基于协作表示与分类的判别低秩矩阵恢复遮挡人脸识别方法.pdf

上传人:没水****6 文档编号:10894664 上传时间:2021-08-26 格式:PDF 页数:14 大小:957.67KB
收藏 版权申诉 举报 下载
基于协作表示与分类的判别低秩矩阵恢复遮挡人脸识别方法.pdf_第1页
第1页 / 共14页
基于协作表示与分类的判别低秩矩阵恢复遮挡人脸识别方法.pdf_第2页
第2页 / 共14页
基于协作表示与分类的判别低秩矩阵恢复遮挡人脸识别方法.pdf_第3页
第3页 / 共14页
文档描述:

《基于协作表示与分类的判别低秩矩阵恢复遮挡人脸识别方法.pdf》由会员分享,可在线阅读,更多相关《基于协作表示与分类的判别低秩矩阵恢复遮挡人脸识别方法.pdf(14页完成版)》请在专利查询网上搜索。

1、(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201911118423.2 (22)申请日 2019.11.15 (71)申请人 重庆邮电大学 地址 400065 重庆市南岸区崇文路2号 (72)发明人 陶洋孙雨浩胡昊鲍灵浪 郭坦 (51)Int.Cl. G06K 9/00(2006.01) G06K 9/62(2006.01) (54)发明名称 一种基于协作表示与分类的判别低秩矩阵 恢复遮挡人脸识别方法 (57)摘要 本发明提供了一种基于协作表示与分类的 判别低秩矩阵恢复遮挡人脸识别方法, 属于模式 识别领域。 本方法针对。

2、训练样本和测试样本均受 到严重的噪声污染的人脸识别问题提出解决方 法。 首先通过在低秩矩阵恢复中引入结构非相关 性约束, 从被污损的训练样本中恢复出干净的训 练样本, 然后通过学习原始污损数据与干净的低 秩数据的低秩投影矩阵, 将受污损的测试样本投 影到相应的底层子空间来进行修正。 最后, 利用 CRC对测试样本图像进行分类, 获取识别结果。 本 方法不仅可以恢复出具有更强判别信息的干净 人脸图像, 而且还可以保持原始数据的局部几何 结构, 大大提高了遮挡人脸图像的识别率, 具有 更好的识别性能, 使得在现实世界应用中的遮挡 人脸识别更实用。 权利要求书3页 说明书7页 附图3页 CN 110。

3、889345 A 2020.03.17 CN 110889345 A 1.一种基于协作表示与分类的判别低秩矩阵恢复遮挡人脸识别方法, 其特征在于: 该 方法包括以下步骤: S1)该方法首先提出一种改进的低秩矩阵恢复方法, 引入结构非相关性约束, 可以有效 地从被污损的训练样本中恢复出干净的训练样本; S2)在步骤S1)的基础上提出一种基于低秩投影矩阵的协作表示与分类的方法, 进一步 进行遮挡人脸识别操作。 2.根据权利要求1所述的一种基于协作表示与分类的判别低秩矩阵恢复遮挡人脸识别 方法, 其特征在于: 所述步骤S1中, 具体过程如下: 步骤S11)首先获取训练样本矩阵X, 通过执行低秩矩阵恢。

4、复, 将数据样本X分解成字典D D1,D2,.,DN, 其中Di为来自类i恢复的干净训练样本集合, 即DiAiZi; 步骤S12)我们添加一个正则项对原始的LRR公式进行改进, 使不同类别的训练 样本尽可能的独立。 构建一个新的低秩矩阵恢复模型: s.t.XiAiZi+Ei 步骤S13)针对步骤S12)的模型通过非精确增广拉格朗日乘子(ALM)算法进行求解; 步骤S14)通过步骤S13)可以求出一个最优解Z*, 最后可得到恢复的 “干净” 人脸图像矩 阵DXZ*。 3.根据权利要求2所述的一种基于协作表示与分类的判别低秩矩阵恢复遮挡人脸识别 方法, 其特征在于: 所述步骤S13中, 具体过程如。

5、下: 步骤S131)我们首先通过引入辅助变量Ji将步骤S12)模型转化为下面的等价优化问题: s.t.XiAiZi+Ei, ZiJi 步骤S132)然后构造增广拉格朗日函数, 将上述增广拉格朗日函数改写成如下形式: 其中: 步骤S133)针对步骤S132)的模型执行ALM算法, 交替地更新变量Zi、 Ji、 Ei, 我们在每一 步中固定了其他两个变量; 步骤S134)更新拉格朗日常数: 步骤S135)检查收敛条件, 直至收敛: 权利要求书 1/3 页 2 CN 110889345 A 2 步骤S136)求出一个最优解Z*。 4.根据权利要求1所述的一种基于协作表示与分类的判别低秩矩阵恢复遮挡人。

6、脸识别 方法, 其特征在于: 所述步骤S2中, 具体过程如下: 步骤S21)在步骤S14)的得到原始训练样本X的恢复结果Y之后, 然后学习一个X和Y之间 的线性低秩投影矩阵P; 步骤S22)接着, 将受污损的测试样本投影到低秩投影矩阵P相应的底层子空间来进行 测试样本的修正; 步骤S23)最后, 计算修正后测试样本的表示残差, 利用协作表示与分类人脸识别方法, 对测试样本进行分类, 由此获得最终的识别结果。 5.根据权利要求4所述的一种基于协作表示与分类的判别低秩矩阵恢复遮挡人脸识别 方法, 其特征在于: 所述步骤S21中, 具体过程如下: 步骤S211)我们可以假设P是一个低秩矩阵, 因为恢。

7、复结果被认为是从多个低秩子空间 的并集中得到的。 优化问题表述如下: 步骤S212)由于秩函数计算量大, 可以通过用核范数代替秩函数来放宽优化问题, 新的 凸优化问题表示为: 步骤S213)假设P0,YPX有可行解, 步骤S212)中的模型唯一解可以表示为P*YX+, 其中X+是X的伪逆矩阵, 得到最优解P*。 6.根据权利要求4所述的一种基于协作表示与分类的判别低秩矩阵恢复遮挡人脸识别 方法, 其特征在于: 所述步骤S22中, 具体过程如下: 步骤S221)对测试样本y进行校正: YX1Z1,.,XkZk 步骤S222)由步骤S213)可得P*YX+, 则校正后的测试样本为ypP*y。 7.。

8、根据权利要求4所述的一种基于协作表示与分类的判别低秩矩阵恢复遮挡人脸识别 方法, 其特征在于: 所述步骤S23中, 具体过程如下: 步骤S231)首先输入校正后的测试样本yp; 步骤S232)通过CRC对yp进行分类: 步骤S233)计算表示残差: ei|yp-Xii|2/| i|2 步骤S234)输出测试样本图像yp的类别: identity(y)argminiei 通过执行以上步骤, 可以有效地从被污损的训练样本中恢复出干净的训练样本, 这组 权利要求书 2/3 页 3 CN 110889345 A 3 干净的人脸图像不但具有更强的判别信息, 而且还可以保持原始数据的局部几何结构; 该 方。

9、法提高了遮挡人脸图像的识别率, 具有更好的识别性能, 使得在现实世界应用中的遮挡 人脸识别更实用。 权利要求书 3/3 页 4 CN 110889345 A 4 一种基于协作表示与分类的判别低秩矩阵恢复遮挡人脸识别 方法 技术领域 0001 本发明属于模式识别和生物特征识别技术领域, 主要是涉及一种基于协作表示与 分类的判别低秩矩阵恢复遮挡人脸识别方法。 背景技术 0002 近年来, 随着科技的发展, 人脸识别技术成为模式识别领域的研究热点, 也是生物 特征识别领域的重要组成部分, 被广泛地应用在社会各个领域。 虽然目前人脸识别技术已 经取得了长足的进展, 但是在现实应用中仍然面临着巨大的挑战。

10、。 一般人脸识别都要求训 练样本不受噪声污染, 即前提条件是这些识别的方法都是基于单一样本的单一个体的图像 位于同一低秩子空间, 但是现实场景中, 通常都会受到比如姿势、 光照、 表情变化以及遮挡 的各种影响。 0003 在测试和训练样本图像没有受到影响的情况下, 稀疏表示的分类(Sparse Representation Classification, SRC)算法的识别性能较好, 否则识别性能就会明显降 低。 为了提高SRC的性能, Wright等人提出了鲁棒SRC(Robust SRC, RSRC)模型, 然而, 由于l1 范数最小化和单位遮挡字典中存在大量的原子, 使得SRC方案在计算。

11、上代价很高。 基于此, Deng等人提出一种扩展稀疏表示(Extended Sparse Representation Classification, ESRC)算法, 该方法用训练样本减去其对应的类均值得到误差字典, 取得了较好的稀疏表示 结果。 但是由于遮挡字典也不能很好描述图像的污损以及还需要针对l1范数进行相应的优 化等。 0004 针对此问题, 众多学者都在关注如何提高l1范数的计算速度, 却忽略了表示的协 作性。 协作性即由于不同人的面部图像具有相似性, 若第i个人与第j个人的图像很相似, 那 么第j类的训楼样本可以用于表示来自第i类的测试样本。 Zhang等人根据上述思想, 提出。

12、了 协作表示分类的方法(Collaborative Representation Classification,CRC)。 CRC在计算 协作表示系数时, 放松对稀疏性的要求, 重点关注表示样本的协作性, 用l2范数代替l1范数, 提高了人脸识别的鲁棒性, 而且大大降低了复杂度。 0005 如果所有的训练样本都得到很好的控制, 即在合理的姿态和光照下, 没有噪声污 染和遮挡, CRC对有污损和遮挡的测试样本具有很强的鲁棒性, 实现了较高的人脸识别精 度。 但是, 当测试样本和训练样本都被遮挡或者污损时, CRC的性能也会下降。 Cands等人提 出的鲁棒主成分分析(Robust Princip。

13、al ComponentAnalysis,RPCA), 该方法假设所有数 据都在一个子空间中, 然后从污损的数据矩阵中恢复一个低秩数据矩阵。 但是当数据样本 来自多个子空间时, 此方法性能也达不到理想的效果; Liu等人提出了低秩表示(Low-rank Representati-, on,LRR)算法, 不仅可以在测试样本和训练样本均受到污染的情况下有效 恢复出 “干净” 的人脸图像和误差图像, 还在一定程度上解决了训练样本来自不同子空间的 问题。 0006 近几年很多文献显示, 低秩矩阵恢复的方法从不同的角度被运用在图像分类领 说明书 1/7 页 5 CN 110889345 A 5 域。 。

14、胡正平等利用得到低秩和误差矩阵后, 使用这两个矩阵来表达测试样本。 杜海顺等也利 用LRR对训练数据进行恢复, 提出了基于低秩恢复稀疏表示分类算法。 何林知等利用RPCA算 法对训练样本进行低秩恢复后, 使用协同表示分类方法对测试样本进行识别。 0007 综上, 虽然一些针对遮挡情况下的人脸识别问题的研究采用了各种方法对遮挡进 行了处理, 可以很好地去除训练数据中的噪声, 在一定程度上提高了算法的识别效果, 但是 忽略了数据的局部结构可能会降低恢复的性能, 而且由于没有充分挖掘训练样本的判别信 息, 这些方法并不适合用于分类。 发明内容 0008 有鉴于此, 本发明的目的在于提供一种解决针对训。

15、练样本和测试样本均受到严重 的噪声污染的遮挡人脸识别问题的方法。 在低秩矩阵恢复中引入结构非相关性约束, 有效 地从被污损的训练样本中恢复出干净的训练样本, 在得到干净的人脸图像后, 通过学习原 始污损数据与干净的低秩数据之间的低秩投影矩阵, 将受污损的测试样本投影到相应的底 层子空间来进行测试样本的修正。 本发明提供的方法不仅在保持原始数据的局部几何结构 的同时增强了恢复的低秩数据的判别能力, 而且还通过低秩投影矩阵对受污损的测试样本 图像进行了修正, 在协作表示与分类的作用下, 大大提高了训练样本和测试样本同时被损 坏时的遮挡人脸识别的有效性。 0009 为达到上述目的, 本发明提供如下技。

16、术方案: 0010 一种基于协作表示与分类的判别低秩矩阵恢复遮挡人脸识别方法, 包括以下步 骤: 0011 步骤1)首先提出一种改进的低秩矩阵恢复方法, 引入结构非相关性约束, 可以有 效地从被污损的训练样本中恢复出干净的训练样本; 0012 步骤2)在步骤1)的基础上提出一种基于低秩投影矩阵的协作表示与分类的方法, 进一步进行遮挡人脸识别操作。 0013 进一步, 所述步骤1)具体为包括以下步骤: 0014 步骤11)首先获取训练样本矩阵X, 通过执行低秩矩阵恢复, 将数据样本X分解成字 典DD1,D2,.,DN, 其中Di为来自类i恢复的干净训练样本集合, 即DiAiZi; 0015步骤1。

17、2)我们添加一个正则项对原始的LRR公式进行改进, 使不同类别的训 练样本尽可能的独立。 构建一个新的低秩矩阵恢复模型: 0016 0017 s.t.XiAiZi+Ei 0018 步骤13)针对步骤12)的模型通过非精确增广拉格朗日乘子(ALM)算法进行求解; 0019 步骤14)通过步骤13)可以求出一个最优解Z*, 最后可得到恢复的 “干净” 人脸图像 矩阵DXZ*。 0020 进一步所述步骤13)具体包括以下步骤: 0021 步骤131)我们首先通过引入辅助变量Ji将步骤S12)中的模型转化为下面的等价 优化问题: 说明书 2/7 页 6 CN 110889345 A 6 0022 00。

18、23 s.t.XiAiZi+Ei, ZiJi 0024 步骤132)然后构造增广拉格朗日函数, 将上述增广拉格朗日函数改写成如下形 式: 0025 0026 其中: 0027 0028 步骤133)针对步骤132)的模型执行ALM算法, 交替地更新变量Zi、 Ji、 Ei, 我们在每 一步中固定了其他两个变量; 0029 步骤134)更新拉格朗日常数: 0030 0031 0032 步骤135)检查收敛条件, 直至收敛: 0033 0034 0035 步骤136)求出一个最优解Z*。 0036 进一步, 所述步骤2)具体包括以下步骤: 0037 步骤21)在步骤14)的得到原始训练样本X的恢复。

19、结果Y之后, 然后学习一个X和Y之 间的线性低秩投影矩阵P; 0038 步骤22)接着, 将受污损的测试样本投影到低秩投影矩阵P相应的底层子空间来进 行测试样本的修正; 0039 步骤23)最后, 计算修正后测试样本的表示残差, 利用协作表示与分类人脸识别方 法, 对测试样本进行分类, 由此获得最终的识别结果。 0040 进一步, 所述步骤21)具体包括以下步骤: 0041 步骤211)我们可以假设P是一个低秩矩阵, 因为恢复结果被认为是从多个低秩子 空间的并集中得到的。 优化问题表述如下: 0042 0043 步骤212)由于秩函数计算量大, 可以通过用核范数代替秩函数来放宽优化问题, 新的。

20、凸优化问题表示为: 0044 0045 步213)假设P0,YPX有可行解, 步骤212)中的模型唯一解可以表示为P*YX+, 其中X+是X的伪逆矩阵, 得到最优解P*; 说明书 3/7 页 7 CN 110889345 A 7 0046 进一步, 所述步骤22)具体包括以下步骤: 0047 步骤221)对测试样本y进行校正: 0048 YX1Z1,.,XkZk 0049 步骤222)由步骤213)可得P*YX+, 则校正后的测试样本为ypP*y; 0050 进一步, 所述步骤23)具体包括以下步骤: 0051 步骤231)首先输入校正后的测试样本yp; 0052 步骤232)通过CRC对yp。

21、进行分类: 0053 0054 步骤233)计算表示残差: 0055 ei|yp-Xii|2/| i|2 0056 步骤234)输出测试样本图像yp的类别: 0057 identity(y)argminiei 0058 本发明的有益效果在于: 本发明提供的方法可以有效地从被污损的训练样本中恢 复出干净的训练样本, 这组干净的人脸图像不但具有更强的判别信息, 而且还可以保持原 始数据的局部几何结构; 该方法提高了遮挡人脸图像的识别率, 具有更好的识别性能, 使得 在现实世界应用中的遮挡人脸识别更实用。 附图说明 0059 为了使本发明的目的、 技术方案和有益效果更加清楚, 本发明提供如下附图进行。

22、 说明: 0060 图1为本发明基于协作表示与分类的判别低秩矩阵恢复遮挡人脸识别方法流程图 0061 图2为本发明中基于判别低秩表示的矩阵恢复方法的流程图 0062 图3为本发明中基于低秩投影矩阵和协作表示与分类的遮挡人脸识别方法流程图 具体实施方式 0063 下面将结合附图, 对本发明的优选实例进行详细的描述。 0064 本发明提供的一种基于协作表示与分类的判别低秩矩阵恢复遮挡人脸识别方法, 如图1所示, 该方法包括以下步骤: 步骤1)首先提出一种改进的低秩矩阵恢复方法, 引入结 构非相关性约束, 可以有效地从被污损的训练样本中恢复出干净的训练样本, 如图2所示; 步骤2)在步骤1)的基础上。

23、提出一种基于低秩投影矩阵的协作表示与分类的方法, 进一步进 行遮挡人脸识别操作, 如图3所示。 0065 步骤1)首先提出一种改进的低秩矩阵恢复方法, 引入结构非相关性约束, 可以有 效地从被污损的训练样本中恢复出干净的训练样本; 0066 步骤2)在步骤1)的基础上提出一种基于低秩投影矩阵的协作表示与分类的方法, 进一步进行遮挡人脸识别操作。 0067 进一步, 步骤1)包括以下几个步骤: 0068 步骤11)首先获取训练样本矩阵X, 通过执行低秩矩阵恢复, 将数据样本X分解成字 典DD1,D2,.,DN, 其中Di为来自类i恢复的干净训练样本集合, 即DiAiZi; 说明书 4/7 页 8。

24、 CN 110889345 A 8 0069步骤12)我们添加一个正则项对原始的LRR公式进行改进, 使不同类别的训 练样本尽可能的独立。 构建一个新的低秩矩阵恢复模型: 0070 0071 s.t.XiAiZi+Ei 0072 步骤13)针对步骤12)的模型通过非精确增广拉格朗日乘子(ALM)算法进行求解; 0073 步骤14)通过步骤13)可以求出一个最优解Z*, 最后可得到恢复的 “干净” 人脸图像 矩阵DXZ*。 0074 进一步, 所述步骤13)包括以下几个步骤: 0075 步骤131)我们首先通过引入辅助变量Ji将步骤S12)中的模型转化为下面的等价 优化问题: 0076 0077。

25、 s.t.XiAiZi+Ei, ZiJi 0078 步骤132)然后构造增广拉格朗日函数, 将上述增广拉格朗日函数改写成如下形 式: 0079 0080 其中: 0081 0082 步骤133)针对步骤132)的模型执行ALM算法, 交替地更新变量Zi、 Ji、 Ei, 我们在每 一步中固定了其他两个变量; 0083 步骤134)更新拉格朗日常数: 0084 0085 0086 步骤135)检查收敛条件, 直至收敛: 0087 0088 0089 步骤136)求出一个最优解Z*。 0090 进一步, 所述步骤133)包括以下几个步骤: 0091步骤1331)通过最小化来更新Zi 0092 00。

26、93 其中, 说明书 5/7 页 9 CN 110889345 A 9 0094 0095 则具有如下封闭式的解: 0096 0097 步骤1332)了更新第i类的误差矩阵Ji,我们推导出(12)具有固定的Zi、 Ei、 Y1和Y2, 并相应地解决以下问题: 0098 0099 通过计算L相对于Ji的偏导数并将其设置为0, 则上述问题的解为: 0100 0101 0102 步骤1333)为了更新第i类的误差矩阵Ei, 我们用固定的Zi,Ji,Y1,Y2推导出(12), 得 到如下形式: 0103 0104 进一步, 步骤2)具体包括以下几个步骤: 0105 步骤21)在步骤14)的得到原始训练。

27、样本X的恢复结果Y之后, 然后学习一个X和Y之 间的线性低秩投影矩阵P; 0106 步骤22)接着, 将受污损的测试样本投影到低秩投影矩阵P相应的底层子空间来进 行测试样本的修正; 0107 步骤23)最后, 计算修正后测试样本的表示残差, 利用协作表示与分类人脸识别方 法, 对测试样本进行分类, 由此获得最终的识别结果。 0108 进一步, 所述步骤21)包括以下几个步骤: 0109 步骤211)我们可以假设P是一个低秩矩阵, 因为恢复结果被认为是从多个低秩子 空间的并集中得到的。 优化问题表述如下: 0110 0111 步骤212)由于秩函数计算量大, 可以通过用核范数代替秩函数来放宽优化。

28、问题, 新的凸优化问题表示为: 0112 0113 步213)假设P0,YPX有可行解, 步骤212)中的模型唯一解可以表示为P*YX+, 其中X+是X的伪逆矩阵, 得到最优解P*; 说明书 6/7 页 10 CN 110889345 A 10 0114 进一步, 所述步骤22)包括以下几个步骤: 0115 步骤221)对测试样本y进行校正: 0116 YX1Z1,.,XkZk 0117 步骤222)由步骤213)可得P*YX+, 则校正后的测试样本为ypP*y; 0118 进一步, 所述步骤23)包括以下几个步骤: 0119 步骤231)首先输入校正后的测试样本yp; 0120 步骤232)。

29、通过CRC对yp进行分类: 0121 0122 步骤233)计算表示残差: 0123 ei|yp-Xii|2/| i|2 0124 步骤234)输出测试样本图像yp的类别: 0125 identity(y)argminiei 0126 最后需要说明的是, 以上优选实施实例仅用以说明本发明的技术方案而非限制, 虽然通过上述实例已对本发明进行了详细的描述, 但本领域技术人员应当明白, 可以在形 式上和细节上对其作出各种各样的改变, 而不会偏离本发明权利要求书所限定的范围。 说明书 7/7 页 11 CN 110889345 A 11 图1 说明书附图 1/3 页 12 CN 110889345 A 12 图2 说明书附图 2/3 页 13 CN 110889345 A 13 图3 说明书附图 3/3 页 14 CN 110889345 A 14 。

展开阅读全文
内容关键字: 基于 协作 表示 分类 判别 矩阵 恢复 遮挡 识别 方法
关于本文
本文标题:基于协作表示与分类的判别低秩矩阵恢复遮挡人脸识别方法.pdf
链接地址:https://www.zhuanlichaxun.net/pdf/10894664.html
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1