含抽蓄与新能源发电的柔性直流输电系统日前调度方法.pdf

上传人:1520****312 文档编号:10538474 上传时间:2021-06-23 格式:PDF 页数:19 大小:1.40MB
收藏 版权申诉 举报 下载
含抽蓄与新能源发电的柔性直流输电系统日前调度方法.pdf_第1页
第1页 / 共19页
含抽蓄与新能源发电的柔性直流输电系统日前调度方法.pdf_第2页
第2页 / 共19页
含抽蓄与新能源发电的柔性直流输电系统日前调度方法.pdf_第3页
第3页 / 共19页
文档描述:

《含抽蓄与新能源发电的柔性直流输电系统日前调度方法.pdf》由会员分享,可在线阅读,更多相关《含抽蓄与新能源发电的柔性直流输电系统日前调度方法.pdf(19页完成版)》请在专利查询网上搜索。

1、(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 202010382342.X (22)申请日 2020.05.08 (71)申请人 清华大学 地址 100084 北京市海淀区清华园1号 申请人 国网北京市电力公司 (72)发明人 胡泽春曹敏健徐绍军马慧远 (74)专利代理机构 北京清亦华知识产权代理事 务所(普通合伙) 11201 代理人 廖元秋 (51)Int.Cl. H02J 3/46(2006.01) H02J 3/38(2006.01) H02J 3/00(2006.01) (54)发明名称 含抽蓄与新能源发电的柔性直。

2、流输电系统 日前调度方法 (57)摘要 本发明提出一种含抽蓄与新能源发电的柔 性直流输电系统日前调度方法, 属于电网及储能 系统调度技术领域。 该方法首先建立各新能源场 站出力预测相对误差概率模型; 根据所有新能源 厂站的日前出力预测数据, 建立新能源场站日前 出力预测典型场景集, 计算各新能源场站在每个 日前出力预测典型场景下修正后的日前出力测 数据; 然后建立由目标函数和约束条件构成的建 立含抽蓄和新能源发电的柔性直流输电系统日 前调度优化模型并求解, 获得日前定/变速机组 的抽水和发电运行计划。 本发明将新能源场站日 前预测出力误差考虑到日前调度优化模型中, 合 理安排次日定/变速抽水蓄。

3、能机组运行, 保证柔 性直流输电系统传输功率约束前提下, 实现新能 源发电的送出与消纳。 权利要求书5页 说明书13页 CN 111525627 A 2020.08.11 CN 111525627 A 1.一种含抽蓄与新能源发电的柔性直流输电系统日前调度方法, 其特征在于, 该方法 包括以下步骤: 1)计算柔性直流输电系统中所有新能源场站在每个历史采样点的出力预测相对误差, 建立每个新能源场站对应的出力预测相对误差概率模型; 具体步骤如下: 1-1)对过去全年柔性直流输电系统中所有新能源场站的实际出力数据和预测出力数 据进行采样, 其中采样周期为15分钟, 将任一新能源场站r第i个历史采样点的。

4、实际出力值 记为Pr,his(i), 新能源场站r第i个历史采样点的预测出力值记为 1-2)计算新能源场站r在每个历史采样点的出力预测相对误差, 表达式如下: 其中, Pr,ins为新能源场站r的装机容量, 新能源场站r在第i个历史采样点的出力预测相 对误差记为 r,i; 1-3)对所有新能源场站, 选取相对误差百分比步长 , 利用每个新能源场站r所有历史 采样点的出力预测相对误差 r,i绘制该新能源场站对应的预测误差直方图; 对于新能源场站r对应的预测误差直方图, 令该直方图中第i个相对误差段的出力预测 误差中心值为Ar,i, 该相对误差段的直方图高度为Hr,i, 令新能源场站r对应的拟合分。

5、布指标 r: 其中, Nr为当选取相对误差百分比步长为 时, 新能源场站r对应的预测误差直方图的总 区间数;为选取的分布模型; 对于每种分布模型, 通过极大似然估计方法, 确定基于该分布模型的相关参数, 并分别 根据各分布模型拟合结果, 计算每种分布模型所对应的拟合分布指标r, 选取使得拟合分 布指标r最小的分布模型为新能源场站r对应的出力预测相对误差概率模型; 2)获取柔性直流输电系统中所有新能源厂站的日前出力预测数据, 生成每个新能源场 站的日前出力预测相对误差典型场景, 建立新能源场站日前出力预测典型场景集, 计算各 新能源场站在每个日前出力预测典型场景下修正后的日前出力预测值; 具体步。

6、骤如下: 2-1)令采样周期为15分钟, 获取柔性直流输电系统中每个新能源场站的日前出力预测 数据, 每个新能源场站共获得96个日前出力预测数据; 将新能源场站r在日前第i个采样点 的出力预测值记为 2-2)利用步骤1)确定的新能源场站r对应的出力预测相对误差概率模型, 重复运用Q次 蒙特卡洛方法模拟运行, 获得该新能源场站共计Q组日前出力预测相对误差序列, 每组日前 出力预测误差序列包含分别对应全天96个采样点的日前出力预测相对误差值; 对Q组日前 出力预测相对误差序列, 运用K-Means聚类方法, 最终获得新能源场站r对应的聚类后的W组 日前出力预测相对误差序列, 将聚类后的每组日前出力。

7、预测相对误差序列作为该新能源场 站r的一个日前出力预测相对误差典型场景; 2-3)对每个新能源场站分别对应的W个日前出力预测相对误差典型场景依次从1到W进 权利要求书 1/5 页 2 CN 111525627 A 2 行编号, 将编号相同的各新能源场站对应的日前出力预测相对误差典型场景组成一个新能 源场站日前出力预测典型场景, 所有新能源场站日前出力预测典型场景构成新能源场站日 前出力预测典型场景集, 该场景集共包括W个新能源场站日前出力预测典型场景; 2-4)对于场景集中任一典型场景, 将新能源场站r在该典型场景对应的日前出力 预测相对误差序列记为其中表示新能源场站r在场景下第i个 采样点的。

8、日前出力预测相对误差, 则新能源场站r在该典型场景下对应的日前出力预测误 差的绝对值序列为该新能源场站r在场景下第i个采样 点修正后的日前出力预测值为: 利用式(3), 最终得到中各典型场景下每个新能源场站r在各采样点的修正后的日前 出力预测值; 3)建立含抽蓄和新能源发电的柔性直流输电系统日前调度优化模型, 该模型由目标函 数和约束条件构成; 具体步骤如下: 3-1)确定模型的目标函数, 表达式如下: 其中, k为采样点序号, k1,2,.,96;为第k个采样点的抽水蓄能机组的启停成 本,为场景下第k个采样点的电池储能运行成本,为场景下第k个采样点的弃 新能源成本,为场景下第k个采样点的负荷。

9、失配成本, ; 其中, 式(5)中, Csu,Csd,Cvd,Cvd分别表示定速抽水蓄能机组启动成本、 定速抽水蓄能机组关停 成本、 变速抽水蓄能机组启动成本和变速抽水蓄能机组关停成本;分别表 示第k个采样点j节点处的抽水蓄能电站中定速抽水蓄能机组启动抽水台数、 定速抽水蓄能 机组停止抽水台数、 变速抽水蓄能机组启动抽水台数、 变速抽水蓄能机组停止抽水台数, M 权利要求书 2/5 页 3 CN 111525627 A 3 表示柔性直流输电系统的节点总数; 式(6)中,表示在场景下第k个采样点所有节点的电池储能充放电运行费用, t 为采样周期, c和 d分别表示电池储能充电成本参数和放电成本参。

10、数;和分别表 示场景下j节点处在第k个采样点的电池储能的充电功率和放电功率; 式(7)中, W和 S分别为风力发电和光伏发电的弃用惩罚系数, W,k和 S,k分别为第k个采 样点的风电上网电价和光伏上网电价; 场景下在第k个采样点连接在j节点的风电场修正 预测出力为场景下在第k个采样点连接在j节点的光伏电站的修正预测出力为 场景下在第k个采样点连接在j节点的风电场上网功率为场景下在第k个 采样点连接在j节点的光伏电站上网功率为 式(8)中, L表示负荷失配惩罚系数, k表示第k个采样点的负荷电价,表示在第k个 采样点j节点处的负荷功率,表示场景下在第k个采样点连接在j节点的所有发电设 备的发电。

11、功率; 其中,计算表达式如式(9)所示: 式(9)中,和分别表示场景下在第k个采样点连接在j节点的定速抽水蓄能 机组发电功率和抽水功率;和分别表示场景下在第k个采样点连接在j节点的 变速抽水蓄能机组发电功率和抽水功率; 3-2)确定模型的约束条件; 具体如下: 3-2-1)抽蓄机组工作状态及储能充放电状态互斥约束: 式中,分别为第k个采样点储能 充/放电状态的二进制变量, 表示储能类别, 储能 类别包括抽水蓄能机组 和电池储能B; 3-2-2)定/变速抽水蓄能机组运行约束: 权利要求书 3/5 页 4 CN 111525627 A 4 式中, 为第k个采样点工作在抽水状态的抽水蓄能机组台数, 。

12、sp、 vp分别表示定速抽 水蓄能机组机组和变速抽水蓄能机组;表示第k个采样点连接在j节点工作在抽水状态 的定速抽水蓄能机组台数,表示第k个采样点连接在j节点工作在抽水状态的变速抽水 蓄能机组台数,表示第k个采样点在j节点处定速抽水蓄能机组的启动机组数目,表 示第k个采样点在j节点处变速抽水蓄能机组的启动机组数目,表示第k个采样点在j节 点处定速抽水蓄能机组的关闭机组数目,表示第k个采样点在j节点处变速抽水蓄能机 组的关闭机组数目; 分别表示j节点处抽水蓄能电站的定速抽水蓄能机组和变速机组抽水蓄能 日内最多启停次数;pvp分别为场景下在第k个采样点连接在j节点的变速抽 水蓄能机组的抽水功率、 。

13、单台变速抽水蓄能机组的抽水上限功率和下限功率,为在第k 个采样点连接在j节点的定速抽水蓄能机组的抽水功率,为单台定速抽水蓄能机组的额 定抽水功率;g 分别为场景下在第k个采样点连接在j节点的抽水蓄能机组 的发电功率、 单台抽水蓄能机组的上限发电功率和下限发电功率; sp,vp, 表示抽 水蓄能电站中定速抽水蓄能机组或变速抽水蓄能机组的台数;和分别表示场 景下在第k个采样点j节点处抽水蓄能机组的抽水功率和发电功率; 3-2-3)抽水蓄能电站的容量约束: 式中,和分别表示场景下在第k个采样点j节点处的上水库库容和下水库库 容, g和 p分别为抽水蓄能机组的发电阶段的功率-水量转换常数和抽水阶段的功。

14、率-水量 转换常数, j节点处上水库的库容上、 下限分别为和j节点处下水库的库容上、 下限分 别为和和 j分别表示j节点处首末段时段的最大库容变动量和最小库容变动量; 3-2-4)电池储能系统运行约束: 权利要求书 4/5 页 5 CN 111525627 A 5 式中,和分别表示场景下在第k个采样点j节点处电池储能的充电功率和放 电功率; 和pc分别表示电池储能的最大、 最小充电功率,和pd分别表示电池储能的最 大、 最小放电功率;和分别表示场景下在第k个采样点j节点处的电池储能的充 电状态和放电状态的二进制变量; E0SOCminEj, ,kE0SOCmax (30) 式中, Ej, ,k。

15、为场景下在第k个采样点j节点的存储电量; c和 d分别表示电池储能的 充电效率和放电效率, E0为电池储能的配置额定容量, SOCmax和SOCmin分别表示电池储能运 行的荷电状态上限和下限; 3-2-5)柔性直流输电系统约束: Vk, 0 (34) 令v,k表示场景下在第k个采样点的所有节点电压构成的列向量, 则为M M维矩阵, M表示柔性直流输电系统节点总数, Vij, ,k为场景下在第k个采样点电压矩阵 中位于第i行第j列的元素, 代表场景下在第k个采样点i节点和j节点电压的乘积;表 示场景下在第k个采样点从i节点向j节点的输送的有功功率, 代表连接i、 j节点线路的 传输功率上限; 。

16、rij表示连接i、 j节点线路的电阻值, vi和分别表示i节点的电压下限值和 电压上限值; 4)对步骤3)建立模型求解, 得到次日定/变速抽水蓄能机组的机组启动与关停计划 风电和光伏等新能源上网功率和定/变速机组抽水及发 电功率和储能充放电功率和的最优解; 其中, 将定/变速抽水蓄能机组启停计划的最优解作为次日对应 抽水蓄能机组的动作指令, 得到日前优化调度的结果。 权利要求书 5/5 页 6 CN 111525627 A 6 含抽蓄与新能源发电的柔性直流输电系统日前调度方法 技术领域 0001 本发明涉及电网及储能系统调度技术领域, 尤其涉及一种含抽蓄与新能源发电的 柔性直流输电系统日前调度。

17、方法。 背景技术 0002 当今, 可再生能源发电大规模接入电网, 为全社会的能源消耗提供了重要的支撑。 但是, 由于可再生能源出力主要由外部气象条件决定。 因此, 气象条件的变动将会导致可再 生能源出力呈现较强的波动性和间歇性, 这也给电力系统的运行调度带来了诸多挑战。 大 容量储能技术, 可以与可再生能源在时空尺度上进行配合, 有效平抑其发电的出力波动, 实 现能量在时间和空间上的转移, 从而提高可再生能源发电曲线与受端负荷间的匹配程度。 0003 一般地, 按照储能的电量存储和功率转化特性可以分为功率型储能和容量型储 能。 前者具有较大的功率转换速率、 调节方式灵活, 而后者具备较大的电。

18、量存储能力。 抽水 蓄能电站作为一种较为成熟的能量存储方式, 在电网的调峰应用中广受青睐; 其中, 可变速 抽水蓄能机组相较于定速抽水蓄能机组在抽水阶段表现出更为强大的调节能力, 应用前景 更加广阔。 另外, 电池储能技术由于配置位置灵活且适用于功率、 能量兼顾型场景, 在储能 应用的各个领域(尤其是新能源并网)都获得了应用。 因此, 在新能源富集地区协调调度定/ 变速抽水蓄能机组和电池储能系统可以促进地区大规模新能源的送出与综合利用。 相较于 电池储能, 抽水蓄能机组在运行中存在抽水、 停机和发电三状态, 不宜频繁在多状态间切 换, 即时调节灵活性欠佳。 因此, 在调度综合储能系统时, 需要。

19、根据日前新能源出力功率预 测信息提前确定机组的运行状态以保证日内调度中系统高效、 经济调度。 0004 运行经验表明, 相较于传统交流输电系统, 柔性直流输电系统在长距离输电、 新能 源消纳、 孤岛供电、 有功功率与无功功率控制方面优势明显。 因此, 国内已有部分站点采用 柔性直流输电方式解决大规模风电、 光伏等新能源的并网及远距离传输问题。 但是, 柔性直 流输电线路在运行中存在输电容量上限。 因此, 需要对接入柔性直流输电系统的新能源和 抽水蓄能与电池储能系统统筹调度, 保证新能源可靠送出。 0005 目前, 对于柔性直流输电系统的运行调度问题, 柔性直流输电系统结构多由新能 源、 电池储。

20、能和常规火电机组构成, 调度问题未能考虑抽水蓄能电站中机组的运行特性和 定/变速机组的启停计划安排问题。 另外, 利用抽水蓄能电站消纳新能源的调度问题, 仅考 虑了全系统的功率平衡约束和抽水蓄能运行约束, 而没有考虑柔性直流输电系统的运行约 束。 由于在含抽蓄和新能源发电系统的实际调度中, 需要考虑抽蓄机组的启停及运行调节 特性, 同时考虑线路传输功率约束对大规模新能源发电送出的运行要求限制。 所以, 当前日 前调度策略已不再适用于通过柔性直流输电线路相连接的抽蓄和新能源发电系统运行调 度要求。 发明内容 0006 本发明的目的是为克服已有技术的不足之处, 提出一种含抽蓄与新能源发电的柔 说明。

21、书 1/13 页 7 CN 111525627 A 7 性直流输电系统日前调度方法。 本发明可以将新能源场站日前预测出力误差考虑到日前优 化调度模型之中, 进而合理安排次日定/变速抽水蓄能机组运行, 保证柔性直流输电网络传 输功率约束的前提下, 实现新能源发电的送出与消纳。 0007 本发明提出一种含抽蓄与新能源发电的柔性直流输电系统日前调度方法, 其特征 在于, 该方法包括以下步骤: 0008 1)计算柔性直流输电系统中所有新能源场站在每个历史采样点的出力预测相对 误差, 建立每个新能源场站对应的出力预测相对误差概率模型; 具体步骤如下: 0009 1-1)对过去全年柔性直流输电系统中所有新。

22、能源场站的实际出力数据和预测出 力数据进行采样, 其中采样周期为15分钟, 将任一新能源场站r第i个历史采样点的实际出 力值记为Pr,his(i), 新能源场站r第i个历史采样点的预测出力值记为 0010 1-2)计算新能源场站r在每个历史采样点的出力预测相对误差, 表达式如下: 0011 0012 其中, Pr,ins为新能源场站r的装机容量, 新能源场站r在第i个历史采样点的出力预 测相对误差记为 r,i; 0013 1-3)对所有新能源场站, 选取相对误差百分比步长 , 利用每个新能源场站r所有 历史采样点的出力预测相对误差 r,i绘制该新能源场站对应的预测误差直方图; 0014 对于新。

23、能源场站r对应的预测误差直方图, 令该直方图中第i个相对误差段的出力 预测误差中心值为Ar,i, 该相对误差段的直方图高度为Hr,i, 令新能源场站r对应的拟合分布 指标r: 0015 0016 其中, Nr为当选取相对误差百分比步长为 时, 新能源场站r对应的预测误差直方 图的总区间数;为选取的分布模型; 0017 对于每种分布模型, 通过极大似然估计方法, 确定基于该分布模型的相关参数, 并 分别根据各分布模型拟合结果, 计算每种分布模型所对应的拟合分布指标r, 选取使得拟 合分布指标r最小的分布模型为新能源场站r对应的出力预测相对误差概率模型; 0018 2)获取柔性直流输电系统中所有新。

24、能源厂站的日前出力预测数据, 生成每个新能 源场站的日前出力预测相对误差典型场景, 建立新能源场站日前出力预测典型场景集, 计 算各新能源场站在每个日前出力预测典型场景下修正后的日前出力预测值; 具体步骤如 下: 0019 2-1)令采样周期为15分钟, 获取柔性直流输电系统中每个新能源场站的日前出力 预测数据, 每个新能源场站共获得96个日前出力预测数据; 将新能源场站r在日前第i个采 样点的出力预测值记为 0020 2-2)利用步骤1)确定的新能源场站r对应的出力预测相对误差概率模型, 重复运 用Q次蒙特卡洛方法模拟运行, 获得该新能源场站共计Q组日前出力预测相对误差序列, 每 组日前出力。

25、预测误差序列包含分别对应全天96个采样点的日前出力预测相对误差值; 对Q 说明书 2/13 页 8 CN 111525627 A 8 组日前出力预测相对误差序列, 运用K-Means聚类方法, 最终获得新能源场站r对应的聚类 后的W组日前出力预测相对误差序列, 将聚类后的每组日前出力预测相对误差序列作为该 新能源场站r的一个日前出力预测相对误差典型场景; 0021 2-3)对每个新能源场站分别对应的W个日前出力预测相对误差典型场景依次从1 到W进行编号, 将编号相同的各新能源场站对应的日前出力预测相对误差典型场景组成一 个新能源场站日前出力预测典型场景, 所有新能源场站日前出力预测典型场景构成。

26、新能源 场站日前出力预测典型场景集, 该场景集共包括W个新能源场站日前出力预测典型场景; 0022 2-4)对于场景集中任一典型场景, 将新能源场站r在该典型场景对应的日前 出力预测相对误差序列记为其中表示新能源场站r在场景下第 i个采样点的日前出力预测相对误差, 则新能源场站r在该典型场景下对应的日前出力预测 误差的绝对值序列为该新能源场站r在场景下第i个采 样点修正后的日前出力预测值为: 0023 0024 利用式(3), 最终得到中各典型场景下每个新能源场站r在各采样点的修正后的 日前出力预测值; 0025 3)建立含抽蓄和新能源发电的柔性直流输电系统日前调度优化模型, 该模型由目 标函。

27、数和约束条件构成; 具体步骤如下: 0026 3-1)确定模型的目标函数, 表达式如下: 0027 0028其中, k为采样点序号, k1,2,.,96;为第k个采样点的抽水蓄能机组的启 停成本,为场景下第k个采样点的电池储能运行成本,为场景下第k个采样点 的弃新能源成本,为场景下第k个采样点的负荷失配成本, ; 0029 其中, 0030 0031 0032 0033 说明书 3/13 页 9 CN 111525627 A 9 0034 式(5)中, Csu,Csd,Cvd,Cvd分别表示定速抽水蓄能机组启动成本、 定速抽水蓄能机组 关停成本、 变速抽水蓄能机组启动成本和变速抽水蓄能机组关停。

28、成本;分别 表示第k个采样点j节点处的抽水蓄能电站中定速抽水蓄能机组启动抽水台数、 定速抽水蓄 能机组停止抽水台数、 变速抽水蓄能机组启动抽水台数、 变速抽水蓄能机组停止抽水台数, M表示柔性直流输电系统的节点总数; 0035式(6)中,表示在场景下第k个采样点所有节点的电池储能充放电运行费用, t为采样周期, c和 d分别表示电池储能充电成本参数和放电成本参数;和分别 表示场景下j节点处在第k个采样点的电池储能的充电功率和放电功率; 0036 式(7)中, W和 S分别为风力发电和光伏发电的弃用惩罚系数, W,k和 S,k分别为第k 个采样点的风电上网电价和光伏上网电价; 场景下在第k个采样。

29、点连接在j节点的风电场 修正预测出力为场景下在第k个采样点连接在j节点的光伏电站的修正预测出力为 场景下在第k个采样点连接在j节点的风电场上网功率为场景下在第k个采 样点连接在j节点的光伏电站上网功率为 0037式(8)中, L表示负荷失配惩罚系数,k表示第k个采样点的负荷电价,表示在第 k个采样点j节点处的负荷功率,表示场景下在第k个采样点连接在j节点的所有发电 设备的发电功率; 其中,计算表达式如式(9)所示: 0038 0039式(9)中,和分别表示场景下在第k个采样点连接在j节点的定速抽水 蓄能机组发电功率和抽水功率;和分别表示场景下在第k个采样点连接在j节 点的变速抽水蓄能机组发电功。

30、率和抽水功率; 0040 3-2)确定模型的约束条件; 具体如下: 0041 3-2-1)抽蓄机组工作状态及储能充放电状态互斥约束: 0042 0043式中,分别为第k个采样点储能充/放电状态的二进制变量, 表示储能类 别, 储能类别包括抽水蓄能机组 和电池储能B; 0044 3-2-2)定/变速抽水蓄能机组运行约束: 0045 0046 0047 0048 说明书 4/13 页 10 CN 111525627 A 10 0049 0050 0051 0052 0053 0054 0055式中, 为第k个采样点工作在抽水状态的抽水蓄能机组台数, sp、 vp分别表示定 速抽水蓄能机组机组和变速。

31、抽水蓄能机组;表示第k个采样点连接在j节点工作在抽水 状态的定速抽水蓄能机组台数,表示第k个采样点连接在j节点工作在抽水状态的变速 抽水蓄能机组台数,表示第k个采样点在j节点处定速抽水蓄能机组的启动机组数目, 表示第k个采样点在j节点处变速抽水蓄能机组的启动机组数目,表示第k个采样点 在j节点处定速抽水蓄能机组的关闭机组数目,表示第k个采样点在j节点处变速抽水蓄 能机组的关闭机组数目; 0056分别表示j节点处抽水蓄能电站的定速抽水蓄能机组和变速机组抽水 蓄能日内最多启停次数;pvp分别为场景下在第k个采样点连接在j节点的变 速抽水蓄能机组的抽水功率、 单台变速抽水蓄能机组的抽水上限功率和下限。

32、功率,为在 第k个采样点连接在j节点的定速抽水蓄能机组的抽水功率,为单台定速抽水蓄能机组 的额定抽水功率;g 分别为场景下在第k个采样点连接在j节点的抽水蓄能 机组的发电功率、 单台抽水蓄能机组的上限发电功率和下限发电功率; 表示抽水蓄能电站中定速抽水蓄能机组或变速抽水蓄能机组的台数;和分别表 示场景下在第k个采样点j节点处抽水蓄能机组的抽水功率和发电功率; 0057 3-2-3)抽水蓄能电站的容量约束: 0058 0059 0060 0061 0062 0063式中,和分别表示场景下在第k个采样点j节点处的上水库库容和下 水库库容, g和 p分别为抽水蓄能机组的发电阶段的功率-水量转换常数和。

33、抽水阶段的功 说明书 5/13 页 11 CN 111525627 A 11 率-水量转换常数, j节点处上水库的库容上、 下限分别为和j节点处下水库的库容 上、 下限分别为和和 j分别表示j节点处首末段时段的最大库容变动量和最小库容 变动量; 0064 3-2-4)电池储能系统运行约束: 0065 0066 0067 0068式中,和分别表示场景下在第k个采样点j节点处电池储能的充电功 率和放电功率; 和pc分别表示电池储能的最大、 最小充电功率, 和pd分别表示电池储能 的最大、 最小放电功率;和分别表示场景下在第k个采样点j节点处的电池储能 的充电状态和放电状态的二进制变量; 0069 。

34、0070 E0SOCminEj, ,kE0SOCmax (30) 0071 式中, Ej, ,k为场景下在第k个采样点j节点的存储电量; c和 d分别表示电池储 能的充电效率和放电效率, E0为电池储能的配置额定容量, SOCmax和SOCmin分别表示电池储 能运行的荷电状态上限和下限; 0072 3-2-5)柔性直流输电系统约束: 0073 0074 0075 0076 0077 Vk, 0 (34) 0078 令v ,k表示场景下在第k个采样点的所有节点电 压构成的列向量 , 则 为MM维矩阵, M表示柔性直流输电系统节点总数, Vij, ,k为场景下在第k个 采样点电压矩阵中位于第i行。

35、第j列的元素, 代表场景下在第k个采样点i节点和j节点电 压的乘积;表示场景下在第k个采样点从i节点向j节点的输送的有功功率, 代表连 接i、 j节点线路的传输功率上限; rij表示连接i、 j节点线路的电阻值, vi和分别表示i节点 的电压下限值和电压上限值; 0079 4)对步骤3)建立模型求解, 得到次日定/变速抽水蓄能机组的机组启动与关停计 划风电和光伏等新能源上网功率和定/变速机组抽水及发 说明书 6/13 页 12 CN 111525627 A 12 电功率和储能充放电功率和的最优解; 0080其中, 将定/变速抽水蓄能机组启停计划的最优解作为次日 对应抽水蓄能机组的动作指令, 得。

36、到日前优化调度的结果。 0081 本发明的特点及有益效果: 0082 1、 本发明考虑含定/变速抽水蓄能机组和电池储能的混合储能系统, 用以促进新 能源富集地区大规模新能源送出与消纳, 混合储能系统存储电量大, 调节灵活性强; 0083 2、 本发明将抽水蓄能机组与电池储能混合系统、 新能源发电厂场站和受端负荷均 接入柔性直流输电系统, 日前调度优化阶段考虑柔性直流输电功率传输限制, 调度算法可 限制全时段线路传输功率在限值范围之内, 保证系统运行安全性要求; 0084 3.本发明充分结合日前预测出力数据和新能源场站预测出力误差情况制定调度 方案, 调度方案可以保证系统有效应对日前新能源出力存。

37、在预测偏差情况, 提升计及新能 源预测出力偏差时的系统运行的效率。 具体实施方式 0085 本发明提出一种含抽蓄与新能源发电的柔性直流输电系统日前调度方法, 下面结 合具体实施例对本发明作进一步详细描述。 0086 本发明提出一种含抽蓄与新能源发电的柔性直流输电系统日前调度方法, 包括以 下步骤: 0087 1)计算柔性直流输电系统中所有新能源场站(本发明中新能源场站包括风电场和 光伏电站)在每个历史采样点的出力预测相对误差, 建立每个新能源场站对应的出力预测 相对误差概率模型。 具体步骤如下: 0088 1-1)对过去全年柔性直流输电系统中所有新能源场站的实际出力数据和预测出 力数据进行采样。

38、, 其中采样周期为15分钟, 将任一新能源场站r第i个历史采样点的实际出 力值记为Pr,his(i), 新能源场站r第i个历史采样点的预测出力值记为 0089 1-2)计算新能源场站r在每个历史采样点的出力预测相对误差, 表达式如下: 0090 0091 其中, Pr,ins为新能源场站r的装机容量。 新能源场站r在第i个历史采样点的出力预 测相对误差记为 r,i, r,i0表示该历史采样点的新能源的预测出力小于实际出力; r,i0 表示该历史采样点的新能源的预测出力大于实际出力。 0092 1-3)对包含新能源场站r在内的所有新能源场站, 选取固定的相对误差百分比步 长 (建议范围2-5),。

39、 利用每个新能源场站r所有历史采样点的出力预测相对误差 r,i绘 制该新能源场站对应的预测误差直方图(每个直方图中包含多个相对误差段)。 对于新能源 场站r对应的预测误差直方图, 令该直方图中第i个相对误差段的出力预测误差百分比中心 值为Ar,i, 该相对误差段的直方图高度为Hr,i。 定义新能源场站r对应的拟合分布指标r: 0093 说明书 7/13 页 13 CN 111525627 A 13 0094 其中, Nr为当选取相对误差百分比步长为 时, 新能源场站r对应的预测误差直方 图的总区间数。为选取的分布模型, 可采用正态分布、 带位置和尺度参数的t分布、 极值 分布等用于拟合新能源出。

40、力预测相对误差的经典概率分布模型。 0095 对于每种分布模型, 通过极大似然估计方法, 确定基于该分布模型的相关参数, 并 分别根据各分布模型拟合结果, 计算每种分布模型所对应的拟合分布指标r。 选取使得拟 合分布指标r最小的分布模型为新能源场站r对应的出力预测相对误差概率模型。 0096 2)获取柔性直流输电系统中所有新能源厂站的日前出力预测数据, 通过随机模拟 和聚类生成每个新能源场站的日前出力预测误差典型场景, 构建新能源场站日前出力预测 典型场景集, 计算各新能源场站在每个日前出力预测典型场景下修正后的日前出力预测 值。 0097 具体步骤如下: 0098 2-1)令采样周期为15分。

41、钟, 从预测中心获得柔性直流输电系统中每个新能源场站 的日前出力预测数据, 每个新能源场站共获得96个日前出力预测数据; 将新能源场站r在日 前第i个采样点的出力预测值记为 0099 2-2)新能源发电由于受外界气象因素影响, 出力呈现较大的不确定性。 因此, 仅根 据日前预测数据安排抽水蓄能机组工作状态, 可能在出力存在较大偏差时系统调度经济性 欠佳。 所以, 在实际调度运行中可以通过构建场景集的方式, 根据新能源场站出力预测误差 情况, 确定运行调度可能的场景, 考虑日前系统的优化调度。 具体来说, 基于步骤1)确定的 新能源场站r对应的出力预测相对误差概率模型, 重复运用Q次(取值500。

42、-1000次)蒙特卡洛 方法模拟运行, 获得该新能源场站的共计Q组日前出力预测相对误差序列(每组日前出力预 测误差序列包含分别对应全天96个采样点的日前出力预测相对误差值)。 对Q组日前出力预 测相对误差序列, 运用K-Means聚类方法, 最终获得新能源场站r对应的聚类后的W组日前出 力预测相对误差序列(35组)作为该新能源场站r的日前出力预测相对误差典型场景。 0100 2-3)分别对柔性直流输电系统中的所有新能源场站生成相等数量(均为W组)的典 型场景, 对每个新能源场站分别对应的W个日前出力预测相对误差典型场景依次从1到W进 行编号, 将编号相同的各新能源场站对应的日前出力预测相对误差。

43、典型场景组成一个新能 源场站日前出力预测典型场景, 所有新能源场站日前出力预测典型场景构成新能源场站日 前出力预测典型场景集, 该场景集共包括W个新能源场站日前出力预测典型场景。 0101 2-4)对于场景集中任一典型场景, 将新能源场站r在该典型场景对应的日前 出力预测相对误差序列记为其中表示新能源场站r在场景下第i 个采样点的日前出力预测相对误差, 则新能源场站r在该典型场景下对应的日前出力预测 误差的绝对值序列为若已获得新能源场站r在第i个采样 点的日前预测出力为考虑到新能源场站的实际出力运行限制要求, 则该新能源场站r 在场景下第i个采样点修正后的日前出力预测值为: 说明书 8/13 。

44、页 14 CN 111525627 A 14 0102 0103 利用式(3), 最终得到中各典型场景下每个新能源场站r在各采样点的修正后的 日前出力预测值。 0104 3)建立含抽蓄和新能源发电的柔性直流输电系统日前调度优化模型, , 该模型由 目标函数和约束条件构成。 具体步骤如下: 0105 3-1)确定模型的目标函数; 0106 由于新能源场站修正后的日前出力预测数据与当日实际运行数据之间存在一定 的偏差, 因此在安排日前含抽水蓄能机组的运行调度计划时, 需要考虑预测偏差对调度计 划安排的影响。 结合步骤2)中生成的日前出力典型场景集构造调度模型的目标函数: 0107 0108 该目标。

45、函数为运行总成本的最小化; 0109 其中, 为日前新能源场站出力预测典型场景集, 中场景数为W。 k为采样点序 号, 日前采样周期为15分钟, 则一日采样点总数为96点, 因此k1,2,.,96。 在场景下 第k个采样点运行总成本包含抽水蓄能机组的启停成本电池储能运行成本弃新 能源成本和负荷失配成本 0110 其中, 0111 0112 0113 0114 0115式(5)中,为第k个采样点的抽水蓄能机组的启停成本(抽水蓄能机组, 简称抽 蓄机组, 包括定速抽水蓄能机组和变速抽水蓄能机组), Csu,Csd,Cvd,Cvd分别表示定速抽水蓄 能机组启动成本、 定速抽水蓄能机组关停成本、 变速。

46、抽水蓄能机组启动成本和变速抽水蓄 能机组关停成本。分别表示第k个采样点j节点处的抽水蓄能电站中定速抽 水蓄能机组启动抽水台数、 定速抽水蓄能机组停止抽水台数、 变速抽水蓄能机组启动抽水 台数、 变速抽水蓄能机组停止抽水台数, 均为整数决策变量, M表示柔性直流输电系统的节 点总数。 0116式(6)中,表示在场景下第k个采样点所有节点的电池储能充放电运行费用, 说明书 9/13 页 15 CN 111525627 A 15 t为采样周期(为15分钟), c和 d分别表示电池储能充放电成本参数(论文: cooperative dispatch of BESS and wind power gen。

47、eration considering carbon esmission limitation in Australia中可以查到充放电成本参数为$100/MWh);和分别表示 场景下j节点处在第k个采样点的电池储能的充电功率和放电功率。 0117 式(7)中, W和 S分别为风力发电和光伏发电的弃用惩罚系数(根据调度部门运行 需求设置, 或者前人研究论文可以查到此类参数取值。 比如: Flexible-regulation resources planning for distributionnetworks with a high penetration of renewableenerg。

48、y一文中的风电和光伏弃用惩罚费用均设置为0.5元/kWh), W,k和 S,k分别 为第k个采样点的风电上网电价和光伏上网电价。 0118场景下在第k个采样点连接在j节点的风电场修正预测出力为场景下在 第k个采样点连接在j节点的光伏电站的修正预测出力分别为(和均根据式 (3)计算得到)场景下在第k个采样点连接在j节点的风电场上网功率为场景下在 第k个采样点连接在j节点的光伏电站上网功率为式(8)中, L和 k分别表示负荷失配 惩罚系数(此处也可以根据调度部门运行经验, 或者查阅文献, 如On the Use of Pumped Storage for Wind Energy Maximizat。

49、ion in Transmission-Constrained Power Systems有不能满足负荷时的削减负荷费用)和第k个采样点的负荷电价,表示在第k个 采样点j节点处的负荷功率,表示场景下在第k个采样点连接在j节点的所有发电设 备的发电功率。 其中,计算表达式如式(9)所示, 包含定/变速机组净发电功率、 电池储 能净放电功率、 风力上网发电功率和光伏上网发电功率。 0119 0120式(9)中,和分别表示场景下在第k个采样点连接在j节点的定速抽水 蓄能机组发电功率和抽水功率;和分别表示场景下在第k个采样点连接在j节 点的变速抽水蓄能机组发电功率和抽水功率。 3-2)确定模型的约束条。

50、件; 具体如下: 0121 3-2-1)抽蓄机组工作状态及储能充放电状态互斥约束: 0122 0123 式(10)表示第k个采样点抽蓄机组(或储能设备)仅可以工作在充电或者放电模式 下, 不可同时充放电,分别为第k个采样点储能充/放电状态的二进制变量。 当等于 0时表示k时刻电池储能未充电, 或抽蓄机组未工作在抽水状态; 当等于1时表示k时刻电 池储能充电, 或抽蓄机组工作在抽水状态。 当等于0时表示k时刻电池储能未放电, 或抽蓄 机组未工作在发电状态; 当等于1时表示k时刻电池储能放电, 或抽蓄机组工作在发电状 态。 表示储能类别, 储能类别包括抽水蓄能机组 和电池储能B。 0124 3-2。

展开阅读全文
内容关键字: 含抽蓄 新能源 发电 柔性 直流 输电 系统 日前 调度 方法
关于本文
本文标题:含抽蓄与新能源发电的柔性直流输电系统日前调度方法.pdf
链接地址:https://www.zhuanlichaxun.net/pdf/10538474.html
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1