基于深度学习的肺部肿瘤自动勾画方法.pdf

上传人:齐** 文档编号:10975300 上传时间:2021-08-28 格式:PDF 页数:7 大小:580.14KB
收藏 版权申诉 举报 下载
基于深度学习的肺部肿瘤自动勾画方法.pdf_第1页
第1页 / 共7页
基于深度学习的肺部肿瘤自动勾画方法.pdf_第2页
第2页 / 共7页
基于深度学习的肺部肿瘤自动勾画方法.pdf_第3页
第3页 / 共7页
文档描述:

《基于深度学习的肺部肿瘤自动勾画方法.pdf》由会员分享,可在线阅读,更多相关《基于深度学习的肺部肿瘤自动勾画方法.pdf(7页完成版)》请在专利查询网上搜索。

1、(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910917418.1 (22)申请日 2019.09.26 (71)申请人 中国石油大学 (华东) 地址 266580 山东省青岛市黄岛区长江西 路66号 (72)发明人 庞善臣孟璠王珣董立媛 张亚钦 (51)Int.Cl. G06T 7/00(2017.01) G06T 7/11(2017.01) G06T 7/62(2017.01) G06T 7/73(2017.01) G16H 30/40(2018.01) (54)发明名称 一种基于深度学习的肺部肿瘤自动勾画方 法。

2、 (57)摘要 本发明适用医学图像处理技术领域, 提供了 一种基于深度学习的肺部肿瘤自动勾画方法, 该 方法包括: 当接收到肺部CT图像的勾画请求时, 获取输入的肺部CT图像, 对获取到的肺部CT图像 进行预处理和图像增强, 获得对应的处理后的图 像; 获取肺肿瘤在图像中的窗口位置及大小, 将 筛选出的图像剪裁为固定大小; 将处理后的图像 输入到训练好的V-Net模型, 以对肺部肿瘤进行 预测; 将预测的肿瘤图像反卷积到裁剪图像的大 小, 得到肿瘤的真实预测; 提取真实预测的肺肿 瘤的边缘线, 即为肺肿瘤的勾画, 获得肺部肿瘤 勾画好的图像。 本发明提高了对肺部肿瘤进行自 动勾画的准确度, 在。

3、保证勾画精度的基础上, 显 著提升了勾画效率, 提高手术安全过程。 权利要求书1页 说明书3页 附图2页 CN 110706217 A 2020.01.17 CN 110706217 A 1.一种基于深度学习的肺部肿瘤自动勾画方法, 包括以下部分: 步骤1: 输入病人的肺部图像并对图像进行预处理和图像增强处理; 步骤2: 获取病人肺部肿瘤在图像中的窗口位置和肿瘤大小, 按照肿瘤在图像中的窗口 位置及大小, 将筛选出的图像裁剪为固定的大小; 步骤3: 将经过步骤1、 2处理后的图像输入到训练好的V-Net模型, 对肿瘤进行预测; 步骤4: 将预测的肺部肿瘤反卷积到裁剪图像的大小, 得到器官的真实。

4、预测; 步骤5: 提取真实预测的肺部肿瘤的边缘线, 即为该肿瘤的勾画结果。 2.根据权利要求1所述的一种基于深度学习的肺部肿瘤自动勾画方法, 其特征在于: 步骤1中进行预处理时, 需要对使用的肺癌病人的图像按肺肿瘤类型进行训练, 将标记 好的医学图像分为训练集和测试集两大类, 将训练中的图像进行预处理, 和标签一起输入, 训练该算法的权重, 将测试集中的图像进行预处理后和标签一起输入, 测试预测精度。 若预测精度没有达到阈值, 则不断进行调整; 若预测精度达到阈值, 则停止迭代。 3.根据权利要求1所述的一种基于深度学习的肺部肿瘤自动勾画方法, 其特征在于: 步骤2中, 获取肺部肿瘤在图像中的。

5、窗口位置及大小, 将训练数据拆分为图像和标签两 部分, 根据标签获取能够覆盖所有图像中肿瘤的最小矩形, 记录下该矩形在图像中的位置 和大小; 将得到的最小矩形沿上、 下两个方向分别外扩1/2矩形高度, 沿左右方向分别外扩 矩形的1/2宽度, 得到新矩形, 该矩形即为肿瘤的窗口, 记下在图像中的位置和大小。 4.根据权利要求1所述的一种基于深度学习的肺部肿瘤自动勾画方法, 其特征在于: 步骤3中的V-Net网络的训练具体包括: 将训练数据拆分为图像和标签两部分, 将图像 和标签分别做图像预处理, 然后放入网络进行训练; 训练时, 采用的损失函数为图像分割中 常用的Dice相似度, 对比V-Net。

6、模型分割图像和GT图像之间的相似程度, 从而提高对V-Net 模型分割结果评估的效率和精确度。 权利要求书 1/1 页 2 CN 110706217 A 2 一种基于深度学习的肺部肿瘤自动勾画方法 技术领域 0001 本发明涉及医疗图像处理技术和深度学习领域, 特别是一种基于深度学习的肺部 肿瘤的自动勾画方法。 背景技术 0002 肺癌是严重威胁人类健康的恶性肿瘤之一, 死亡率居肿瘤之首, 全球每年约180万 新增肺癌病例(占所有肿瘤的13), 160万死亡(占所有肿瘤的19.4), 5年生存率仅为 18。 如果能在早期诊断, 那么肺癌患者的5年存活率能够提升到70, 改善患者的预后效 果。 。

7、0003 现代医学技术日益发展, 其中很大一部分原因是医学影像技术的日渐成熟。 包括 CT技术、 MRI技术等, 这些技术帮助医生了解患者的内部病理结构, 制定精确的治疗方案。 但 由于图像数据量不足和影像数据很强的异质性, 某种稀有病例往往只有很少量的样本可供 模型进行训练和学习, 样本数量不足也会造成数据类别不均衡, 并导致过拟合。 0004 目前, 肺部肿瘤的勾画方法主要包括专家手工勾画和计算机辅助勾画。 手工勾画 对专家知识和经验要求很高, 而且不可避免存在人为误差, 同时对海量的图像数据进行手 工处理费时费力, 因此借助计算机的勾画方法在肺部肿瘤勾画中具有极大的研究意义和价 值。 对。

8、于肺癌患者来说, 通过对肺部进行肿瘤的自动勾画, 能够辅助医生诊断, 减少人为失 误, 对患者的病灶定位和后期手术具有重要的参考价值。 发明内容 0005 本发明的目的在于提供一种基于深度学习的肺部肿瘤的自动勾画方法, 有效缓解 手动勾画不准确且费时费力的现状, 解决肿瘤较小时勾画精度低的问题。 0006 为了达到上述要求, 本发明所采用的技术方案是: 0007 一种基于深度学习的肺部肿瘤自动勾画方法, 包括以下步骤: 0008 步骤1: 输入病人的肺部图像并对图像进行预处理和图像增强处理; 0009 步骤2: 获取病人肺部肿瘤在图像中的窗口位置和肿瘤大小, 按照肿瘤在图像中的 窗口位置及大小。

9、, 将筛选出的图像裁剪为固定的大小; 0010 步骤3: 将经过步骤1、 2处理后的图像输入到训练好的V-Net模型, 对肿瘤进行预 测; 0011 步骤4: 将预测的肺部肿瘤反卷积到裁剪图像的大小, 得到器官的真实预测; 0012 步骤5: 提取真实预测的肺部肿瘤的边缘线, 即为该肿瘤的勾画结果。 0013 本发明提出了一种基于深度学习的肺部肿瘤的自动勾画方法, 提高了对肺部肿瘤 进行自动勾画的准确度, 在保证勾画精度的基础上, 显著提升了勾画效率, 大大减轻了医生 的工作负担, 同时也为肿瘤病人争取到了宝贵的治疗时间, 提高手术安全过程。 0014 进一步, 步骤1中进行预处理时, 需要对。

10、使用的肺癌病人的图像按肺肿瘤类型进行 训练, 将标记好的医学图像分为训练集和测试集两大类, 将训练中的图像进行预处理, 和标 说明书 1/3 页 3 CN 110706217 A 3 签一起输入, 训练该算法的权重, 将测试集中的图像进行预处理后和标签一起输入, 测试预 测精度。 若预测精度没有达到阈值, 则不断进行调整; 若预测精度达到阈值, 则停止迭代。 0015 进一步, 步骤1中图像增强的的具体方法为: 针对感兴趣区域图像依次进行修剪、 平移变换、 旋转、 除噪、 镜像翻转、 反射变换、 PCA抖动。 采用现有的图像数据训练方法, 对图 像数据进行多次训练, 获得初步训练的数据集; 使。

11、用训练好的模型, 针对新的一批患者数 据, 能有效提升网络模型的鲁棒性能。 还可以将初步进行扩充后的数据进入生成对抗网络 (GAN)进行数据扩充。 0016 进一步, 步骤2中, 获取肺部肿瘤在图像中的窗口位置及大小, 将训练数据拆分为 图像和标签两部分, 根据标签获取能够覆盖所有图像中肿瘤的最小矩形, 记录下该矩形在 图像中的位置和大小; 将得到的最小矩形沿上、 下两个方向分别外扩1/2矩形高度, 沿左右 方向分别外扩矩形的1/2宽度, 得到新矩形, 该矩形即为肿瘤的窗口, 记下在图像中的位置 和大小。 0017 进一步, 步骤3中的V-Net网络的训练具体包括: 将训练数据拆分为图像和标签。

12、两 部分, 将图像和标签分别做图像预处理, 然后放入网络进行训练; 训练时, 采用的损失函数 为图像分割中常用的Dice相似度, 对比V-Net模型分割图像和GT图像之间的相似程度, 从而 提高对V-Net模型分割结果评估的效率和精确度。 0018 本发明本发明提高了对肺部肿瘤进行自动勾画的准确度, 在保证勾画精度的基础 上, 显著提升了勾画效率, 提高手术安全过程。 附图说明 0019 为了更清楚地说明本发明的技术方案, 下面将对发明内容中所需要使用的附图作 简要地介绍。 0020 图1为本发明实施例提供的基于深度学习的肺部肿瘤自动勾画方法的流程图。 0021 图2为本发明实施例提供的V-N。

13、et网络结构图。 0022 图3为肺部肿瘤专家勾画与基于本发明的自动勾画的对比图; 其中: 曲线A为自动 勾画曲线; 曲线B为专家勾画曲线。 具体实施方式 0023 为使本发明的目的、 技术方案和优点更加清楚, 下面将对本发明实施方式作进一 步地详细描述。 0024 所述的基于深度学习的肺部肿瘤自动勾画方法, 具体包括以下步骤: 0025 步骤1: 输入病人的肺部图像并对图像进行预处理和图像增强处理; 0026 步骤2: 获取病人肺部肿瘤在图像中的窗口位置和肿瘤大小, 按照肿瘤在图像中的 窗口位置及大小, 将筛选出的图像裁剪为固定的大小; 0027 步骤3: 将经过步骤1、 2处理后的图像输入。

14、到训练好的V-Net模型, 对肿瘤进行预 测; 0028 步骤4: 将预测的肺部肿瘤反卷积到裁剪图像的大小, 得到器官的真实预测; 0029 步骤5: 提取真实预测的肺部肿瘤的边缘线, 即为该肿瘤的勾画结果。 0030 为进一步优化本发明的实施效果, 对上述V-Net网络进行描述如下: 说明书 2/3 页 4 CN 110706217 A 4 0031 V-Net网络要求一次输入多张相邻层的病人图像, 这样病人层厚方向的解剖特征 就会被模型学习。 V-Net模型是一种V型的卷积神经网络, 包括一个输入层, 4个压缩层、 4个 解压缩层以及一个输出层, 每个压缩层都用于提取预处理图像的图像特征,。

15、 并且当前压缩 层将提取到的图像特征传递到下一层压缩层, 以便下一层提取预处理图像更深层的特征信 息, 以及解压缩层根据当前压缩层传递的图像特征可以更精准恢复图像, 从而提高了V-Net 模型分割图像的准确度。 0032 在构建V-Net模型时, 将V-Net模型中的每一层的卷积核大小设置为5, 输入层的卷 积步长设置为1, 4个压缩层、 4个解压缩层和输出层的卷积步长均设置为2, 并将输入层、 4个 压缩层、 4个解压缩层和输出层对应的特征通道数量分别设置为1、 16、 32、 64、 128、 256、 256、 128、 64、 32, 从而提高了V-Net模型的收敛速度。 0033 为。

16、了更好展现本发明的方法, 具体的实例如下: 0034 (1)对肺部图像进行预处理, 加载训练好的肺部CT图像, 经过该操作, 从病人的 2210张图像中筛选出1000张图像; 0035 (2)获取肺肿瘤在图像中的窗口位置和大小, 计算得到的窗口位置及大小信息,有 四个数据, 依次代表窗口左上角的点的X轴坐标, 左上角的点的Y轴坐标、 窗口的宽度、 窗口 的高度; 将筛选的1000张图像, 按窗口剪裁为同一大小的图; 0036 (3)将步骤(2)中裁剪后的图像反卷积为100*100的大小; 0037 (4)加载之前训练好的V-Net模型, 将步骤(3)中得到的图像输入该模型; 0038 (5)将。

17、得到的图像进行反卷积, 使图像大小变为100*100, 该图像就是病人肿瘤的 真实预测图像; 0039 (6)提取病人真实图像中肺部肿瘤的边缘线, 该边缘线即为勾画结果。 0040 图3给出了肺部肿瘤的专家勾画和基于本发明的自动勾画的对比图。 0041 本发明提出的基于深度学习的肺部肿瘤自动勾画方法, 在保证勾画精度的基础上 显著提升了勾画效率, 大大减轻了医生的工作负担, 同时也为病人节省可宝贵的治疗时间。 说明书 3/3 页 5 CN 110706217 A 5 图1 图2 说明书附图 1/2 页 6 CN 110706217 A 6 图3 说明书附图 2/2 页 7 CN 110706217 A 7 。

展开阅读全文
内容关键字: 基于 深度 学习 肺部 肿瘤 自动 勾画 方法
关于本文
本文标题:基于深度学习的肺部肿瘤自动勾画方法.pdf
链接地址:https://www.zhuanlichaxun.net/pdf/10975300.html
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1