类芬顿催化材料的制备方法及污水处理方法.pdf
《类芬顿催化材料的制备方法及污水处理方法.pdf》由会员分享,可在线阅读,更多相关《类芬顿催化材料的制备方法及污水处理方法.pdf(15页完成版)》请在专利查询网上搜索。
1、(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201911221258.3 (22)申请日 2019.12.03 (71)申请人 中化环境控股有限公司 地址 100070 北京市丰台区汽车博物馆西 路8号华夏幸福创新中心B座8层 申请人 阿拉尔艾特克水务有限公司 (72)发明人 杨蕴毅王伟强黄开东刘睿智 鲁松 (74)专利代理机构 北京天昊联合知识产权代理 有限公司 11112 代理人 彭瑞欣王婷 (51)Int.Cl. B01J 23/889(2006.01) B01J 27/232(2006.01) C02F 1/72(。
2、2006.01) (54)发明名称 类芬顿催化材料的制备方法及污水处理方 法 (57)摘要 本发明提供一种类芬顿催化材料的制备方 法及污水处理方法, 类芬顿催化材料的制备方法 包括以下步骤: 分别配制包括有二价锰离子的锰 盐和二价铜离子的铜盐的锰铜溶液、 包括有三价 铁离子的铁盐的铁溶液和包括有羟基盐和/或碳 酸氢盐的碱性溶液; 向锰铜溶液中加入铁溶液, 形成锰铜铁混合溶液, 并在该过程中向锰铜溶液 中加入碱性溶液, 控制该过程始终在碱性环境中 进行, 以生成锰铜铁复合物; 陈化锰铜铁混合溶 液, 以形成层状结构的锰铜铁复合物; 对陈化后 的锰铜铁混合溶液进行过滤, 并对滤出的层状锰 铜铁复合。
3、物进行干燥, 以使层状锰铜铁复合物形 成固态。 本发明提供的类芬顿催化材料的制备方 法及污水处理方法能够提高催化效果, 降低操作 难度, 降低成本。 权利要求书1页 说明书9页 附图4页 CN 110947395 A 2020.04.03 CN 110947395 A 1.一种类芬顿催化材料的制备方法, 其特征在于, 所述制备方法包括以下步骤: S1, 分别配制锰铜溶液、 铁溶液和碱性溶液, 所述锰铜溶液中包括有二价锰离子的锰盐 和二价铜离子的铜盐, 所述铁溶液中包括有三价铁离子的铁盐, 所述碱性溶液中包括有羟 基盐和/或碳酸氢盐; S2, 向所述锰铜溶液中加入所述铁溶液, 以形成锰铜铁混合溶。
4、液, 并在该过程中向所述 锰铜溶液中加入所述碱性溶液, 以控制该过程始终在碱性环境中进行, 以在所述锰铜铁混 合溶液中生成锰铜铁复合物; S3, 陈化含有所述锰铜铁复合物的所述锰铜铁混合溶液, 以形成层状结构的所述锰铜 铁复合物; 。 S4, 对陈化后的所述锰铜铁混合溶液进行过滤, 以将层状锰铜铁复合物从所述锰铜铁 混合溶液中滤出; S5, 干燥滤出的所述层状锰铜铁复合物, 以使所述层状锰铜铁复合物形成固态。 2.根据权利要求1所述的类芬顿催化材料的制备方法, 其特征在于, 在所述步骤S2中, 调节所述锰铜铁混合溶液中所述二价锰离子、 所述二价铜离子和所述三价铁离子的摩尔比 例至1:1:1。 。
5、3.根据权利要求1所述的类芬顿催化材料的制备方法, 其特征在于, 在所述步骤S2中, 所述碱性环境的pH值范围为8-10.5。 4.根据权利要求1所述的类芬顿催化材料的制备方法, 其特征在于, 在所述步骤S3中, 控制所述陈化含有所述锰铜铁复合物的所述锰铜铁混合溶液的过程的温度至第一预设温 度, 所述第一预设温度的范围为50-70。 5.根据权利要求4所述的类芬顿催化材料的制备方法, 其特征在于, 所述第一预设温度 为60。 6.根据权利要求1所述的类芬顿催化材料的制备方法, 其特征在于, 在所述步骤S3中, 控制所述陈化含有所述锰铜铁复合物的所述锰铜铁混合溶液的过程的时间至第一预设时 间, 。
6、所述第一预设时间的范围为8小时至12小时。 7.根据权利要求1所述的类芬顿催化材料的制备方法, 其特征在于, 在所述步骤S1中, 所述锰盐包括硝酸锰或氯化锰, 所述铜盐包括硝酸铜或氯化铜, 所述铁盐包括硝酸铁或氯 化铁。 8.根据权利要求1所述的类芬顿催化材料的制备方法, 其特征在于, 在所述步骤S1中, 所述羟基盐包括氢氧化钠或氢氧化钾, 所述碳酸氢盐包括碳酸氢钠或碳酸氢钾。 9.一种污水处理方法, 其特征在于, 所述污水处理法包括以下步骤: S100, 将过氧化氢和类芬顿催化材料加入至待处理污水中, 以在所述待处理污水中进 行类芬顿反应, 所述类芬顿催化材料采用如权利要求1-27任意一项所。
7、述的类芬顿催化材料 的制备方法制备; S101, 过滤类芬顿反应之后的水体, 回收水体中的所述类芬顿催化材料, 以能够循环利 用所述类芬顿催化材料。 10.根据权利要求9所述的污水处理方法, 其特征在于, 在所述步骤S100中, 所述过氧化 氢的体积份的范围为0.8体积份-2体积份, 所述类芬顿催化材料的重量份的范围为0.2重量 份-2重量份。 权利要求书 1/1 页 2 CN 110947395 A 2 类芬顿催化材料的制备方法及污水处理方法 技术领域 0001 本发明涉及水处理技术领域, 具体地, 涉及一种类芬顿催化材料的制备方法及污 水处理方法。 背景技术 0002 目前, 由于工业园区。
8、污水处理厂上游的排水企业类型复杂, 造成园区污水排水水 质污染程度高, 并且水量变化大, 是较难处理的一类工业废水。 工业园区多采用水解预处理 结合生化处理工艺, 可完成易于生物降解有机物的生化降解, 但对难以生物降解有机物的 去除效果较差。 芬顿反应(Fenton reaction)技术作为一种高效的氧化技术, 其通过带有铁 离子的催化剂与过氧化氢(H2O2)的催化反应, 产生具有极高氧化性的羟基自由基(OH), 以 用于复杂有机物的降解。 0003 现有的芬顿反应技术中, 催化材料通常是由催化剂负载在活性炭或石墨烯上, 形 成孔状结构而成, 这样能够提高催化过氧化氢的能力, 从而提高过氧化。
9、氢中羟基自由基的 利用率。 0004 但是, 由于催化剂需要负载在活性炭或石墨烯上, 因此, 催化剂与活性炭或石墨烯 粘结的部分, 仍无法与过氧化氢接触, 这就导致催化剂的催化能力仍不理想, 使得污水处理 效果不佳, 并且成本较高。 并且, 现有的芬顿反应技术, 在将催化材料与过氧化氢投入污水 之前, 还需要将污水调节至酸性之后才能够进行, 这就导致操作较复杂, 成本较高。 另外, 现 有的催化剂在对污水处理之后, 会在污水中产生大量铁泥, 使得污水处理效果不佳, 并且还 需要在对铁泥进行处理, 导致操作较复杂, 成本较高。 发明内容 0005 本发明旨在至少解决现有技术中存在的技术问题之一,。
10、 提出了一种类芬顿催化材 料的制备方法及污水处理方法, 其能够提高催化效果, 提高污水处理效果, 降低操作难度, 降低成本。 0006 为实现本发明的目的而提供一种类芬顿催化材料的制备方法, 所述制备方法包括 以下步骤: 0007 S1, 分别配制锰铜溶液、 铁溶液和碱性溶液, 所述锰铜溶液中包括有二价锰离子的 锰盐和二价铜离子的铜盐, 所述铁溶液中包括有三价铁离子的铁盐, 所述碱性溶液中包括 有羟基盐和/或碳酸氢盐; 0008 S2, 向所述锰铜溶液中加入所述铁溶液, 以形成锰铜铁混合溶液, 并在该过程中向 所述锰铜溶液中加入所述碱性溶液, 以控制该过程始终在碱性环境中进行, 以在所述锰铜 。
11、铁混合溶液中生成锰铜铁复合物; 0009 S3, 陈化含有所述锰铜铁复合物的所述锰铜铁混合溶液, 以形成层状结构的所述 锰铜铁复合物; 。 0010 S4, 对陈化后的所述锰铜铁混合溶液进行过滤, 以将层状锰铜铁复合物从所述锰 说明书 1/9 页 3 CN 110947395 A 3 铜铁混合溶液中滤出; 0011 S5, 干燥滤出的所述层状锰铜铁复合物, 以使所述层状锰铜铁复合物形成固态。 0012 优选的, 在所述步骤S2中, 调节所述锰铜铁混合溶液中所述二价锰离子、 所述二价 铜离子和所述三价铁离子的摩尔比例至1:1:1。 0013 优选的, 在所述步骤S2中, 所述碱性环境的pH值范围。
12、为8-10.5。 0014 优选的, 在所述步骤S3中, 控制所述陈化含有所述锰铜铁复合物的所述锰铜铁混 合溶液的过程的温度至第一预设温度, 所述第一预设温度的范围为50-70。 0015 优选的, 所述第一预设温度为60。 0016 优选的, 在所述步骤S3中, 控制所述陈化含有所述锰铜铁复合物的所述锰铜铁混 合溶液的过程的时间至第一预设时间, 所述第一预设时间的范围为8小时至12小时。 0017 优选的, 在所述步骤S1中, 所述锰盐包括硝酸锰或氯化锰, 所述铜盐包括硝酸铜或 氯化铜, 所述铁盐包括硝酸铁或氯化铁。 0018 优选的, 在所述步骤S1中, 所述羟基盐包括氢氧化钠或氢氧化钾,。
13、 所述碳酸氢盐包 括碳酸氢钠或碳酸氢钾。 0019 本发明还提供一种污水处理方法, 所述污水处理法包括以下步骤: 0020 S100, 将过氧化氢和类芬顿催化材料加入至待处理污水中, 以在所述待处理污水 中进行类芬顿反应, 所述类芬顿催化材料采用如本发明提供的类芬顿催化材料的制备方法 制备; 0021 S101, 过滤类芬顿反应之后的水体, 回收水体中的所述类芬顿催化材料, 以能够循 环利用所述类芬顿催化材料。 0022 优选的, 在所述步骤S100中, 所述过氧化氢的体积份的范围为0.8体积份-2体积 份, 所述类芬顿催化材料的重量份的范围为0.2重量份-2重量份。 0023 本发明具有以下。
14、有益效果: 0024 本发明提供的类芬顿催化材料的制备方法, 由于其制备获得的锰铜铁复合物能够 直接形成层状结构, 而无需任何载体的介入, 因此, 可以避免载体妨碍催化剂与过氧化氢的 接触, 从而增加锰铜铁复合物在进行类芬顿反应时, 与过氧化氢接触的面积, 进而提高催化 效果, 提高污水处理效果, 降低成本。 并且, 借助层状锰铜铁复合物中含有的铜, 能够促进铁 与过氧化氢的氧化还原反应, 加快反应速率, 从而能够提高催化效果, 提高污水处理效果。 而且, 借助层状锰铜铁复合物中含有的锰, 能够拓宽层状锰铜铁复合物进行类芬顿反应的 pH值适用范围, 以无需在进行类芬顿反应之前对待处理污水的pH。
15、值进行调节, 并且二价锰 离子也对过氧化氢具有催化活性, 从而能够提高催化效果, 提高污水处理效果, 降低操作难 度, 降低成本。 并且, 由于层状锰铜铁复合物在进行类芬顿反应时, 离子溶出量小, 因此, 在 类芬顿反应结束后, 被处理的污水中铁泥的产生量少, 而且从被处理的污水中还能够将层 状锰铜铁复合物过滤出, 并且过滤出的层状锰铜铁复合物还能够循环使用, 从而提高污水 处理效果, 降低操作难度, 降低成本。 0025 本发明提供的污水处理方法, 借助将过氧化氢和由本发明提供的类芬顿催化材料 的制备方法所制备获得的类芬顿催化材料, 加入至待处理污水中, 以对待处理污水中进行 类芬顿反应, 。
16、从而能够提高催化效果, 提高污水处理效果, 降低操作难度, 降低成本。 并且, 通过对类芬顿反应之后的水体进行过滤, 能够将水体中的类芬顿催化材料回收, 以能够循 说明书 2/9 页 4 CN 110947395 A 4 环利用类芬顿催化材料, 从而能够降低成本。 附图说明 0026 图1为本发明实施例提供的类芬顿催化材料的制备方法的一种流程框图; 0027 图2为本发明实施例提供的类芬顿催化材料的制备方法的另一种流程框图; 0028 图3为本发明实施例提供的类芬顿催化材料的制备方法的另一种流程框图; 0029 图4为本发明实施例提供的类芬顿催化材料的制备方法的另一种流程框图; 0030 图5。
17、为本发明实施例提供的类芬顿催化材料的制备方法的另一种流程框图; 0031 图6为本发明实施例提供的类芬顿催化材料的制备方法的另一种流程框图; 0032 图7为本发明实施例提供的类芬顿催化材料的制备方法的另一种流程框图; 0033 图8为本发明实施例提供的污水处理方法的一种流程框图。 具体实施方式 0034 为使本领域的技术人员更好地理解本发明的技术方案, 下面结合附图来对本发明 提供的类芬顿催化材料的制备方法及污水处理方法进行详细描述。 0035 如图1所示, 本发明提供的类芬顿催化材料的制备方法, 所述制备方法包括以下步 骤: 0036 S1, 分别配制锰铜溶液、 铁溶液和碱性溶液, 锰铜溶。
18、液中包括有二价锰离子(Mn2+) 的锰盐和二价铜离子(Cu2+)的铜盐, 铁溶液中包括有三价铁离子(Fe3+)的铁盐, 碱性溶液中 包括有羟基盐和/或碳酸氢盐; 0037 S2, 向锰铜溶液中加入铁溶液, 以形成锰铜铁混合溶液, 并在该过程中向锰铜溶液 中加入碱性溶液, 以控制该过程始终在碱性环境中进行, 以在锰铜铁混合溶液中生成锰铜 铁复合物; 0038 S3, 陈化含有锰铜铁复合物的锰铜铁混合溶液, 以形成层状结构的锰铜铁复合物 0039 S4, 对陈化后的锰铜铁混合溶液进行过滤, 以将层状锰铜铁复合物从锰铜铁混合 溶液中滤出; 0040 S5, 干燥滤出的层状锰铜铁复合物, 以使层状锰铜。
19、铁复合物形成固态。 0041 具体的, 本发明通过向包括有二价锰离子的锰盐和二价铜离子的铜盐的锰铜溶液 中, 加入包括有三价铁离子的铁盐的铁溶液, 以形成锰铜铁混合溶液, 并在向锰铜溶液中加 入铁溶液的过程中, 向锰铜溶液中加入包括有羟基盐和/或碳酸氢盐的碱性溶液, 使向锰铜 溶液中加入铁溶液的过程始终保持在碱性环境中进行, 以能够在锰铜铁混合溶液生成锰铜 铁复合物, 此锰铜铁复合物是指由铁离子、 铜离子和锰离子均与羟基和/或碳酸氢跟结合形 成的物质, 再借助对含有锰铜铁复合物的锰铜铁混合溶液进行陈化, 以形成层状结构的锰 铜铁复合物, 再对陈化后的锰铜铁混合溶液进行过滤, 将层状锰铜铁复合物。
20、从锰铜铁混合 溶液中滤出, 并对滤除层状锰铜铁复合物进行干燥, 以使层状锰铜铁复合物脱水形成固态。 其中, 陈化是指在沉淀过程中, 待沉淀完全后, 使溶液在一定条件下静止存放一段时间, 目 的是为了使溶液中的组份得到充分的反应, 或令悬浮物沉降, 从而能够形成层状结构的锰 铜铁复合物。 0042 本实施例提供的类芬顿催化材料的制备方法, 由于其制备获得的锰铜铁复合物能 说明书 3/9 页 5 CN 110947395 A 5 够直接形成层状结构, 而无需任何载体的介入, 因此, 可以避免载体妨碍催化剂与过氧化氢 (H2O2)的接触, 从而增加锰铜铁复合物在进行类芬顿反应时, 与过氧化氢的接触面。
21、积, 以增 加锰铜铁复合物对过氧化氢的催化效果, 能够使过氧化氢产生更多的羟基, 进而提高催化 效果, 提高污水处理效果, 降低成本。 并且, 借助层状锰铜铁复合物中含有的铜, 能够促进铁 与过氧化氢的氧化还原反应, 加快反应速率, 从而能够提高催化效果, 提高污水处理效果。 而且, 借助层状锰铜铁复合物中含有的锰, 能够拓宽层状锰铜铁复合物进行类芬顿反应的 pH值适用范围, 以无需在进行类芬顿反应之前对待处理污水的pH值进行调节, 并且二价锰 离子也对过氧化氢具有催化活性, 从而能够提高催化效果, 提高污水处理效果, 降低操作难 度, 降低成本。 并且, 由于层状锰铜铁复合物在进行类芬顿反应。
22、时, 离子溶出量小, 因此, 在 类芬顿反应结束后, 被处理的污水中铁泥的产生量少, 而且从被处理的污水中还能够将层 状锰铜铁复合物过滤出, 并且过滤出的层状锰铜铁复合物还能够循环使用, 从而提高污水 处理效果, 降低操作难度, 降低成本。 0043 在本实施例中, 在步骤S1中, 锰盐包括硝酸锰(Mn(NO3)2)或氯化锰(MnCl2), 铜盐包 括硝酸铜(Cu(NO3)2)或氯化铜(CuCl2), 铁盐包括硝酸铁(Fe(NO3)3)或氯化铁(FeCl3)。 但是, 锰盐、 铜盐和铁盐的种类并不以此为限。 0044 在本实施例中, 在步骤S1中, 羟基盐包括氢氧化钠(NaOH)或氢氧化钾(K。
23、OH), 碳酸 氢盐包括碳酸氢钠(NaHCO3)或碳酸氢钾(KHCO3)。 但是, 羟基盐和碳酸氢盐的种类并不以此 为限。 0045 下面以锰盐为硝酸锰, 铜盐为硝酸铜, 铁盐为硝酸铁, 羟基盐为氢氧化钠, 碳酸氢 盐为碳酸氢钠为例对步骤S1和步骤S2进行具体说明。 即, 在步骤S1中, 分别配制锰铜溶液、 铁溶液和碱性溶液, 锰铜溶液为硝酸锰和硝酸铜溶液, 铁溶液为硝酸铁溶液, 碱性溶液为氢 氧化钠和/或碳酸氢钠溶液; 在步骤S2中, 向硝酸锰和硝酸铜溶液中加入硝酸铁溶液, 以形 成锰铜铁混合溶液, 并在该过程中向硝酸锰和硝酸铜溶液中加入氢氧化钠和/或碳酸氢钠 溶液, 以控制该过程始终在碱性。
24、环境中进行, 以在锰铜铁混合溶液中生成锰铜铁复合物, 此 种锰铜铁复合物中, 铁离子、 铜离子和锰离子均会与羟基和/或碳酸氢跟结合, 形成稳定的 物质, 从而在进行类芬顿反应时, 离子溶出量小, 因此, 在类芬顿反应结束后, 被处理的污水 中铁泥的产生量少, 而且从被处理的污水中还能够将层状锰铜铁复合物过滤出, 从而提高 污水处理效果, 降低操作难度, 降低成本。 0046 在本实施例中, 碱性溶液为氢氧化钠和碳酸氢钠溶液, 即, 碱性溶液中即含有氢氧 化钠, 又含有碳酸氢钠时, 此时, 形成的锰铜铁复合物中, 每个铁离子、 铜离子和锰离子均会 与一个羟基和一个碳酸氢跟结合, 形成稳定的物质。。
25、 但是, 在实际应用中, 碱性溶液也可以 为单独的氢氧化钠溶液, 或碳酸氢钠溶液。 0047 在本实施例中, 当碱性溶液包括有氢氧化钠和碳酸氢钠时, 氢氧化钠的摩尔浓度 范围为0.35mol/L-0.8mol/L, 碳酸氢钠的摩尔浓度范围为0.1mol/L-0.25mol/L。 即, 氢氧化 钠的摩尔浓度可以是0.35mol/L, 也可以是0.8mol/L, 也可以是0.35mol/L-0.8mol/L之间的 摩尔浓度, 碳酸氢钠的摩尔浓度可以是0.1mol/L, 也可以是0.25mol/L, 也可以是0.1mol/L- 0.25mol/L之间的摩尔浓度。 但是, 氢氧化钠的摩尔浓度和碳酸氢钠。
26、的摩尔浓度并不以此为 限。 0048 在本实施例中, 在步骤S2中, 调节锰铜铁混合溶液中二价锰离子、 二价铜离子和三 说明书 4/9 页 6 CN 110947395 A 6 价铁离子的摩尔比例至预设比例。 通过调节锰铜铁混合溶液中二价锰离子、 二价铜离子和 三价铁离子的摩尔比例至预设比例, 以利于锰铜铁复合物的形成, 并利于锰铜铁复合物形 成层状。 0049 在本实施例中, 预设比例为1:1:1。 即, 在锰铜铁混合溶液中, 二价锰离子、 二价铜 离子和三价铁离子的摩尔比例为1:1:1。 但是, 并不以此为限。 0050 如图2所示, 在本实施例中, 在步骤S1中, 配制锰铜溶液具体包括以。
27、下步骤: 0051 S11, 分别配制锰盐溶液和铜盐溶液, 锰盐溶液中包括含有二价锰离子的锰盐, 铜 盐溶液中包括含有二价铜离子的铜盐; 0052 S12, 混合锰盐溶液和铜盐溶液, 以形成锰铜溶液。 0053 具体的, 以锰盐为硝酸锰, 铜盐为硝酸铜为例对步骤S11和步骤S12进行具体说明。 即, 在步骤S11中, 分别配制硝酸锰溶液和硝酸铜溶液, 在步骤S12中, 混合硝酸锰溶液和硝 酸铜溶液, 以形成锰铜溶液。 0054 如图3所示, 在本实施例中, 步骤S11还包括步骤S111, 调节锰盐溶液中锰盐的摩尔 浓度和铜盐溶液中铜盐的摩尔浓度至相同; 0055 在步骤S12中, 混合相同体积。
28、的锰盐溶液和铜盐溶液; 0056 如图4所示, 步骤S1还包括步骤S13, 调节铁溶液中铁盐的摩尔浓度与锰盐溶液中 锰盐的摩尔浓度或铜盐溶液中铜盐的摩尔浓度至相同; 0057 在步骤S2中, 向锰铜溶液中加入与锰盐溶液或铜盐溶液相同体积的铁溶液。 0058 具体的, 通过将锰盐溶液中锰盐的摩尔浓度、 铜盐溶液中铜盐的摩尔浓度和铁溶 液中铁盐的摩尔浓度调节至相同, 并混合相同体积的锰盐溶液和铜盐溶液, 且向锰铜溶液 中加入与锰盐溶液或铜盐溶液相同体积的铁溶液, 以调节锰铜铁混合溶液中二价锰离子、 二价铜离子和三价铁离子的摩尔比例为1:1:1。 0059 下面以锰盐为硝酸锰, 铜盐为硝酸铜, 铁盐。
29、为硝酸铁为例进行具体说明。 即, 在步 骤S111中, 调节硝酸锰溶液中硝酸锰的摩尔浓度和硝酸铜溶液中硝酸铜的摩尔浓度至相同 (例如为0.1mol/L); 在步骤S12中, 混合相同体积(例如1L)的硝酸锰溶液和硝酸铜溶液; 即, 混合1L硝酸锰溶液和1L硝酸铜溶液。 在步骤S13中, 调节硝酸铁溶液中硝酸铁的摩尔浓度与 硝酸锰溶液中硝酸锰的摩尔浓度或硝酸铜溶液中硝酸铜的摩尔浓度至相同, 即, 当硝酸锰 溶液中硝酸锰的摩尔浓度和硝酸铜溶液中硝酸铜的摩尔浓度均为0.1mol/L时, 硝酸铁溶液 中硝酸铁的摩尔浓度也为0.1mol/L; 在步骤S2中, 向硝酸锰和硝酸铜的锰铜溶液中加入与 硝酸锰溶。
30、液或硝酸铜溶液相同体积的硝酸铁溶液, 即, 当硝酸锰溶液和硝酸铜溶液均为1L 时, 向硝酸锰和硝酸铜的锰铜溶液中加入的硝酸铁溶液的体积也为1L。 0060 在本实施例中, 硝酸锰溶液中硝酸锰的摩尔浓度、 硝酸铁溶液中硝酸铜的摩尔浓 度和硝酸铁溶液中硝酸铁的摩尔浓度均为0.1mol/L, 但是, 并不以此为限。 0061 在本实施例中, 在步骤S2中, 碱性环境的pH值范围为8-10.5。 即, 碱性环境的pH可 以是8, 也可以是10.5, 也可以是8-10.5之间的数值。 但是, 并不以此为限。 0062 在本实施例中, 在步骤S4中, 采用抽滤的方式对陈化后的锰铜铁混合溶液进行过 滤。 抽。
31、滤(Leaching)又称减压过滤或真空过滤, 是指利用抽气泵使抽滤瓶中的压强降低, 达 到固液分离的目的方法, 能够更加快速的从溶液中滤除层状锰铜铁复合物。 0063 如图6所示, 在本实施例中, 在步骤S4之后, 步骤S5之前还包括步骤S41, 使用去离 说明书 5/9 页 7 CN 110947395 A 7 子水对滤出的层状锰铜铁复合物进行洗涤。 这是为了去除层状锰铜铁复合物中没有与锰、 铜或铁结合的羟基和/或碳酸氢根, 以及碱性溶液中的钠离子或钾离子, 使层状锰铜铁复合 物更加稳定, 以减少其与过氧化氢进行类芬顿反应时析出的杂质, 提高污水处理效果。 0064 如图5所示, 在本实施。
32、例中, 在步骤S5之后, 还包括步骤S6, 研磨固态的锰铜铁复合 物, 以使固态的层状锰铜铁复合物形成能够通过预设目数筛孔的颗粒。 通过将层状锰铜铁 复合物研磨形成颗粒, 可以进一步增加其进行类芬顿反应时, 与过氧化氢的接触面积, 进而 进一步提高催化效果, 提高污水处理效果, 降低成本。 0065 在本实施例中, 可以使用研钵对固态的锰铜铁复合物进行研磨。 0066 在本实施例中, 预设目数的取值范围为80目-120目。 即, 预设目数可以是80目, 也 可以是120目, 也可以是80目-120目之间的目数。 但是, 并不以此为限。 优选的, 预设目数为 100目。 0067 在本实施例中,。
33、 在步骤S3中, 控制陈化含有锰铜铁复合物的锰铜铁混合溶液的过 程的温度至第一预设温度, 第一预设温度的范围为50-70。 即, 第一预设温度可以是50 , 也可以是70, 也可以是50-70之间的温度。 但是, 并不以此为限。 由于本实施例中 采用陈化方式, 制备层状锰铜铁复合物, 因此, 不需要例如采用煅烧方式的高温, 只需较低 的温度就可以实现, 这样可以降低制备过程的能耗, 从而节省能源, 降低成本。 优选的, 第一 预设温度为60。 0068 在本实施例中, 在步骤S3中, 控制陈化含有锰铜铁复合物的锰铜铁混合溶液的过 程的时间至第一预设时间, 以使层状锰铜铁复合物能够达到稳定的状态。
34、, 以减少其与过氧 化氢进行类芬顿反应时析出的杂质, 提高污水处理效果。 0069 在本实施例中, 第一预设时间的范围为8小时至12小时。 即, 第一预设时间可以是8 小时, 也可以是12小时, 也可以是8小时至12小时之间的时间。 但是, 并不以此为限。 0070 具体的, 在同一时间内陈化锰铜铁混合溶液, 温度越低, 则能耗越低, 温度越高, 则 能耗越高; 在同一温度下陈化锰铜铁混合溶液, 时间越短, 则能耗越低, 时间越长, 则能耗越 高。 0071 在本实施例中, 在步骤S5中, 控制干燥滤出的层状锰铜铁复合物的温度至第二预 设温度, 以使层状锰铜铁复合物的脱水更加充分, 以能够更加。
35、准确的称量层状锰铜铁复合 物。 0072 在本实施例中, 第二预设时间的范围为50-70。 即, 第二预设时间可以是50, 也可以是70, 也可以是50-70之间的温度。 但是, 并不以此为限。 优选的, 第二预设时 间为60。 0073 在本实施例中, 在步骤S5中, 控制干燥滤出的层状锰铜铁复合物的时间至第二预 设时间, 以使层状锰铜铁复合物的脱水更加充分, 以能够更加准确的称量层状锰铜铁复合 物。 0074 在本实施例中, 第二预设时间的范围为5小时至10小时。 即, 第二预设时间可以是5 小时, 也可以是10小时, 也可以是5小时至10小时之间的时间。 但是, 并不以此为限。 0075。
36、 具体的, 在同一时间内干燥滤出的层状锰铜铁复合物, 温度越低, 则能耗越低, 温 度越高, 则能耗越高; 在同一温度下干燥滤出的层状锰铜铁复合物, 时间越短, 则能耗越低, 时间越长, 则能耗越高。 说明书 6/9 页 8 CN 110947395 A 8 0076 如图7所示, 在本实施例中, 在步骤S2之后, 步骤S3之前, 还包括步骤S21, 搅拌锰铜 铁混合溶液。 这是为了使锰铜铁混合溶液中的锰盐、 铜盐、 铁盐、 羟基盐和/或碳酸氢盐的反 应更加充分, 以提高锰铜铁复合物的稳定性。 0077 在本实施例中, 搅拌的时间范围为2小时至4小时。 即, 搅拌的时间可以是2小时, 也 可以。
37、是4小时, 也可以是2小时至4小时之间的时间。 但是, 并不以此为限搅拌时间越长, 则锰 铜铁混合溶液中的锰盐、 铜盐、 铁盐、 羟基盐和/或碳酸氢盐的反应更加充分。 0078 如图8所示, 本实施例还提供一种污水处理方法, 污水处理法包括以下步骤: 0079 S100, 将过氧化氢和类芬顿催化材料加入至待处理污水中, 以在待处理污水中进 行类芬顿反应, 类芬顿催化材料采用如本实施例提供的类芬顿催化材料的制备方法制备; 0080 S101, 过滤类芬顿反应之后的水体, 回收水体中的类芬顿催化材料, 以能够循环利 用类芬顿催化材料。 0081 本实施例提供的污水处理方法, 借助将过氧化氢和由本实。
38、施例提供的类芬顿催化 材料的制备方法所制备获得的类芬顿催化材料, 加入至待处理污水中, 以对待处理污水中 进行类芬顿反应, 从而能够提高催化效果, 提高污水处理效果, 降低操作难度, 降低成本。 并 且, 通过对类芬顿反应之后的水体进行过滤, 能够将水体中的类芬顿催化材料回收, 以能够 循环利用类芬顿催化材料, 从而能够降低成本。 0082 由于采用本实施例提供类芬顿催化材料的制备方法制备的层状锰铜铁复合物在 进行类芬顿反应时, 离子溶出量小, 因此, 在污水处理结束后, 能够从被处理的污水将层状 锰铜铁复合物过滤出, 并且过滤出的层状锰铜铁复合物还能够循环使用, 从而提高污水处 理效果, 降。
39、低成本。 0083 在本实施例中, 在步骤S100中, 过氧化氢的体积份的范围为0.8体积份-2体积份, 类芬顿催化材料的重量份的范围为0.2重量份-2重量份。 这里的过氧化氢的体积份与类芬 顿催化材料的重量份是表示过氧化氢和类芬顿催化材料的配比情况, 体积份可以是毫升 (ml)、 升(L)等可以表示液体体积的单位, 重量份可以是毫克(mg)、 克(g)、 千克(kg)等可以 是表示固体重量的单位。 其中, 过氧化氢的体积份根据由待处理污水以及待处理污水中的 化学需氧量(Chemical Oxygen Demand, COD)来确定的, 类芬顿催化材料的重量份是根据过 氧化氢的体积份来确定的,。
40、 化学需氧量是以化学方法测量水样中需要被氧化的还原性物质 的量。 0084 在本实施例中, 在对化学需氧量为500mg/L的500ml待处理污水进行处理时, 可以 使用2ml过氧化氢配比0.6g类芬顿催化材料加入待处理污水中, 对待处理污水进行类芬顿 处理。 但是, 并不以此为限。 也可以使用2ml过氧化氢配比0.2g类芬顿催化材料加入待处理 污水中, 也可以使用2ml过氧化氢配比2g类芬顿催化材料加入待处理污水中, 也可以使用 2ml过氧化氢配比0.2g-2g之间重量的类芬顿催化材料加入待处理污水中, 也可以使用 0.8ml过氧化氢配比0.2g类芬顿催化材料加入待处理污水中, 也可以使用0.。
41、8ml过氧化氢配 比0.2g类芬顿催化材料加入待处理污水中, 也可以使用0.8ml过氧化氢配比0.2g-2g之间重 量的类芬顿催化材料加入待处理污水中。 0085 在本实施例中, 步骤S100中, 对加入有过氧化氢和类芬顿催化材料的待处理污水 进行磁力搅拌。 这一方面是为了使过氧化氢和类芬顿催化材料的反应更加充分, 以增加类 芬顿催化材料对过氧化氢的催化效果, 能够使过氧化氢产生更多的羟基, 另一方面是为使 说明书 7/9 页 9 CN 110947395 A 9 羟基与待处理污水反应更加充分, 从而提高催化效果, 提高污水处理效果。 0086 在本实施例中, 磁力搅拌的时间范围为2小时至4小。
42、时。 即, 磁力搅拌的时间可以是 2小时, 也可以是4小时, 也可以是2小时至4小时之间的时间。 但是, 并不以此为限。 0087 下面列举两个实施例以对本实施例提供的类芬顿催化材料的制备方法及污水处 理方法进行详细说明。 在第一实施例中, 准确称取2.51g的Mn(NO3)24H2O, 2.42g的Cu (NO3)23H2O和4.04g的Fe(NO3)39H2O, 并将三者分别溶解于100ml的蒸馏水中, 以配制 100ml的Mn(NO3)2溶液, 100ml的Cu(NO3)2溶液和100ml的Fe(NO3)3溶液, 将100ml的Mn(NO3)2溶 液和100ml的Cu(NO3)2溶液倒入。
43、500ml的三口烧瓶中, 以配制锰铜溶液, 用恒压漏斗从三口烧 瓶的第一口向三口烧瓶中以1.0ml/min的速率滴加Fe(NO3)3溶液, 以配制锰铜铁溶液, 并从 三口烧瓶的第二口向三口烧瓶中滴加摩尔浓度为0.35mol/L的NaOH和摩尔浓度为0.10mol/ L的NaHCO3的碱性溶液, 以调节三口烧瓶中溶液pH值维持在9.00.1, 三口烧瓶的第三口可 以放置测pH的探头, 以实时检测三口烧瓶中溶液的pH值, 待滴加结束后, 常温搅拌反应2小 时后, 在60的水浴锅中陈化8小时, 抽滤得到固体并用去离子水洗涤数遍, 把产物放进60 烘箱干燥10小时, 研钵研磨过100目筛得到层状锰铜铁。
44、复合物。 0088 在COD为253mg/L的500ml的工业废水中, 加入1.0ml的体积分数为30的H2O2和 0.3g制备的层状锰铜铁复合物, 反应2个小时, 类芬顿反应后COD去除率为85.9, 工业废水 经处理后达到 城镇污水处理厂污染物排放标准 GB18918-2002一级A标准。 反应结束后过 滤得到的层状锰铜铁复合物在5次循环使用过程中, 类芬顿反应后去除COD效果在82以 上。 0089 在第二实施例中, 准确称取2.51g的Mn(NO3)24H2O, 2.42g的Cu(NO3)23H2O和 4.04g的Fe(NO3)39H2O, 并将三者分别溶解于100ml的蒸馏水中, 以。
45、配制100ml的Mn(NO3)2溶 液, 100ml的Cu(NO3)2溶液和100ml的Fe(NO3)3溶液, 将100ml的Mn(NO3)2溶液和100ml的Cu (NO3)2溶液倒入500ml的三口烧瓶中, 用恒压漏斗从三口烧瓶的第一口向三口烧瓶中以 1.0ml/min的速率滴加Fe(NO3)3溶液, 以配制锰铜铁溶液, 并从三口烧瓶的第二口向三口烧 瓶中滴加摩尔浓度为0.40mol/L的NaOH和摩尔浓度为0.20mol/L的NaHCO3的碱性溶液, 以调 节三口烧瓶中溶液pH维持在9.90.1, 三口烧瓶的第三口可以放置测pH的探头, 以实时检 测三口烧瓶中溶液的pH值, 待滴加结束后。
46、, 常温搅拌反应4小时后, 在60的水浴锅中陈化 12小时, 抽滤得到固体并用去离子水洗涤数遍, 把产物放进60烘箱干燥8小时, 研钵研磨 过100目筛得到层状锰铜铁复合物。 0090 在COD为467mg/L的500ml的工业废水中, 加入2.0ml的体积分数为30的H2O2和 0.6g制备的层状锰铜铁复合物, 反应4个小时, 类芬顿反应后COD去除率为89.6, 工业废水 经处理后达到 城镇污水处理厂污染物排放标准 GB18918-2002一级A标准。 0091 下面举例第三实施例, 说明本实施例提供的类芬顿催化材料的制备方法与现有的 制备方法比较具有的能源消耗低的优势。 在第三实施例中,。
47、 准确称取2.51g的Mn(NO3)2 4H2O, 2.42g的Cu(NO3)23H2O和4.04g的Fe(NO3)39H2O, 并将三者分别溶解于100ml的蒸馏 水中, 以配制100ml的Mn(NO3)2溶液, 100ml的Cu(NO3)2溶液和100ml的Fe(NO3)3溶液, 将100ml 的Mn(NO3)2溶液和100ml的Cu(NO3)2溶液倒入500ml的三口烧瓶中, 用恒压漏斗从三口烧瓶 的第一口向三口烧瓶中以1.0ml/min的速率滴加Fe(NO3)3溶液, 并从三口烧瓶的第二口向三 口烧瓶中滴加摩尔浓度为0.35mol/L的NaOH和摩尔浓度为0.10mol/L的NaHCO。
48、3的碱性溶液, 说明书 8/9 页 10 CN 110947395 A 10 以调节三口烧瓶中溶液pH维持在8.50.1, 三口烧瓶的第三口可以放置测pH的探头, 以实 时检测三口烧瓶中溶液的pH值, 待滴加结束后, 常温搅拌反应2小时后, 在60的水浴锅中 陈化8小时, 抽滤得到固体并用去离子水洗涤数遍, 把产物放进60烘箱干燥5小时, 研钵研 磨过100目筛得到层状锰铜铁复合物。 0092 在第三实施例中, 制备层状锰铜铁复合物的过程中, 用于加热所产生的能耗为 4000kw, 而现有的高温工艺用于加热所产生的能耗通常为20000kw以上, 可见, 本实施例提 供的类芬顿催化材料的制备方法。
49、能够有效的降低能源消耗, 从而利于环保, 减低成本。 0093 综上所述, 本实施例提供的类芬顿催化材料的制备方法及污水处理方法, 能够提 高催化效果, 提高污水处理效果, 降低操作难度, 降低成本。 0094 可以理解的是, 以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施 方式, 然而本发明并不局限于此。 对于本领域内的普通技术人员而言, 在不脱离本发明的精 神和实质的情况下, 可以做出各种变型和改进, 这些变型和改进也视为本发明的保护范围。 说明书 9/9 页 11 CN 110947395 A 11 图1 图2 说明书附图 1/4 页 12 CN 110947395 A 12 图3 图4 图5 说明书附图 2/4 页 13 CN 110947395 A 13 图6 图7 说明书附图 3/4 页 14 CN 110947395 A 14 图8 说明书附图 4/4 页 15 CN 110947395 A 15 。
- 内容关键字: 类芬顿 催化 材料 制备 方法 污水处理
井用踏步.pdf
油田用平板闸阀密封连接结构.pdf
混凝土搅拌装置.pdf
用于针织设备的供纱机构.pdf
魔方.pdf
防拱装置.pdf
2-乙基蒽醌生产用废酸处理装置.pdf
零件加工定位工装.pdf
水基压裂液搅拌装置.pdf
气动式料带接料台.pdf
电缆生产用托架.pdf
气体环境检测装置.pdf
建筑工程桩.pdf
混凝土保温体系.pdf
自动钉裤袢装置.pdf
无电动力驱动装置.pdf
多功能的离心泵生产加工装置.pdf
静脉设备摄像头模组异常检测的方法和系统.pdf
微模块机房环境监控方法及系统.pdf
供排水设备关联数据在线监测方法及系统.pdf
基于平均队列长度变化趋势的网络自适应拥塞控制方法.pdf
结合事件日志和知识图谱的流程操作序列生成方法及系统.pdf
计算机控制设备的运行功率监测系统.pdf
雷达产品的测试系统及测试方法.pdf
纬纱绕卷装置.pdf
基于代谢组学和人工智能技术的肺腺癌早期诊断标志物及其应用.pdf
基于大模型的信息校验方法及装置.pdf
带有升降旋转摄像头的智能手表拍照控制方法及系统.pdf
公路施工用岩土取样装置.pdf
能够快速调节的建筑施工用垂直检测设备.pdf
中央空调冷热源节能智控系统.pdf
水上天然气管道支护结构.pdf
焊接有害气体排放装置.pdf
拐摇式横流皮带选矿机.pdf
负式油压整管装置.pdf
一种造纸废液生产的水溶性高分子助磨剂及制造方法.pdf
一种双外壳的真空固定器.pdf
一种空调分离器产品的焊接方法.pdf
用于具有改进的滚落性能的表面的斥水涂料的无氟组合物.pdf
一种新型耐磨喷丸枪射嘴.pdf
人防工程防护设施现场控制装置.pdf
一种用于除臭的复合菌剂及其制备方法.pdf
具有信息标识功能包装箱及内置物品追溯系统和方法.pdf
超细纤维高仿头层皮合成革的制备方法.pdf
一种胶囊脱模剂及制备方法.pdf
两用拖鞋.pdf
一种用于在多媒体播放器间进行播放切换的方法与设备.pdf
含胆固醇基团的复合脂质及其中间体,制备方法与用途.pdf
一种重金属铬污染土壤淋洗修复剂.pdf
电子电路用的压延铜箔或电解铜箔及使用它们形成电子电路的方法.pdf
超声波混合装置.pdf