的时间差作为停车时 长。 示例性的, 以存在5个第一距离小于预设阈值的轨迹点为例, 可以计算第一个轨迹点和 第五个轨迹点之间的时间差, 并将该时间差作为停车时长。 0038 示例性的, 由于全球定位系统(Global Positioning System, GPS)或北斗定位系 统的定位设备可能存在一定程度的位置偏移, 因此, 预设阈值可以为5-30米。 若车辆行驶按 时间排序的的轨迹点为: A、 B、 C、 D、 0039 计算相邻两点(以轨迹点A为。

27、起始点为例)的第一距离: 0040 步骤a:如果轨迹点A和轨迹点B两点距离小于30米, 继续计算轨迹点A和轨迹点C两 点的距离, 若轨迹点A和轨迹点C小于30米继续计算轨迹点A和轨迹点D的距离, 依次类推, 直 到轨迹点A和轨迹点N的距离大于等于30米, 可以根据轨迹点A至轨迹点N位置坐标信息确定 停车位置, 并将轨迹点N和轨迹点A的时间相减, 得到停车点时长T; 0041 步骤b:若轨迹点A和轨迹点B的距离大约30米, 将轨迹点B作为起始点, 继续计算与 下一个相邻点的距离即轨迹点B和轨迹点C的第一距离, 重复步骤a的操作。 0042 由于行车数据上传受到定位设备质量影响, 定位设备可能会上。

28、传异常数据, 其包 含时间异常和位置异常, 会使得生成错误停车点。 作为可选的实施例, 在按照时间戳计算相 邻轨迹点之间的第一距离之前可以先将异常停车点剔除, 以提高停车信息的准确性。 具体 的, 判断轨迹点中是否存在超出预设位置范围和/或预设时间范围的轨迹点; 当存在超出预 设位置范围和/或预设时间范围的轨迹点时, 将超出预设位置范围的行车轨迹点删除。 作为 示例性的实施例, 对于位置异常, 预设位置范围可以以本国国界的经纬度范围为例, 对超过 本国国界经纬度范围的车辆轨迹点进行删除, 例如, 经度范围为东经73度40分至东经135度 2分30秒, 纬度范围为北纬3度52分至北纬53度33分。

29、, 对于在此区域范围外的轨迹点进行删 除。 对于时间异常, 预设时间范围可以为0:00:0023:59:59, 对于在此区域范围外的轨迹 点进行删除。 0043 由于定位设备可以能存在不稳定的状况, 可能会出现轨迹点漂移较为严重的状 况, 因此, 需要将轨迹点中漂移较为严重的轨迹点删除, 以提高停车信息的准确性。 在本实 施例中, 可以通过车辆行驶速度对漂移较为严重的轨迹点删除, 具体的, 按照时间戳计算前 后两个轨迹点之间的第二距离; 根据第二距离和前后两个轨迹点时间差计算车辆在两个轨 迹点之间的行驶速度; 判断行驶速度是否超过预设速度; 当行驶速度超过预设速度时, 将后 一轨迹点删除。 示。

30、例性的, 计算轨迹点之间的距离差和时间差的比值, 得到车辆在两个轨迹 点之间的速度。 如前一个轨迹点和后一个轨迹点距离为Dab, 两者的时间差为Tab, 则速度Vab Dab/Tab。 由于车辆行驶速度均有限速值, 例如危化品车辆运输速度限速80公里/小时, 排 除超速等因素, 可以120公里/小时作为阈值, 如果超过正常阈值, 则认为后一个点产生了异 常漂移, 对漂移的点进行过滤。 在本实施例中, 由于轨迹点时通过定位设备以一定频率上传 的, 因此, 轨迹点之间的时间差Tab为定值。 0044 在本实施例中, 在确定轨迹点为停车点以及停车时长和停车时间点等类型特征 后, 可以根据液化气行业的。

31、停车行为的大数据分析以及各个预设兴趣点的位置坐标得到轨 迹点的其他特征, 例如, 表1中的停车点距离道路的距离, 可以听过北斗或GPS信息等地图定 说明书 7/9 页 10 CN 110852354 A 10 位信息可以确定该特征, 距离最近的POI类型, 可以通过北斗或GPS信息等地图定位信息定 位该停车点周边兴趣点的类型是工业用气点或生活用气点或加气站等类型。 还可以根据停 车点位置和地图定位信息确定该停车点周围是否存在兴趣点的关键字, 存在可以记为1, 不 存在可以记为0。 以及周围是否存在生活用气点的POI、 AOI和/或工业用气点的POI、 AOI和/ 或加气站的POI、 AOI。 。

32、存在记为1, 不存在记为0。 还可以根据停车点的位置信息以及地图信 息确定接液点区域, 以及根据停车位置信息、 停车时间点和停车时长计算距离接液点时间 和距离。 根据在停车位置与POI或AOI的位置关系以及停车时长计算已卸液次数等特征。 这 些特征可以较为真实的反映出用气点的信息。 进而可以为天然气上游和中游企业建立竞争 优势以及合理调配液化天然气供给保障民生提供可靠的数据支持。 0045 本发明实施例还提供了一种车辆轨迹点识别模型训练方法, 如图2所示, 该方法可 以包括如下步骤: 0046 S21.获取样本数据, 样本数据包括标记了类型特征的历史车辆轨迹点数据。 可以 先对轨迹点的类型特征。

33、进行离线计算, 然后由人工或其他自动识别方法对各个轨迹点的类 型特征进行标注, 并将其作为样本数据。 标记的内容可以是轨迹点的类型, 以及该类型下ID 和值范围等。 具体的轨迹点的类型特征的计算可以参见上述实施例中对于轨迹点类型特征 的计算的描述。 0047 S22.利用样本数据对机器学习模型进行训练, 以使机器学习模型从车辆轨迹点数 据中预测出车辆轨迹点的类型。 机器学习模型通过对大量的样本数据进行学习以改变内部 参数, 本发明中的机器学习模型可以是神经网络模型、 深度学习模型等, 用于机器学习的分 类检测有多种算法可以使用, 比如R-CNN(Regions with Convolution。

34、alNeural Network, 卷积神经网络)、 Fast R-CNN、 Faster R-CNN、 DSOD(Deeply SupervisedObject Detectors, 学习型深度监督对象检测器)以及GBDT(Gradient Boosting Decision Tree)等。 在本实施 例中, 及其学习模型可以采用GBDT(Gradient Boosting Decision Tree)模型。 可以预先设 置收敛条件, 以提高模型识别精确度或者速度。 例如: 假设调度体系中上存在N辆车, 每辆车 走过的的轨迹包含M个点, 那么针对点Pi,j(iN,jM)有一个实际的点类型yi。

35、,j0,1, 表 示该点是否 属于目 标点。 可以 通过预先设置收 敛条件使得函数H (x) , F (x) 的 最小, 其中, F(x)代表了轨迹点Pi,j的特征函数, H(x)代表了最 终的预测函数。 0048 作为示例性的实施例, 为了提升模型训练与识别效率, 可以对获取的车辆轨迹点 数据进行预处理, 例如, 获取车辆轨迹点位置坐标; 对位置坐标进行降维处理, 得到位置标 识。 具体的, 可以将位置坐标通过Geohash算法编码为一维字符串作为位置标识。 在本实施 例中, 将轨迹点的经纬度坐标通过Geohash算法编码为一维字符串在进行类型特征计算, 可 以提升GBDT(Gradient。

36、 Boosting Decision Tree)模型的训练以及识别效率。 0049 本发明实施例提供了了一种电子设备, 该电子设备可以为服务器, 具体的可以参 见图3, 该电子设备可以包括处理器11和存储器12, 其中处理器11和存储器12可以通过总线 或者其他方式连接, 图3中以通过总线连接为例。 0050 处理器11可以为中央处理器(Central Processing Unit, CPU)。 处理器11还可以 为其他通用处理器、 数字信号处理器(Digital Signal Processor, DSP)、 专用集成电路 说明书 8/9 页 11 CN 110852354 A 11 (A。

37、pplication Specific Integrated Circuit, ASIC)、 现场可编程门阵列(Field- Programmable Gate Array, FPGA)或者其他可编程逻辑器件、 分立门或者晶体管逻辑器件、 分立硬件组件等芯片, 或者上述各类芯片的组合。 0051 存储器12作为一种非暂态计算机可读存储介质, 可用于存储非暂态软件程序、 非 暂态计算机可执行程序以及模块, 如本发明实施例中的容器镜像的管理、 使用或构建方法 所对应的程序指令/模块。 处理器11通过运行存储在存储器12中的非暂态软件程序、 指令以 及模块, 从而执行处理器的各种功能应用以及数据处理。

38、, 即实现上述方法实施例中的车辆 轨迹点识别方法和/或车辆轨迹点识别模型训练方法。 0052 存储器12可以包括存储程序区和存储数据区, 其中, 存储程序区可存储操作系统、 至少一个功能所需要的应用程序; 存储数据区可存储处理器11所创建的数据等。 此外, 存储 器12可以包括高速随机存取存储器, 还可以包括非暂态存储器, 例如至少一个磁盘存储器 件、 闪存器件、 或其他非暂态固态存储器件。 在一些实施例中, 存储器12可选包括相对于处 理器11远程设置的存储器, 这些远程存储器可以通过网络连接至处理器11。 上述网络的实 例包括但不限于互联网、 企业内部网、 局域网、 移动通信网及其组合。 。

39、0053 一个或者多个模块存储在存储器12中, 当被处理器11执行时, 执行上述方法实施 例中的车辆轨迹点识别方法和/或车辆轨迹点识别模型训练方法。 0054 本领域技术人员可以理解, 实现上述实施例方法中的全部或部分流程, 是可以通 过计算机程序来指令相关的硬件来完成, 程序可存储于一计算机可读取存储介质中, 该程 序在执行时, 可包括如上述各方法的实施例的流程。 其中, 存储介质可为磁碟、 光盘、 只读存 储记忆体(Read-Only Memory, ROM)、 随机存储记忆体(Random Access Memory, RAM)、 快闪 存储器(Flash Memory)、 硬盘(Hard Disk Drive, 缩写: HDD)或固态硬盘(Solid-State Drive, SSD)等; 存储介质还可以包括上述种类的存储器的组合。 0055 以上仅为本申请的优选实施例而已, 并不用于限制本申请, 对于本领域的技术人 员来说, 本申请可以有各种更改和变化。 凡在本申请的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本申请的保护范围之内。 说明书 9/9 页 12 CN 110852354 A 12 图1 图2 说明书附图 1/2 页 13 CN 110852354 A 13 图3 说明书附图 2/2 页 14 CN 110852354 A 14 。

展开阅读全文
内容关键字: 车辆 轨迹 识别 方法 设备
关于本文
本文标题:车辆轨迹点识别方法及设备.pdf
链接地址:https://www.zhuanlichaxun.net/pdf/11028276.html
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1