水产品数量统计方法、终端设备及存储介质.pdf

上传人:le****a 文档编号:10635758 上传时间:2021-08-06 格式:PDF 页数:11 大小:546.94KB
收藏 版权申诉 举报 下载
水产品数量统计方法、终端设备及存储介质.pdf_第1页
第1页 / 共11页
水产品数量统计方法、终端设备及存储介质.pdf_第2页
第2页 / 共11页
水产品数量统计方法、终端设备及存储介质.pdf_第3页
第3页 / 共11页
文档描述:

《水产品数量统计方法、终端设备及存储介质.pdf》由会员分享,可在线阅读,更多相关《水产品数量统计方法、终端设备及存储介质.pdf(11页完成版)》请在专利查询网上搜索。

1、(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 202011126345.3 (22)申请日 2020.10.20 (71)申请人 青岛丰禾星普科技有限公司 地址 266000 山东省青岛市市北区馆陶路1 号4号楼201室 (72)发明人 白雪松刘阳赵军西潘佳 (74)专利代理机构 北京国坤专利代理事务所 (普通合伙) 11491 代理人 赵红霞 (51)Int.Cl. G06K 9/00(2006.01) G06N 3/04(2006.01) G06N 3/08(2006.01) (54)发明名称 水产品数量统计方法、 终端。

2、设备及存储介质 (57)摘要 本申请适用于人工智能技术领域, 提供了一 种水产品数量统计方法、 终端设备及存储介质, 其中, 上述方法包括: 获取水产品的目标图像; 目 标图像中的水产品处于稳定状态; 根据预设的机 器学习模型, 识别目标图像中的水产品个体; 统 计识别到的水产品个体的数量。 本申请实施例提 供的水产品数量统计方法、 终端设备及存储介 质, 通过机器视觉采集目标图像, 进而利用机器 学习模型识别并统计目标图像中的水产品个体, 实现自动化的水产品数量统计, 能够全天候自动 采集图像和自动统计水产品个体的数量, 为后续 对水产品的生长速度、 健康状况、 摄食情况、 行为 习性的观测。

3、和分析提供基础数据。 权利要求书1页 说明书7页 附图2页 CN 112257564 A 2021.01.22 CN 112257564 A 1.一种水产品数量统计方法, 其特征在于, 包括: 获取水产品的目标图像; 所述目标图像中的水产品处于稳定状态; 根据预设的机器学习模型, 识别所述目标图像中的水产品个体; 统计识别到的水产品个体的数量。 2.如权利要求1所述的水产品数量统计方法, 其特征在于, 所述获取水产品的目标图像 的步骤, 包括: 获取所述水产品从离开水面开始到在水面上悬停一段时间的视频; 在所述视频中截取所述目标图像。 3.如权利要求2所述的水产品数量统计方法, 其特征在于, 。

4、所述在所述视频中截取所述 目标图像的步骤, 包括: 获取所述水产品上升至水面时对应的第一图像帧; 以所述第一图像帧在所述视频中的时间为起点, 根据预设的时间间隔在所述视频中截 取第二图像帧; 所述第二图像帧为所述目标图像。 4.如权利要求1所述的水产品数量统计方法, 其特征在于, 所述获取水产品的目标图像 的步骤, 包括: 检测处于水中的水产品到水面的距离; 当所述距离处于预设的距离范围内时, 采集所述水产品的目标图像。 5.如权利要求1所述的水产品数量统计方法, 其特征在于, 所述获取水产品的目标图像 的步骤, 包括: 在所述水产品从水中逐渐上升至水面并离开水面的过程中, 获取所述水产品离开。

5、水面 的持续时间; 当所述水产品离开水面的持续时间达到预设的时间阈值时, 采集所述水产品的目标图 像。 6.如权利要求1所述的水产品数量统计方法, 其特征在于, 在所述获取水产品的目标图 像的步骤之后, 以及所述根据预设的机器学习模型, 识别所述目标图像中的水产品个体的 步骤之前, 所述水产品数量统计方法还包括: 对所述目标图像进行预处理。 7.如权利要求1所述的水产品数量统计方法, 其特征在于, 在所述根据预设的机器学习 模型, 识别所述目标图像中的水产品个体的步骤之前, 所述水产品数量统计方法还包括: 对所述机器学习模型进行训练。 8.一种终端设备, 其特征在于, 包括: 输入单元, 用于。

6、获取水产品的目标图像; 所述目标图像中的水产品处于稳定状态; 个体识别单元, 用于根据预设的机器学习模型, 识别所述目标图像中的水产品个体; 数量统计单元, 用于统计识别到的水产品个体的数量。 9.一种终端设备, 包括存储器、 处理器以及存储在所述存储器中并可在所述处理器上 运行的计算机程序, 其特征在于, 所述处理器执行所述计算机程序时实现如权利要求1至7 任一项所述方法的步骤。 10.一种计算机可读存储介质, 所述计算机可读存储介质存储有计算机程序, 其特征在 于, 所述计算机程序被处理器执行时实现如权利要求1至7任一项所述方法的步骤。 权利要求书 1/1 页 2 CN 112257564。

7、 A 2 水产品数量统计方法、 终端设备及存储介质 技术领域 0001 本申请属于人工智能技术领域, 尤其涉及一种水产品数量统计方法、 终端设备及 存储介质。 背景技术 0002 水产养殖中的水产品, 例如鱼、 虾等生活于水中, 对其形体、 形态、 习性的人为观测 难度较大, 在实际生产过程中对其生长速度、 健康状况、 摄食情况、 行为习性的观测和分析 难以准确进行, 或只能通过阶段性的抽样测量和观测对其生物学和行为学特征进行定性描 述。 在实际生产过程中, 技术人员对鱼、 虾的观测以抽样调查为主。 例如, 在鱼类养殖过程 中, 将养殖池中的鱼捞出一定数量, 对其进行体长、 体重等形体指标测量。

8、, 对其体表进行观 测, 判断其健康情况, 进行数据记录。 在虾类养殖过程中, 通过在水中悬挂料台, 将料台及上 面附着的虾一同提出水面, 进行测量和观察, 在测量虾规格时, 往往需要捞出足够重量的 虾, 进行500g重量的称量, 再计数个体数量, 将总重量和个体数量相除, 计算虾的规格。 目前 依靠人工操作的水产品观测技术存在以下缺点: 0003 1.操作繁琐, 工作效率低下; 0004 2.抽样数量有限, 准确率较低; 0005 3.观测频率低, 信息连续性差; 0006 4.人为观测存在主观因素干扰, 以定性描述为主, 难以实现定量分析和统计。 发明内容 0007 有鉴于此, 本申请实施。

9、例提供了一种水产品数量统计方法、 终端设备及存储介质, 以解决目前完全依靠人工操作进行水产品计数的问题。 0008 根据第一方面, 本申请实施例提供了一种水产品数量统计方法, 包括: 获取水产品 的目标图像; 所述目标图像中的水产品处于稳定状态; 根据预设的机器学习模型, 识别所述 目标图像中的水产品个体; 统计识别到的水产品个体的数量。 0009 结合第一方面, 在本申请的一些实施例中, 所述获取水产品的目标图像的步骤, 包 括: 获取所述水产品从离开水面开始到在水面上悬停一段时间的视频; 在所述视频中截取 所述目标图像。 0010 结合第一方面, 在本申请的一些实施例中, 所述在所述视频中。

10、截取所述目标图像 的步骤, 包括: 获取所述水产品上升至水面时对应的第一图像帧; 以所述第一图像帧在所述 视频中的时间为起点, 根据预设的时间间隔在所述视频中截取第二图像帧; 所述第二图像 帧为所述目标图像。 0011 结合第一方面, 在本申请的一些实施例中, 所述获取水产品的目标图像的步骤, 包 括: 检测处于水中的水产品到水面的距离; 当所述距离处于预设的距离范围内时, 采集所述 水产品的目标图像。 0012 结合第一方面, 在本申请的一些实施例中, 所述获取水产品的目标图像的步骤, 包 说明书 1/7 页 3 CN 112257564 A 3 括: 在所述水产品从水中逐渐上升至水面并离开。

11、水面的过程中, 获取所述水产品离开水面 的持续时间; 当所述水产品离开水面的持续时间达到预设的时间阈值时, 采集所述水产品 的目标图像。 0013 结合第一方面, 在本申请的一些实施例中, 在所述获取水产品的目标图像的步骤 之后, 以及所述根据预设的机器学习模型, 识别所述目标图像中的水产品个体的步骤之前, 所述水产品数量统计方法还包括: 对所述目标图像进行预处理。 0014 结合第一方面, 在本申请的一些实施例中, 在所述根据预设的机器学习模型, 识别 所述目标图像中的水产品个体的步骤之前, 所述水产品数量统计方法还包括: 对所述机器 学习模型进行训练。 0015 根据第二方面, 本申请实施。

12、例提供了一种终端设备, 包括: 输入单元, 用于获取水 产品的目标图像; 所述目标图像中的水产品处于稳定状态; 个体识别单元, 用于根据预设的 机器学习模型, 识别所述目标图像中的水产品个体; 数量统计单元, 用于统计识别到的水产 品个体的数量。 0016 根据第三方面, 本申请实施例提供了另一种终端设备, 包括存储器、 处理器以及存 储在所述存储器中并可在所述处理器上运行的计算机程序, 所述处理器执行所述计算机程 序时实现如第一方面或第一方面任一实施方式所述方法的步骤。 0017 根据第四方面, 本申请实施例提供了一种计算机可读存储介质, 所述计算机可读 存储介质存储有计算机程序, 所述计算。

13、机程序被处理器执行时实现如第一方面或第一方面 任一实施方式所述方法的步骤。 0018 本申请实施例提供的水产品数量统计方法、 终端设备及存储介质, 通过机器视觉 采集目标图像, 进而利用机器学习模型识别并统计目标图像中的水产品个体, 实现自动化 的水产品数量统计, 能够全天候自动采集图像和自动统计水产品个体的数量, 为后续对水 产品的生长速度、 健康状况、 摄食情况、 行为习性的观测和分析提供基础数据。 本申请实施 例提供的水产品数量统计方法、 终端设备及存储介质, 能够规避人工操作, 解决了传统的水 产品计数完全依靠人工操作的问题, 有利于提高水产品数量统计的抽样频率, 改善传统人 工统计信。

14、息连续性差的情况, 排除了人为观测存在的主观因素干扰。 附图说明 0019 为了更清楚地说明本申请实施例中的技术方案, 下面将对实施例或现有技术描述 中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本申请的一些 实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些 附图获得其他的附图。 0020 图1是本申请实施例提供的水产品数量统计方法的一个具体示例的流程图; 0021 图2是本申请实施例提供的水产品数量统计方法的另一个具体示例的流程图; 0022 图3是本申请实施例提供的终端设备的结构示意图; 0023 图4是本申请实施例提供的另一终。

15、端设备的结构示意图。 具体实施方式 0024 以下描述中, 为了说明而不是为了限定, 提出了诸如特定系统结构、 技术之类的具 说明书 2/7 页 4 CN 112257564 A 4 体细节, 以便透彻理解本申请实施例。 然而, 本领域的技术人员应当清楚, 在没有这些具体 细节的其它实施例中也可以实现本申请。 在其它情况中, 省略对众所周知的系统、 装置、 电 路以及方法的详细说明, 以免不必要的细节妨碍本申请的描述。 0025 为了说明本申请所述的技术方案, 下面通过具体实施例来进行说明。 0026 本申请实施例提供了一种水产品数量统计方法, 如图1所示, 该方法可以包括以下 步骤: 002。

16、7 步骤S101: 获取水产品的目标图像。 0028 鱼虾等水产品在刚离开水面的一小段时间内, 往往会激烈弹跳。 如果对鱼虾恰好 处于弹跳时的图像进行机器视觉的分析, 由于图像清晰度等问题, 分析效果一般并不理想。 为了提高对鱼虾等水产品个体的识别准确度, 需要采集水产品处于稳定状态下的目标图 像。 0029 水下摄像技术可以用于采集鱼虾等水产品的静止图像, 但是水下摄像设备的使用 成本和维护成本较高, 且适用场景局限, 必须在清澈明亮的水域环境采集图片, 而满足如此 条件的生产场景甚少。 例如, 对虾养殖的水环境就较为浑浊; 高密度工厂化鱼类养殖时, 水 环境也较为浑浊, 此时水下摄像机便难。

17、以实现其功能。 0030 在鱼虾等水产品在水中缓慢上升的过程中, 一旦完全离开水面, 才会刺激鱼虾弹 跳。 如果载有鱼虾等水产品的料台上升缓慢, 并在水面处停止, 即水面半没过或刚刚没过鱼 虾的身体, 此时鱼虾不会应激弹跳, 且处在一种安静的匍匐状态, 而非侧躺状态, 形态稳定, 更易于进行后一步的图像处理、 测量工作。 0031 为了采集水产品处于稳定状态下的目标图像, 在一具体实施方式中, 可以获取水 产品从离开水面开始到在水面上悬停一段时间的视频, 进而在该视频中截取符合要求的目 标图像。 具体的, 可以在视频中首先确定并采集水产品上升至水面时对应的第一图像帧; 然 后, 以该第一图像帧。

18、在视频中的时间为起点, 根据预设的时间间隔在视频中截取第二图像 帧, 第二图像帧即目标图像。 0032 在装有鱼虾等水产品的料台从水中上升到水面的过程中, 当料台浸没在水中时, 无法准确观察, 观察的实际阶段应该是从料台露出水面开始, 到离开水面并完成悬停, 在料 台开始下降时结束。 这个过程中, 在料台刚刚离开水面开始到悬停过程中的某一时间点, 鱼、 虾会剧烈跳动, 此时的视频过程, 可用于机器视觉观察(可截取的高质量画面或可用帧) 部分较少, 增加了数据存储和传输的成本。 在实际应用中, 可以在前端就完成数据清洗, 比 如不对料台的上升过程进行视频录制, 而是仅仅录制料台悬停的视频。 00。

19、33 鱼虾本身的跳跃力度、 持续时间及弹跳高度等动态指标很直观的反映了其健康程 度和活跃度, 这部分的视频可用于进行健康度和活跃度的评判, 但就截取高质量静止画面 进行机器视觉识别而言并不适合。 料台上升过程可以用来进行水产品活跃度和健康程度的 判断, 并存储至 “健康判断” 单元。 0034 在料台达到悬停高度后, 或达到悬停高度5秒后的视频可以用于目标图像截取, 进 行个体识别和计数等后续工作, 这部分视频可存储至 “识别、 计数” 单元。 在料台达到悬停高 度后进行短暂的停留, 目的在于等待鱼虾停止弹跳, 处于相对稳定的姿态。 0035 鱼虾等水产品在尚未离开水面但即将离开水面时, 均处。

20、于安静的匍匐状态。 因此, 可以获取水产品从水中逐渐上升至水面的视频, 并以水产品上升至水面时对应的第一图像 说明书 3/7 页 5 CN 112257564 A 5 帧在视频中的时间为起点, 根据预设的时间间隔向前在视频中截取目标图像, 该目标图像 即水产品尚未离开水面但即将离开水面的图像。 可以根据载有鱼虾等水产品的料台的上升 速度, 确定预设的时间间隔。 对于水产品尚未离开水面但即将离开水面的图像, 其中的水体 高度较低, 即使水体本身较为浑浊, 但由于浑浊的水很浅, 并不会对图像的清晰度产生较大 的影响, 一般并不会影响后续图像分析的过程和结果。 0036 根据鱼虾等水产品的习性, 鱼。

21、虾离水开水面后会激烈弹跳, 一般持续时间较短, 不 超过10秒便会静止, 这也是采集目标图像的好时机。 在实际应用中, 可以在视频中首先确定 并采集水产品上升至水面时对应的第一图像帧; 然后, 以该第一图像帧在视频中的时间为 起点, 根据预设的时间间隔向后在视频中截取第二图像帧, 该第二图像帧即鱼虾离开水面 一段时间后处于稳定状态的目标图像。 该第二图像帧中并没有水体, 图像的清晰度较佳, 不 会受水体浑浊的任何影响。 可以根据鱼虾离水开水面后持续弹跳的时间, 确定预设的时间 间隔, 例如将预设的时间间隔设置为10秒钟。 0037 通过拍摄视频并截取目标图像的方法有其优点。 视频拍摄时间较长,。

22、 其中必然可 以截取到大量有效帧(画面)进行样本采集, 用于机器学习或训练, 初期需要大量有效样本 训练机器视觉的识别和测量等工作, 故采用视频拍摄。 同时, 视频拍摄的是动态画面, 鱼虾 的弹跳持续时间和弹跳强度(高低及力度)也直观反应了其健康状态(活跃度), 也是一种健 康度评判指标, 但需要人为量化评判标准。 0038 视频拍摄也存在缺点, 数据量大引起的传输、 存储及数据清洗压力较大。 为了规避 视频数据量过大的问题, 在实际应用中, 可以省去拍摄视频的过程, 而直接采集符合要求的 目标图像。 0039 在一具体实施方式中, 可以检测处于水中的水产品在上升的过程中, 水产品到水 面的距。

23、离。 当水产品到水面的距离处于预设的距离范围内时, 采集水产品的目标图像。 通过 水产品到水面的距离, 以及预设的距离范围, 能够准确捕捉鱼虾等水产品尚未离开水面但 即将离开水面的图像。 0040 在另一具体实施方式中, 可以在水产品从水中逐渐上升至水面并离开水面的过程 中, 获取水产品离开水面的持续时间。 当水产品离开水面的持续时间达到预设的时间阈值 时, 采集水产品的目标图像。 通过水产品离开水面的持续时间, 以及预设的时间阈值, 能够 准确捕捉鱼虾等水产品离开水面一段时间后处于稳定状态的目标图像。 0041 步骤S102: 根据预设的机器学习模型, 识别目标图像中的水产品个体。 神经网络。

24、和 深度学习等机器学习模型, 已经广泛应用于人工智能的各个领域, 其最常见的应用场景即 分类。 水产品个体识别的本质也是分类问题。 采用现有的机器学习模型并加以训练, 能够实 现对水产品个体的有效识别。 0042 步骤S103: 统计识别到的水产品个体的数量。 在成功识别目标图像中的水产品个 体后, 通过计数的方式能够自动统计水产品个体的数量。 0043 为了提高目标图像的清晰度, 从而进一步改善水产品个体识别的准确度, 如图2所 示, 还可以在步骤S101和步骤S102之间增设以下步骤: 0044 步骤S102 : 对目标图像进行预处理。 具体的, 可以采用边缘锐化等图像处理技术 对目标图像。

25、进行预处理, 从而使目标图像中的各个水产品个体的边缘更为突出, 为下一步 机器学习模型的识别做好准备。 说明书 4/7 页 6 CN 112257564 A 6 0045 除了对目标图像进行预处理, 预处理还包括对视频的预处理。 水产品健康判断需 要针对 “动态” 进行预处理, 即对视频进行剪裁, 只保留一段 “动态” 画面即可。 个体识别和数 量统计需则针对 “静态” 进行预处理, 例如去除大量 “动态画面” 。 0046 机器学习模型需要通过大量的样本进行训练, 直至其输出的识别正确率达到预设 的阈值, 为此, 如图2所示, 还可以在步骤S102之前增设以下步骤: 0047 步骤S102”。

26、 : 对机器学习模型进行训练。 经过训练并且识别的正确率达标的机器学 习模型方可应用于生产实际。 0048 本申请实施例提供的水产品数量统计方法, 通过机器视觉采集目标图像, 进而利 用机器学习模型识别并统计目标图像中的水产品个体, 实现自动化的水产品数量统计, 能 够全天候自动采集图像和自动统计水产品个体的数量, 为后续对水产品的生长速度、 健康 状况、 摄食情况、 行为习性的观测和分析提供基础数据。 本申请实施例提供的水产品数量统 计方法, 能够规避人工操作, 解决了传统的水产品计数完全依靠人工操作的问题, 有利于提 高水产品数量统计的抽样频率, 改善传统人工统计信息连续性差的情况, 排除。

27、了人为观测 存在的主观因素干扰。 0049 应理解, 上述实施例中各步骤的序号的大小并不意味着执行顺序的先后, 各过程 的执行顺序应以其功能和内在逻辑确定, 而不应对本申请实施例的实施过程构成任何限 定。 0050 本申请实施例还提供了一种终端设备, 如图3所示, 该终端设备可以包括输入单元 301、 个体识别单元302和数量统计单元303。 0051 具体的, 输入单元301用于获取水产品的目标图像, 目标图像中的水产品处于稳定 状态; 其对应的工作过程可参见上述方法实施例中步骤S101的描述。 0052 个体识别单元302用于根据预设的机器学习模型, 识别目标图像中的水产品个体; 其对应的。

28、工作过程可参见上述方法实施例中步骤S102的描述。 0053 在实际应用中, 个体识别单元302还可以用于对目标图像进行预处理, 以及对机器 学习模型进行训练, 其对应的工作过程可参见上述方法实施例中步骤S102 和步骤S102” 的 描述。 0054 数量统计单元303用于统计识别到的水产品个体的数量; 其对应的工作过程可参 见上述方法实施例中步骤S103的描述。 0055 图4是本申请一实施例提供的另一终端设备的示意图。 如图4所示, 该实施例的终 端设备400包括: 处理器401、 存储器402以及存储在所述存储器402中并可在所述处理器401 上运行的计算机程序403, 例如水产品数量。

29、统计程序。 所述处理器401执行所述计算机程序 403时实现上述各个水产品数量统计方法实施例中的步骤, 例如图1所示的步骤S101至步骤 S103。 或者, 所述处理器401执行所述计算机程序403时实现上述各装置实施例中各模块/单 元的功能, 例如图3所示输入单元301、 个体识别单元302和数量统计单元303的功能。 0056 所述计算机程序403可以被分割成一个或多个模块/单元, 所述一个或者多个模 块/单元被存储在所述存储器402中, 并由所述处理器401执行, 以完成本申请。 所述一个或 多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段, 该指令段用于描述 所述计算机程序。

30、403在所述终端设备400中的执行过程。 例如, 所述计算机程序403可以被分 割成同步模块、 汇总模块、 获取模块、 返回模块(虚拟装置中的模块)。 说明书 5/7 页 7 CN 112257564 A 7 0057 所述终端设备400可以是桌上型计算机、 笔记本、 掌上电脑及云端服务器等计算设 备。 所述终端设备可包括, 但不仅限于, 处理器401、 存储器402。 本领域技术人员可以理解, 图4仅仅是终端设备400的示例, 并不构成对终端设备400的限定, 可以包括比图示更多或更 少的部件, 或者组合某些部件, 或者不同的部件, 例如所述终端设备还可以包括输入输出设 备、 网络接入设备、。

31、 总线等。 0058 所称处理器401可以是中央处理单元(Central Processing Unit, CPU), 还可以是 其他通用处理器、 数字信号处理器(Digital Signal Processor, DSP)、 专用集成电路 (Application Specific Integrated Circuit, ASIC)、 现成可编程门阵列(Field- Programmable Gate Array, FPGA)或者其他可编程逻辑器件、 分立门或者晶体管逻辑器件、 分立硬件组件等。 通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器 等。 0059 所述存储器402可。

32、以是所述终端设备400的内部存储单元, 例如终端设备400的硬 盘或内存。 所述存储器402也可以是所述终端设备400的外部存储设备, 例如所述终端设备 400上配备的插接式硬盘, 智能存储卡(Smart Media Card ,SMC), 安全数字(Secure Digital,SD)卡, 闪存卡(Flash Card)等。 进一步地, 所述存储器402还可以既包括所述终端 设备400的内部存储单元也包括外部存储设备。 所述存储器402用于存储所述计算机程序以 及所述终端设备所需的其他程序和数据。 所述存储器402还可以用于暂时地存储已经输出 或者将要输出的数据。 0060 所属领域的技术人。

33、员可以清楚地了解到, 为了描述的方便和简洁, 仅以上述各功 能单元、 模块的划分进行举例说明, 实际应用中, 可以根据需要而将上述功能分配由不同的 功能单元、 模块完成, 即将所述装置的内部结构划分成不同的功能单元或模块, 以完成以上 描述的全部或者部分功能。 实施例中的各功能单元、 模块可以集成在一个处理单元中, 也可 以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一个单元中, 上述集成的 单元既可以采用硬件的形式实现, 也可以采用软件功能单元的形式实现。 另外, 各功能单 元、 模块的具体名称也只是为了便于相互区分, 并不用于限制本申请的保护范围。 上述系统 中单元、 模块的具。

34、体工作过程, 可以参考前述方法实施例中的对应过程, 在此不再赘述。 0061 在上述实施例中, 对各个实施例的描述都各有侧重, 某个实施例中没有详述或记 载的部分, 可以参见其它实施例的相关描述。 0062 本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各示例的单 元及算法步骤, 能够以电子硬件、 或者计算机软件和电子硬件的结合来实现。 这些功能究竟 以硬件还是软件方式来执行, 取决于技术方案的特定应用和设计约束条件。 专业技术人员 可以对每个特定的应用来使用不同方法来实现所描述的功能, 但是这种实现不应认为超出 本申请的范围。 0063 在本申请所提供的实施例中, 应该理解到。

35、, 所揭露的装置/终端设备和方法, 可以 通过其它的方式实现。 例如, 以上所描述的装置/终端设备实施例仅仅是示意性的, 例如, 所 述模块或单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可以有另外的划分方式, 例如 多个单元或组件可以结合或者可以集成到另一个系统, 或一些特征可以忽略, 或不执行。 另 一点, 所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口, 装置 或单元的间接耦合或通讯连接, 可以是电性, 机械或其它的形式。 说明书 6/7 页 8 CN 112257564 A 8 0064 所述作为分离部件说明的单元可以是或者也可以不是物理上分开的, 作为单元显 。

36、示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个 网络单元上。 可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目 的。 0065 另外, 在本申请各个实施例中的各功能单元可以集成在一个处理单元中, 也可以 是各个单元单独物理存在, 也可以两个或两个以上单元集成在一个单元中。 上述集成的单 元既可以采用硬件的形式实现, 也可以采用软件功能单元的形式实现。 0066 所述集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或 使用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本申请实现上述实施 例方法中的全部或部分流。

37、程, 也可以通过计算机程序来指令相关的硬件来完成, 所述的计 算机程序可存储于一计算机可读存储介质中, 该计算机程序在被处理器执行时, 可实现上 述各个方法实施例的步骤。 其中, 所述计算机程序包括计算机程序代码, 所述计算机程序代 码可以为源代码形式、 对象代码形式、 可执行文件或某些中间形式等。 所述计算机可读介质 可以包括: 能够携带所述计算机程序代码的任何实体或装置、 记录介质、 U盘、 移动硬盘、 磁 碟、 光盘、 计算机存储器、 只读存储器(ROM, Read-Only Memory)、 随机存取存储器(RAM, Random Access Memory)、 电载波信号、 电信信号。

38、以及软件分发介质等。 需要说明的是, 所述 计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增 减, 例如在某些司法管辖区, 根据立法和专利实践, 计算机可读介质不包括电载波信号和电 信信号。 0067 以上所述实施例仅用以说明本申请的技术方案, 而非对其限制; 尽管参照前述实 施例对本申请进行了详细的说明, 本领域的普通技术人员应当理解: 其依然可以对前述各 实施例所记载的技术方案进行修改, 或者对其中部分技术特征进行等同替换; 而这些修改 或者替换, 并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围, 均应 包含在本申请的保护范围之内。 说明书 7/7 页 9 CN 112257564 A 9 图1 图2 图3 说明书附图 1/2 页 10 CN 112257564 A 10 图4 说明书附图 2/2 页 11 CN 112257564 A 11 。

展开阅读全文
内容关键字: 水产品 数量 统计 方法 终端设备 存储 介质
关于本文
本文标题:水产品数量统计方法、终端设备及存储介质.pdf
链接地址:https://www.zhuanlichaxun.net/pdf/10635758.html
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1