林下山参属性的近红外检测鉴别方法.pdf

上传人:zhu****69 文档编号:10741091 上传时间:2021-08-10 格式:PDF 页数:9 大小:575.71KB
收藏 版权申诉 举报 下载
林下山参属性的近红外检测鉴别方法.pdf_第1页
第1页 / 共9页
林下山参属性的近红外检测鉴别方法.pdf_第2页
第2页 / 共9页
林下山参属性的近红外检测鉴别方法.pdf_第3页
第3页 / 共9页
文档描述:

《林下山参属性的近红外检测鉴别方法.pdf》由会员分享,可在线阅读,更多相关《林下山参属性的近红外检测鉴别方法.pdf(9页完成版)》请在专利查询网上搜索。

1、(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201911342449.5 (22)申请日 2019.12.23 (71)申请人 辽宁上药好护士药业 (集团) 有限公 司 地址 110006 辽宁省本溪市桓仁县五女山 经济开发区泰山路6号 (72)发明人 郑继宇罗红李国栋王辉 (74)专利代理机构 济南圣达知识产权代理有限 公司 37221 代理人 郑平 (51)Int.Cl. G01N 21/3563(2014.01) G01N 21/359(2014.01) G06K 9/62(2006.01) (54)发明名称 林下山。

2、参属性的近红外检测鉴别方法 (57)摘要 本发明属于林下山参检测技术领域, 尤其涉 及林下山参属性的近红外检测鉴别方法。 本发明 通过以下检测流程实现对林下山参原料及其制 品的质量控制, 人参属性(如种类、 年份等)与近 红外光谱关联模型的确立是整个鉴别工作的核 心内容, 本发明结合近红外光谱对林下山参、 移 山参、 园参的种类, 林下山参的年份进行鉴别, 从 而实现了从源头开始, 严格控制原料, 并对终产 品进行鉴别, 满足了不同客户群体的不同需求。 权利要求书2页 说明书6页 CN 110987857 A 2020.04.10 CN 110987857 A 1.一种林下山参属性的近红外检测。

3、鉴别方法, 其特征在于: 采用主成分判别分析建模, 具体步骤为: (1)获取样本的近红外光谱数据矩阵X, 其大小为n*p, n代表样本数量, p代表变量数目, 对应于近红外光谱就是检测波长; 将n个样本光谱按浓度从小到大顺序等间距的提取预测 样本光谱矩阵Xval, 剩余的就是建模的样本Xcal; (2)对步骤(1)得到的光谱进行预处理: 即先对每条光谱进行S-G平滑, 再对其求导; (3)将用于建模的样本Xcal进行奇异值分解, XcalUSVt, U*S为得分矩阵Tcal, Vt为载 荷矩阵的转置; (4)用预测样本光谱矩阵Xval乘上步骤(3)中建模样本的载荷矩阵Vt, 得到预测样本的 得。

4、分矩阵Tval, 即TvalXvalV; (5)将预测样本的得分矩阵Tval前n列与某一类建模样本得分矩阵Tcal的前n列计算马 氏距离, 计算公式如下式所示: 式中ti为预测样本的得分矩阵中的第i列, 为同一类拟合样本得分矩阵的均值, V-1为协 方差矩阵的逆矩阵; (6)对于两类判别问题, 对同一个样本计算得到两个马氏距离, 代表此样本到两类中心 的马氏距离; 比较两个马氏距离之间的大小, 将此样本归属为距离较小的一类。 2.如权利要求1所述的林下山参属性的近红外检测鉴别方法, 其特征在于: 建模完成 后, 还包括对建立的模型的预测能力的衡量的步骤。 3.如权利要求2所述的林下山参属性的近。

5、红外检测鉴别方法, 其特征在于: 用总体正判 率来衡量模型的预测能力; 优选地, 所述总体正判率判断正确的预测样本数/预测样本总 数。 4.一种林下山参属性的近红外检测鉴别方法, 其特征在于: 采用偏最小二乘判别分析 建模, 具体步骤为: (S1)获取样本的近红外光谱数据矩阵X, 其大小为n*p, n代表样本数量, p代表变量数 目, 对于近红外光谱就是检测波长; 获取样本的标签信息向量y, 大小为n*1; (S2)对步骤(S1)得到的光谱进行预处理: 即先对每条光谱进行S-G平滑, 再对其求导; (S3)采用pls1算法计算建模系数向量b, 其算法内容如下: 取向量y作为t; 计算wXty/。

6、 (yty); 对w进行归一化; tXw; 计算t对y的回归系数, (tty)/(ttt); pXtt/(ttt); 计算残 差: XX-tpt, yy- t; 返回开始计算下个潜变量; 当循环完成后, bw/(ptw)v; (S4)计算预测样本的估计值, (S5)对每个预测样本的估计值与两类的标签信息进行比较, 更接近其中某个值就将该 样本判定为那一类。 5.如权利要求4所述的林下山参属性的近红外检测鉴别方法, 其特征在于: 步骤(S1) 中, 所述标签信息定义谓: 一类用1, 另一类用-1代替。 6.如权利要求4或5所述的林下山参属性的近红外检测鉴别方法, 其特征在于: 建模完 成后, 还。

7、包括对建立的模型的预测能力的衡量的步骤。 权利要求书 1/2 页 2 CN 110987857 A 2 7.如权利要求6所述的林下山参属性的近红外检测鉴别方法, 其特征在于: 用总体正判 率与预测均方差来衡量模型的预测能力, 计算公式为: 式中为第i个预测样本的估计值, yi为第i个预测样本的真值。 权利要求书 2/2 页 3 CN 110987857 A 3 林下山参属性的近红外检测鉴别方法 技术领域 0001 本发明属于林下山参检测技术领域, 尤其涉及林下山参属性的近红外检测鉴别方 法。 背景技术 0002 本发明背景技术中公开的信息仅仅旨在增加对本发明的总体背景的理解, 而不必 然被视为。

8、承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有 技术。 0003 人参, 为古今临床应用最为广泛的补虚药, 被称为 “百草之王” , 在我国有上千年的 应用历史。 自 神农本草经 以来, 一直被视为珍贵补品, 用于生津止渴和益气补虚,伤寒 论 与 金匮要略 中, 含有人参的方剂达36首之多。 古代人参均为野山参。 0004 2015版 中国药典 对人参的定义主要有两种, 一种是人工栽培的俗称 “园参” ; 一 种是播种在山林野生状态下自然生长的称 “林下山参” , 习称 “籽海” 。 主要分布于辽宁东部、 吉林东部和黑龙江东部。 0005 园参: 园参是人工种植人参, 从。

9、生长环境分为两种, 一种是在山上伐木、 清根、 修池 床种植; 一种是在农田种植, 两者都是通过人工干预手段培育, 如施肥、 农药等进行种植, 且 最多种植6年即采挖, 并上市销售; 0006 移山参: 属于园参的变种, 即在园参经3-5年人工培育后, 移栽到原始森林里, 此种 人参, 在后续生长十几年后, 外形比较接近林下山参, 一般人员很难把其与林下山参区分 开, 但其功效与林下山参相差甚远, 市场上经常有不法商贩, 用移山参鱼目混珠, 使消费者 的权益受到极大的损害。 0007 林下山参: 是模拟山参的生长习性和生态环境, 把参籽撒到原始森林里, 自然生 长, 不进行任何人工干预的手段。。

10、 经过几十年生长再挖出来, 具有和野山参相似的品质和化 学成分。 0008 因此, 虽然三种人参都在 中国药典“人参” 项下, 但三者由于种植方式和生长时 间的影响, 其有效成分和含量各不相同, 且培育的成本也不尽相同, 这就导致了三者药用价 值和经济价值截然不同, 现在野生人参几乎绝迹。 而林下山参的生长环境和方式接近于野 生人参, 尤其是生长年限大于15年的林下山参品质更接近于野生人参, 因此也被称为 “野山 参” , 其除了具有补五脏、 安精神、 定魂魄, 止惊吓、 除邪气、 明目、 开心益智等功效外, 还能真 正体现出人参 “大补元气、 复脉固脱” 的传统核心功效。 0009 我国江浙。

11、地区自古以来就有秋、 冬季服用林下山参进补的传统, 是我国林下山参 的最大消费市场, 约占全国95的市场份额, 该地区主要购买的还是经过简单处理的林下 山参, 保留林下山参原型态, 这是因为园参、 移山参、 林下山参具有相同的指标成分, 通过现 有的检测手段如: 含量测定, 薄层鉴别等很难完全分辨, 只能通过人参传统的鉴别方法通过 产地、 株龄、 形状、 采摘季节为初步鉴别, 并配合看、 闻、 尝、 摸、 比等感官方法鉴定, 这需要鉴 别人员具有丰富的种参、 养参及采参的经验, 只有参农和部分转卖的商人能够观察出不同 说明书 1/6 页 4 CN 110987857 A 4 种类和年份的人参。。

12、 同时传统鉴别方法只能保留林下山参的原型态进行鉴别。 但林下山参 原型态储藏极为不易, 因其含有较多的糖类、 黏液质和挥发油等, 所以容易出现受潮、 泛油、 发霉、 变色、 虫蛀等变质现象。 且因经济价值较高, 会给经营者和消费者造成很大的经济损 失, 如果采用现代制剂技术对林下山参进行粉碎, 制粒, 压片。 储藏和服用虽然方便, 但在失 去林下山参原形态的前提下, 如何取得消费者的认可又是一项技术难题。 发明内容 0010 针对上述的问题, 本发明通过以下检测流程实现对林下山参原料及其制品的质量 控制, 人参属性(如种类、 年份等)与近红外光谱关联模型的确立是整个鉴别工作的核心内 容, 为了。

13、实现鉴别目的, 本发明提供了两种模式识别方法。 0011 首先, 本发明公开第一种林下山参属性的近红外检测鉴别方法, 采用主成分判别 分析(PCADA)建模, 具体步骤为: 0012 (1)获取样本的近红外光谱数据矩阵X, 其大小为n*p, n代表样本数量, p代表变量 数目, 对应于近红外光谱就是检测波长。 将n个样本光谱按浓度从小到大顺序等间距的提取 预测样本光谱矩阵Xval, 剩余的就是建模的样本 Xcal, 优选地, 比例为1: 3。 0013 (2)对步骤(1)得到的光谱进行预处理: 即先对每条光谱进行S-G平滑, 再对其求 导; 以便于用于后续建立模型。 0014 (3)将用于建模。

14、的样本Xcal进行奇异值分解, XcalUSVt, U*S为得分矩阵Tcal, Vt 为载荷矩阵的转置。 0015 (4)用预测样本光谱矩阵Xval乘上步骤(3)中建模样本的载荷矩阵Vt, 得到预测样 本的得分矩阵Tval, 即TvalXvalV。 0016 (5)将预测样本的得分矩阵Tval前n列与某一类建模样本得分矩阵Tcal 的前n列 计算马氏距离, 计算公式如式(1)所示: 0017 0018 式中ti为预测样本的得分矩阵中的第i列, 为同一类拟合样本得分矩阵的均值, V -1为协方差矩阵的逆矩阵。 0019 (6)对于两类判别问题, 对同一个样本计算得到两个马氏距离, 代表此样本到两。

15、类 中心的马氏距离。 比较两个马氏距离之间的大小, 将此样本归属为距离较小的一类。 0020 进一步地, 所述第一种林下山参属性的近红外检测鉴别方法中, 建模完成后, 还包 括对建立的模型的预测能力的衡量的步骤。 0021 可选地, 用总体正判率(RMSEC)来衡量模型的预测能力, 即: 总体正判率判断正 确的预测样本数/预测样本总数。 0022 其次, 本发明公开第二种林下山参属性的近红外检测鉴别方法, 采用偏最小二乘 判别分析(PCADA)建模, 具体步骤为: 0023 (S1)获取样本的近红外光谱数据矩阵X, 其大小为n*p, n代表样本数量, p 代表变 量数目, 对于近红外光谱就是检。

16、测波长; 获取样本的标签信息向量y, 大小为n*1。 0024 (S2)对步骤(S1)得到的光谱进行预处理: 即先对每条光谱进行S-G平滑, 再对其求 说明书 2/6 页 5 CN 110987857 A 5 导。 0025 (S3)采用pls1算法计算建模系数向量b, 其算法内容如下: 取向量y作为t; 计w (Xty)/(yty); ; 对w进行归一化; tXw; 计算t对y的回归系数, v(tty)/(ttt); pXtt/ (ttt); 计算残差XX-tpt, yy-vt; 返回开始计算下个潜变量。 当循环完成后, bw/(ptw) v。 0026(S4)计算预测样本的估计值 0027。

17、 (S5)对每个预测样本的估计值与两类的标签信息进行比较, 更接近其中某个值就 将该样本判定为那一类。 0028 进一步地, 步骤(S1)中, 由于本发明建立的是两类样本的定性判别模型, 其标签信 息是人为定义, 一类用1, 另一类用-1代替, 其代表了样本的类别; 即步骤(S5)中, 所述比较 的标签信息为1与-1。 0029 进一步地, 所述第二种林下山参属性的近红外检测鉴别方法中, 建模完成后, 还包 括对建立的模型的预测能力的衡量的步骤。 0030 可选地, 用总体正判率与预测均方差(RMSEP)来衡量模型的预测能力, 计算公式如 式(2)所示: 0031 0032式中 为第i个预测样。

18、本的估计值, yi为第i个预测样本的真值。 0033 与现有技术相比, 本发明取得了以下有益效果: 本发明结合近红外光谱对林下山 参、 移山参、 园参的种类, 林下山参的年份进行鉴别, 从而实现了从源头开始, 严格控制原 料, 并对终产品进行鉴别, 鉴别结果显示: 本发明提出的方法具有较高的正判率, 且验证集 的预测均方差(RMSEP)足够小, 能够满足不同客户群体的不同需求。 具体实施方式 0034 应该指出, 以下详细说明都是例示性的, 旨在对本申请提供进一步的说明。 除非另 有指明, 本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常 理解的相同含义。 0035 需要。

19、注意的是, 这里所使用的术语仅是为了描述具体实施方式, 而非意图限制根 据本申请的示例性实施方式。 如在这里所使用的, 除非上下文另外明确指出, 否则单数形式 也意图包括复数形式, 此外, 还应当理解的是, 当在本说明书中使用术语 “包含” 和/或 “包 括” 时, 其指明存在特征、 步骤、 操作、 器件、 组件和/或它们的组合。 0036 正如背景技术所述, 移山参在后续生长十几年后, 外形比较接近林下山参, 一般人 员很难把其与林下山参区分开, 但其功效与林下山参相差甚远, 市场上经常有不法商贩, 用 移山参鱼目混珠, 使消费者的权益受到极大的损害。 因此, 本发明提出了两种林下山参属性 。

20、的近红外检测鉴别方法; 现结合具体实施方式对本发明进一步说明。 0037 实施例 0038 林下山参近红外定性判别和年份判别模型的建立与评价: 因为原型态的林下山参 说明书 3/6 页 6 CN 110987857 A 6 和普通园参在外观形态上差别很大, 任何人都可以轻易加以区分, 所以本实施例的山参定 性鉴别只针对林下山参和移山参。 0039 (一)样品采集: 首先连接仪器, 打开软件, 确认连接后, 打开温控开关, 调整为手动 模式, 设置相关参数, 温度控制为25, 积分时间8ms, 扫描次数为 32次。 测量暗光谱, 随后 打开灯源等待10分钟, 以装置背景为参比, 即可开始进行测样。

21、。 采用漫反射发收集近红外光 谱, 测量范围是5000cm-112000cm-1, 每根人参在芦头、 参体、 参须上选择8个点, 其中参芦2 个点, 参体4 个点, 参须2个点, 每个点测量3次, 具体测量数据如表1所示。 0040 表1人参数据详表 0041 0042 (二)林下山参与移山参定性鉴别的近红外模型建立: 0043 重复测量的3次光谱用平均值代替, 将这些光谱按3: 1划分建模集与独立预测集, 拿得到的建模集光谱按2: 1划分校正集和验证集进行蒙特卡洛交互检验, 重复1000次, 得到 不同潜变量下判别的结果, 从中挑选合适的潜变量进行建模。 为了区分不同预处理方法建 立模型的稳。

22、定性, 在挑选的潜变量下分别建模100次并用独立预测集中的样本进行验证。 不 同预处理方法建立的模型效果如表2所示。 0044 表2人参种类判别PLSDA模型参数汇总 0045 0046 用上述确定的模型参数建立模型进行移山参与林下参的种类判别。 从表2 可以看 说明书 4/6 页 7 CN 110987857 A 7 出: 不经过原始数据光谱已经可以达到较高的正判率, 且验证集的预测均方差(RMSEP)足够 小。 故选择原始数据在17个潜变量下对林下参与移山参进行种类判别。 0047 (三)林下山参年份鉴别的近红外模型的建立: 0048 对重复测量的3次光谱用平均值代替, 将这些光谱按3: 。

23、1划分建模集与独立预测 集, 拿得到的建模集光谱按2: 1划分校正集和验证集进行蒙特卡洛交互检验, 重复1000次, 得到不同潜变量下判别的结果, 从中挑选合适的潜变量进行建模。 为了区分不同预处理方 法建立模型的稳定性, 在挑选的潜变量下分别建模100次并用独立预测集中的样本进行验 证。 不同预处理方法建立的模型效果如表3所示。 0049 表3林下山参年份判别PLSDA模型参数汇总 0050 说明书 5/6 页 8 CN 110987857 A 8 0051 0052 由于是三种年份之间的判别, 故先将两种年份相近的作为一类与另外的一种进行 判别, 再将剩下的两类年份判别区分开。 通过表3可以看出: 原始光谱两次判别综合效果最 佳, 且能正确区分不同年份的林下参。 0053 以上所述仅为本申请的优选实施例, 并不用于限制本申请, 对于本领域的技术人 员来说, 本申请可以有各种更改和变化。 凡在本申请的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本申请的保护范围之内。 说明书 6/6 页 9 CN 110987857 A 9 。

展开阅读全文
内容关键字: 林下 属性 红外 检测 鉴别方法
关于本文
本文标题:林下山参属性的近红外检测鉴别方法.pdf
链接地址:https://www.zhuanlichaxun.net/pdf/10741091.html
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1