用于酸性矿水治理的新型可渗透反应墙装置和填料.pdf
《用于酸性矿水治理的新型可渗透反应墙装置和填料.pdf》由会员分享,可在线阅读,更多相关《用于酸性矿水治理的新型可渗透反应墙装置和填料.pdf(19页完成版)》请在专利查询网上搜索。
1、(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 202010493603.5 (22)申请日 2020.06.03 (71)申请人 山西大学 地址 030006 山西省太原市坞城路92号 (72)发明人 智建辉武松丽师泽鹏耿红 刘付兴 (74)专利代理机构 太原申立德知识产权代理事 务所(特殊普通合伙) 14115 代理人 郭海燕 (51)Int.Cl. C02F 1/00(2006.01) C02F 101/20(2006.01) C02F 101/16(2006.01) C02F 101/10(2006.01) C02F 。
2、103/10(2006.01) (54)发明名称 一种用于酸性矿水治理的新型可渗透反应 墙装置和填料 (57)摘要 本发明属于可渗透反应装置技术领域, 具体 涉及一种用于酸性矿水处理的新型多段拼接结 构可渗透反应墙装置和填料。 由多段墙体连接组 成, 在所述墙体中部设置有倒梯型的水通道, 在 所述水通道内的墙壁上均匀的设置有若干插槽, 在所述插槽内活动设置有过滤板。 由粉煤灰、 纳 米四氧化三铁与石英砂组成的新型组合填料。 本 发明新型可渗透反应墙填料用于治理酸性矿水, 新型多段拼接结构可渗透反应墙装置可用于多 种水污染治理。 权利要求书1页 说明书8页 附图9页 CN 111606371 A。
3、 2020.09.01 CN 111606371 A 1.一种用于酸性矿水治理的新型可渗透反应墙装置, 其特征在于: 由多段墙体(1)连接 组成, 在所述墙体(1)中部设置有倒梯型的水通道(2), 在所述水通道(2)内的墙壁上均匀的 设置有若干插槽(3), 在所述插槽(3)内活动设置有过滤板(4)。 2.根据权利要求1所述的一种用于酸性矿水治理的新型可渗透反应墙装置, 其特征在 于: 所述插槽(3)的上端向后倾斜设置, 以使过滤板(4)能够倾斜放置。 3.根据权利要求1所述的一种用于酸性矿水治理的新型可渗透反应墙装置, 其特征在 于: 在所述水通道(2)两侧的墙壁中设置有中空通道(5), 在所。
4、述中空通道(5)内设置有浓度 检测器(6), 在所述中空通道(5)的底部设置有与水通道(2)连通的的导流孔(7), 用于穿过 管道, 将水通道(2)内的水输送至浓度检测器(6)。 4.根据权利要求3所述的一种用于酸性矿水治理的新型可渗透反应墙装置, 其特征在 于: 在所述中空通道(5)内还设置有水泵(8), 在所述中空通道(5)的底部还设置有与水通道 (2)连通的出水孔(9), 用于穿过与水泵(8)出水端连接的管道。 5.根据权利要求1所述的一种用于酸性矿水治理的新型可渗透反应墙装置, 其特征在 于: 多段所述墙体(1)之间的连接方式可以是并联、 串联、 上下叠放中的一种或者任意组合。 6.根。
5、据权利要求5所述的一种用于酸性矿水治理的新型可渗透反应墙装置, 其特征在 于: 在多段所述墙体(1)的连接缝隙之间设置有填缝剂层(13), 以保持相邻墙体(1)之间的 连续性。 7.根据权利要求6所述的一种用于酸性矿水治理的新型可渗透反应墙装置, 其特征在 于: 在由多段连接在一起的所述墙体(1)形成的中空通道(5)的入口处和出口处均设置有开 合门(10), 以实现中空通道(5)的封闭。 8.根据权利要求1所述的一种用于酸性矿水治理的新型可渗透反应墙装置, 其特征在 于: 所述过滤板(4)由中间的板状填料层(14)和包裹在板状填料层(14)外侧的过滤网(15) 组成。 9.一种应用于权利要求1。
6、所述用于酸性矿水治理的新型可渗透反应墙装置的填料, 其 特征在于: 所述填料由粉煤灰、 纳米四氧化三铁与石英砂以质量比为8:0.52:4组成, 应用 于板状填料层(14)。 10.一种用于酸性矿水治理的新型可渗透反应墙装置的应用, 其特征在于: 用于治理酸 矿水污染。 权利要求书 1/1 页 2 CN 111606371 A 2 一种用于酸性矿水治理的新型可渗透反应墙装置和填料 技术领域 0001 本发明属于可渗透反应装置技术领域, 具体涉及一种用于酸性矿水治理的新型可 渗透反应墙装置和填料。 背景技术 0002 随着工业的迅猛发展, 世界各国对矿产资源的需求量逐渐增加, 伴随着煤炭的大 规模。
7、开采和利用导致矿山环境污染问题愈演愈烈, 尤其是矿山废水的污染问题, 它已经成 为一个全球性问题, 其中以酸性矿山废水危害最为严重。 0003 可渗透反应墙技术: 可渗透反应墙(PRB)是一种水污染原位治理的被动修复技术。 它是针对污染水体(例如酸性矿山废水)的具体成分在下游方向设置一个反应材料原位处 理区, 采用物理、 化学或生物处理的技术, 处理流经墙体的污染组分, 达到因地制宜的治理 效果。 其特点是: 无需外加动力, 反应墙构建于矿井口内部, 不占地面空间, 处理经济便捷, 墙体填充材料可更换。 0004 现有的可渗透反应墙装置有漏斗导水门式和连续反应墙式, 漏斗导水门式反 应墙采用导。
8、水门对水体进行引流, 使得水体与填料充分接触, 连续反应墙式采用多个反应 墙系统连接使用的方式, 增加填料与水体的接触面积。 传统反应墙结构上安装的可反应介 质为固定安装结构, 一般与墙体采用一体铸造的模式安装到水体中, 不便于可反应介质的 清洗和更换。 发明内容 0005 针对上述问题本发明提供了一种用于酸性矿水治理的新型可渗透反应墙装置和 填料。 0006 为了达到上述目的, 本发明采用了下列技术方案: 0007 一种用于酸性矿水治理的新型可渗透反应墙装置, 由多段墙体连接组成, 在所述 墙体中部设置有倒梯型的水通道, 在所述水通道内的墙壁上均匀的设置有若干插槽, 在所 述插槽内活动设置有。
9、过滤板。 0008 进一步, 所述插槽的上端向后倾斜设置, 以使过滤板能够倾斜放置。 0009 再进一步, 在所述水通道两侧的墙壁中设置有中空通道, 在所述中空通道内设置 有浓度检测器, 在所述中空通道的底部设置有与水通道连通的的导流孔, 用于穿过管道, 将 水通道内的水输送至浓度检测器。 0010 更进一步, 在所述中空通道内还设置有水泵, 在所述中空通道的底部还设置有与 水通道连通的出水孔, 用于穿过与水泵出水端连接的管道。 0011 更进一步, 多段所述墙体之间的连接方式可以是并联、 串联、 上下叠放中的一种或 者任意组合。 0012 更进一步, 在多段所述墙体的连接缝隙之间设置有填缝剂。
10、层, 以保持相邻墙体之 间的连续性。 说明书 1/8 页 3 CN 111606371 A 3 0013 更进一步, 在由多段连接在一起的所述墙体形成的中空通道的入口处和出口处均 设置有开合门, 以实现中空通道的封闭。 0014 更进一步, 所述过滤板由中间的板状填料层和包裹在板状填料层外侧的过滤网组 成。 0015 一种应用于权利要求1所述用于酸性矿水治理的新型可渗透反应墙装置的填料, 所述填料由粉煤灰、 纳米四氧化三铁与石英砂以质量比为8:0.52:4组成, 应用于板状填 料层。 0016 一种用于酸性矿水治理的新型可渗透反应墙装置的应用, 用于治理酸矿水污染。 0017 与现有技术相比本。
11、发明具有以下优点: 0018 1、 本发明的可渗透反应墙装置由多段墙体连接组成, 连接方式多样化, 可依据具 体地形进行串联、 并联或上下叠放, 有利于节省空间和可渗透反应墙装置的施工。 0019 2、 本发明的过滤板为活动设置, 可以方便清洗和更换, 在有需要时可以在同一水 通道内安装不同板状填料层的过滤板。 0020 3、 本发明的过滤板为倾斜设置, 首先有利于增大过滤面积, 其次利用了上层水流 通过过滤板的速度大于下层水流通过过滤板速度的特性, 可以实现上下层水流的位置交 换, 即上层水层先通过过滤板后落入下层, 下层水流后通过过滤板后被换至上层。 0021 4、 本发明在水通道两侧的墙。
12、壁中设置了中空通道, 在所述中空通道内设置了浓度 检测器, 可以实时检测水通道内的浓度。 0022 5、 本发明在中空通道内设置了水泵, 可以实现将墙体设置在污染水体以外的地 方, 然后利用水泵将污染水体抽至水通道内, 避免了传统施工中, 墙体长期接触酸性水体, 产生墙体腐蚀的现象。 0023 6、 本发明可实现多种应用模式, 第一种, 沉管施工形式, 将制造好的墙体结构采用 沉管的形式放置到酸矿水体中, 让水体自由流过水通道和过滤板, 且水通道的高度必须高 于水平面高度; 第二种, 外部施工, 将墙体安置在酸矿水体环境外, 采用泵抽取的形式将污 染水抽取到水通道中, 若采用此种形式, 需要在。
13、水通道斜面开一个连接泵管道的出水口。 0024 7、 粉煤灰与煤质活性炭均匀混合后作为反映填料不论是对重金属的去除效果还 是对NH4+、 SO42-的去除效果都比单一使用煤质活性炭的效果要好; 粉煤灰和纳米四氧化三铁 混合作填料除对Zn以外的其他重金属、 重金属离子以及 NH4+、 SO42-的处理效率均比粉煤灰 作单一填料的处理效率高。 0025 8、 既使固体废弃物粉煤灰有了更好的资源利用, 变废为宝, 又使填料利于进行回 收, 有利于材料的重复利用与污染物的集中处理。 附图说明 0026 图1为本发明墙体的正视图; 0027 图2为本发明墙体的正视截面图; 0028 图3为本发明的侧视图。
14、; 0029 图4为本发明墙体的侧视截面图; 0030 图5为本发明墙体的结构示意图; 0031 图6为本发明过滤板的截面视图; 说明书 2/8 页 4 CN 111606371 A 4 0032 图7为本发明实施例1中墙体串联的结构示意图; 0033 图8为本发明实施例2中墙体并联的结构示意图; 0034 图9为5号柱对各元素的去除率随时间的变化图; 0035 图10为6号柱对各元素的去除率随时间的变化图; 0036 图11为7号柱对各元素的去除率随时间的变化图; 0037 图12为8号柱对各元素的去除率随时间的变化图; 0038 图13为组合填料对重金属Cu、 Zn、 Mn的去除率随时间的。
15、变化图; 0039 图14山底河采样位置示意图; 0040 图15属水平各样点的细菌群落分布图; 0041 图16铁氧化细菌活性检测; 0042 图17样品一(酸矿水)的SEM照片; 0043 图18样品二(处理后)SEM照片; 0044 图19酸矿水处理前后样品的X射线能谱分析图; 0045 图中墙体1、 水通道2、 插槽3、 过滤板4、 中空通道5、 浓度检测器6、 导 流孔7、 水泵8、 出水孔9、 开合门10、 连接孔11、 金属连接板12、 填缝剂层13、 板状填料层14、 过滤网15。 具体实施方式 0046 为了进一步阐述本发明的技术方案, 下面通过实施例对本发明进行进一步说明。。
16、 0047 实施例1 0048 如图1至图7所示, 一种用于酸性矿水治理的新型可渗透反应墙装置, 由多段墙体1 串联组成, 在多段所述墙体1的连接缝隙之间设置有填缝剂层13, 以保持相邻墙体1之间的 连续性。 在所述墙体1的边缘处设置有连接孔11, 在所述连接孔11内设置有螺栓, 在相邻的 墙体1上的螺栓上设置金属连接板12 实现相邻墙体1的固定, 在所述墙体1中部设置有倒梯 型的水通道2, 在所述水通道2内的墙壁上均匀的设置有若干插槽3, 所述插槽3的上端向后 倾斜设置, 在所述插槽3内活动设置有过滤板4。 所述过滤板4由中间的板状填料层14和包裹 在板状填料层14外侧的过滤网15组成。 在。
17、所述水通道2两侧的墙壁中设置有中空通道5, 在 所述中空通道5内设置有浓度检测器6, 在所述中空通道5 的底部设置有与水通道2连通的 的导流孔7, 用于穿过管道, 将水通道2内的水输送至浓度检测器6。 在所述中空通道5内还设 置有水泵8, 在所述中空通道5 的底部还设置有与水通道2连通的出水孔9, 用于穿过与水泵 8出水端连接的管道。 在由多段连接在一起的所述墙体1形成的中空通道5的入口处和出口 处均设置有开合门10, 以实现中空通道5的封闭。 0049 实施例2 0050 如图1至图6、 图8所示, 一种用于酸性矿水治理的新型可渗透反应墙装置, 由多段 墙体1并联组成, 在多段所述墙体1的连。
18、接缝隙之间设置有填缝剂层13, 以保持相邻墙体1之 间的连续性。 在所述墙体1的边缘处设置有连接孔11, 在所述连接孔11内设置有螺栓, 在相 邻的墙体1上的螺栓上设置金属连接板12 实现相邻墙体1的固定, 在所述墙体1中部设置有 倒梯型的水通道2, 在所述水通道2内的墙壁上均匀的设置有若干插槽3, 所述插槽3的上端 向后倾斜设置, 在所述插槽3内活动设置有过滤板4。 所述过滤板4由中间的板状填料层14和 说明书 3/8 页 5 CN 111606371 A 5 包裹在板状填料层14外侧的过滤网15组成。 在所述水通道2两侧的墙壁中设置有中空通道 5, 在所述中空通道5内设置有浓度检测器6, 。
19、在所述中空通道5 的底部设置有与水通道2连 通的的导流孔7, 用于穿过管道, 将水通道2内的水输送至浓度检测器6。 在所述中空通道5内 还设置有水泵8, 在所述中空通道5 的底部还设置有与水通道2连通的出水孔9, 用于穿过与 水泵8出水端连接的管道。 在由多段连接在一起的所述墙体1形成的中空通道5的入口处和 出口处均设置有开合门10, 以实现中空通道5的封闭。 0051 上述实施例中多段所述墙体1之间的连接方式还可以上下叠放中的一种或者并 联、 串联、 上下叠放三种中的任意组合。 0052 实施例3 0053 粉煤灰购买自蓝科净水厂; 纳米四氧化三铁购买自南宫市京锐合金制品有限公 司; 005。
20、4 一种应用于权利要求1所述用于酸性矿水治理的新型可渗透反应墙装置的填料 层, 填料层由粉煤灰、 纳米四氧化三铁与石英砂以质量比为8:0.52:4组成的组合填料, 应 用于板状填料层14。 0055 表4.3 0056 0057 由图912的柱形图表我们可以得出: 0058 (1)通过对比5、 6、 7、 8管反应12h后的出水结果可知除NH4+和Mn以外, 粉煤灰与纳米 四氧化三铁混合后对酸矿水的处理效果均比粉煤灰与煤质活性炭(6g: 6g)混合后的处理效 果要好; 0059 (2)由初步测试结果可知: 粉煤灰与煤质活性炭(6g: 6g)均匀混合后对 SO42-的去 除率为58、 对NH4+。
21、的去除率为42, 对Cu的去除率达到了96, 对Mn的去除率为98, 对Zn 的去除率达到了99, 对Ga2+的去除率为30左右, 而对Mg2+的去除率只有6, 通过与单一 填料吸附性能的初步测试结果对比可知用粉煤灰与煤质活性炭均匀混合后作为反映填料 不论是对重金属的去除效果还是对NH4+、 SO42-的去除效果都比单一使用煤质活性炭的效果 要好; 0060 (3)通过对比粉煤灰和纳米四氧化三铁混合(6、 7、 8管)作填料与单一粉煤灰作填 料反应12h后的出水结果可知, 粉煤灰和纳米四氧化三铁混合(6、 7、 8管)作填料除对Zn以 外的其他重金属、 重金属离子以及NH4+、 SO42-的处。
22、理效率均比粉煤灰作单一填料的处理效率 高; 0061 (4)通过对比粉煤灰和纳米四氧化三铁按不同的比例混合(6、 7、 8管)作填料反应 12h的出水结果可初步得出: 当粉煤灰与纳米四氧化三铁以8g: 1g 的比例均匀混合后对NH4 +、 Cu、 Zn、 Mn、 Fe的去除效率最高, 对NH4+的去除率为12, 对Cu的去除率达到了98.6, 对Mn 说明书 4/8 页 6 CN 111606371 A 6 的去除率为98.2, 对Zn的去除率达到了99, Fe3+几乎全部去除, Fe2+的去除率为87。 对 Ga2+和Mg2+来说, 当粉煤灰与纳米四氧化三铁以8g: 2g的比例均匀混合时对其。
23、的处理效果最 好为38和26.6。 0062 组合填料耐久性测试 0063 粉煤灰与纳米四氧化三铁以8g: 1g比例均匀混合的填料做耐久性实验, 测试填料 的吸附性能; 0064 材料和方法同上, 延长反应时间至60h, 结果如图13组合填料对重金属Cu、 Zn、 Mn 的去除率随时间的变化所示, 粉煤灰与纳米四氧化三铁均匀混合作填料对重金属Cu、 Zn、 Mn 的去除效果均在12h左右最好, 都达到95以上, 随后随着反应时间的增加, 去除效率逐渐 降低, 其中对Cu的去除效果最好, 反应到 60h时, 仍有90, 与粉煤灰做单一填料的去除效 果相似, 可能与酸矿水中Cu 的浓度较低有关; 。
24、对Zn的去除效果次之, 反应到60h时, 仍有 70左右的去除效率, 比单一粉煤灰作填料提高了15左右; 尽管对Mn的去除效果相对来 说最差, 但是与单一粉煤灰作填料相比, 耐久性与最大去除率都是增强最多的, 表明使用纳 米四氧化三铁对Mn的去除有很大的效果。 0065 实施例4 0066 阳泉市矿区小沟村红土岩煤矿酸矿渗出点, 且经过现场调查, 设置了三个采样点 分别位于山底河上游榆林垴旁(H1)、 酸矿水渗入前约1km处(H2)及酸矿水渗入后约1km处 (H3), 其中H1位于山底河上游榆林垴村旁, 此处接近山底河源头, 附近无污染源, 水质良好, 可作为背景点; H2位于小沟酸矿水渗出点。
25、上游约1km处, 此处有跃进煤矿排放的中性矿井水 汇入, 而中性矿井水基本不包含污染物, 所以对山底河水水质的影响较轻微, 可作为对照 点, H3位于小沟酸矿水渗出点下游约1km处, 此时小沟酸矿水渗出点渗入的酸性矿水已混入 山底河水中, 此时水体pH明显降低, 颜色变为黄褐色, 水质污染严重。 如图14山底河采样位 置示意图所示。 0067 处理前后水中微生物群落特征对比 0068 样品处理: 取2019.7阳泉小沟酸矿水渗出点的水样、 经过粉煤灰处理12h 后的水 样以及山底河各样点的水样各500mL, 用滤纸过滤后收集滤液, 全部通过0.22 m微孔滤膜真 空抽滤, 将已经富集有细菌样本。
26、的滤膜移入经过高压蒸汽灭菌后的离心管中, 并将离心管 密封保存于冰盒中送至上海美吉生物医药科技有限公司检测。 另取处理前后的水样各 500mL, 组装抽滤装置, 将水样通过0.22 um微孔滤膜抽滤, 将已经富集有细菌样本的滤膜移 入经过高压蒸汽灭菌后的离心管中, 并将离心管放入-80的冰箱中保存, 用于扫描电镜制 样。 0069 高通量测序: 由上海美吉生物医药科技有限公司对水样进行DNA抽提和 PCR扩增, 随后利用Illumina公司的Miseq PE300平台进行测序(上海美吉生物医药科技有限公司), 最后对测序数据进行处理, 使用FLASH软件进行拼接, 使用UPARSE软件(ver。
27、sion 7.1), 根据 97的相似度对序列进行OTU聚类, 并在聚类的过程中去除单序列和嵌合体。 利用RDP classifier对每条序列进行物种分类注释, 比对Silva数据库(SSU123), 设置比对阈值为 70。 0070 细菌活性检测: 酸性矿水中大多数土著微生物都可以氧化Fe2+,测定水体中细菌整 体的亚铁氧化活性可以近似代替水样中细菌的整体活性。 分析采用重铬酸钾滴定法, 具体 说明书 5/8 页 7 CN 111606371 A 7 步骤如下: 0071 (1)按配方配制9K培养基A液, 用1:1硫酸调节pH至3, 准备好洗净的器材与培养基A 液一起进行高压灭菌。 随后按。
28、配方配制9K培养基B液, 通过灭菌后的抽滤装置通过0.22um微 孔滤膜抽滤灭菌, 将A液、 B液混合即为9K 培养基。 0072 (2)用量筒量取混匀的9k培养基90mL于250mL锥形瓶中, 用灭菌的移液管分别移取 处理前后的的水样10mL于锥形瓶中, 即为各样点的细菌培养液, 空白对照培养液用10mL无 菌水代替水样同步配制。 0073 (3)使用重铬酸钾滴定法测定各样点培养液的初始Fe2+浓度并记录在实验记录本 上,滴定方法: 取培养液2mL于锥形瓶中, 加入10mL硫磷混酸, 滴2-3 滴二苯胺磺酸钠指示 剂, 使用重铬酸钾溶液滴定至溶液突变为紫色, 记下消耗重铬酸钾溶液的体积。 0。
29、074 (4)将各培养液放入细菌培养箱中, 设定30恒温培养7天, 7天后取出培养液, 按 步骤7再次测定各培养液中的Fe2+浓度并记录在实验记录本上, 以培养7天的细菌对亚铁离 子的氧化率表示细菌的活性。 0075 (5)结果计算: 0076 按下式计算每个样点培养液细菌的亚铁氧化率u: 0077 u(Fe2+0Fe2+)/(Fe2+空 白)100。 其中, Fe2+空 白为同步培养一周后空白 培养液的亚铁离子浓度,Fe2+0为培养前的初始浓度, Fe2+为培养一周后的浓度。 0078 扫描电镜分析: 扫描电镜观察, 可以以较直接的方式展示处理前后水样中的细菌 数量和形态, 并对其进行X射线。
30、能谱分析, 具体步骤如下: 取处理前后水样各500mL, 组装抽 滤装置, 将水样通过0.22um微孔滤膜抽滤, 取下滤膜放入烧杯中, 加入10mL二次水, 超声震 荡10min, 结束后取出滤膜, 烧杯内的溶液为细菌富集液; 取一定的细菌富集液, 8000转离心 35min,弃上清液。 倒入24的2.5戊二醛固定, 在冰箱中冷藏12h, 磷酸缓冲液清 洗两次; 用50, 70, 90各浸泡8min左右, 然后100的酒精脱水15min。 乙酸异戊酯置换 2次, 20min/次; 用恒温干燥箱在30下干燥24h; 喷金。 0079 结果 0080 细菌群落多样性变化 0081 微生物在黄铁矿溶。
31、解和酸矿水形成过程中扮演了重要的角色, 同时水体中细菌多 样性可以反映出水体生态功能, 进一步反应酸矿水渗入对下游山底河水的影响。 各样品文 库的覆盖率(Goodscoverage)均大于99.5, 说明样本结果可以使用。 Alpha多样性是指 一个特定生态系统中的微生物群落多样性, OTU 数目可以反映出水体细菌群落中物种数目 的多少。 Shannon指数和Simpson指数可以用来衡量样本的多样性情况。 Ace指数用来衡量物 种的丰富度。 0082 表酸矿水及山底河各样本中细菌群落多样性指数 说明书 6/8 页 8 CN 111606371 A 8 0083 0084 细菌群落的物种组成可。
32、以深入反映细菌群落整体情况, 由于种水平上获取的菌种 的分类学信息较少, 因此主要在属水平讨论, 如图15属水平各样点的细菌群落分布图。 0085 酸矿水中细菌群落中Acidithiobacillus(嗜酸硫杆菌属)是第一优势属, 丰度达 32.90, 并且Acidithiobacillus ferrooxidans(嗜酸氧化亚铁硫杆菌)为该属中的绝对 优势种, 该菌是一种革兰氏阴性菌, 具有化能自养、 好气、 嗜酸、 适于中温环境等特性, 广泛 存在于酸性矿山水及含铁或硫的酸性环境中。 Acidiphilium(嗜酸化能异养菌)是AMD中的 第二优势属, 丰度为24.5, 该菌适宜的生长温度。
33、为2933, pH为3.04.0, 在本组近几 年对该AMD的研究中一直属于优势菌种。 Acidibacillus(酸杆菌属)是AMD中的第三优势属, 丰度为15.6, ferrovum丰度为8.1, 属于无机化能自养型, 嗜酸且可以氧化Fe2+。 0086 山 底河源头处的 样点H1水体中 s phing omona s (鞘氨醇单胞菌 属) 和 Acinetobacter(不动杆菌属)是群落中的优势成员, 其余菌属丰度极低, 细菌群落构成简 单 ; 中游H2水体中细菌群落发生了较大的改变 , 鞘氨醇单胞菌属几乎全部消失 , Enterobacter(肝肠菌属)成新的优势属丰度达到了19.3。
34、, 表明水体受到了人畜活动和农 业生产的影响, 不动杆菌属成为第二优势属, 丰度为 14.7, Rhodococcus(红球菌属)占据 中等丰度, 具有生物降解去污能力, 浮游菌Limnohabitans(沉积杆菌属)和纤毛虫内共生的 微生物Polynucleobacter占据了较低的丰度, 分别为5.15和3.59, 它们是天然淡水域 的常见微生物; 酸矿水渗入后的山底河水样点H3中细菌群落结构表现出与上游和中游完全 不同的特征, 兼性厌氧菌和厌氧菌Escherichia-shigella、 Bacterodies、 paenibacillus 丰度明显上升, 总丰度达在20左右, 指示着水。
35、体溶解氧被大量消耗, 反映出水体有机污染 较为严重, 值得关注的是水体中少量的致病菌如梭杆菌 Fusobacterium、 大肠志贺氏杆属 Escherichia-shigella、 肝肠菌属的出现也指示了水体受到酸矿水污染后出现了较为严重 的水质恶化, 同时水体中出现了少量的 Acidithiobacillus(嗜酸硫杆菌属)、 Acidiphilium(嗜酸化能异养菌)和ferrovum, 表明受到酸矿水的影响较为严重。 0087 氧化亚铁细菌活性检测结果分析 0088 2019年7月-2019年11月份各水样中细菌活性大体呈现逐渐下降的趋势, 细菌活性 在2019年7月份大体都是最高的,。
36、 这可能与夏季6、 7月份的水体环境最适合细菌催化亚铁氧 化反应有关, 随着天气转凉, 细菌亚铁氧化活性也逐渐下降; AMD和H3水样细菌活性变化趋 势相近, 且明显高于H1和H2,说明 H3中有着一定比例的铁硫氧化细菌; H1和H2活性始终较 低, 均在6以下, 这部分活性很有可能为化学氧化所致, 所以H1和H2有可能不含铁硫氧化 细菌。 0089 而处理后水样中的铁氧化细菌的活性降至12.3, 尽管仍有着一定比例的铁硫氧 化细菌, 但是与酸矿水渗入后的H3水样相比, 水中的铁氧化细菌已得到很大的降解, 表明降 说明书 7/8 页 9 CN 111606371 A 9 低铁氧化细菌的活性对水。
37、质的提高有很大的影响。 0090 扫描电镜结果分析 0091 样品一和样品二通过JSM-ITHR扫描电镜仪观察到的结果如图17、 18所示(图17、 图 18放大的倍数均为40倍): 在放大倍数一样的情况下, 通过对图17和图18的对比可以发现, 样品一中存在大量的杆状细菌, 而样品二中的杆状细菌明显比较少。 通过细菌技术实验、 细 菌活性实验、 高通量测序技术分析阳泉小沟村酸矿水渗出点的细菌群落, 可以发现氧化亚 铁硫杆菌(A.f菌)是最主要的优势菌, 因此可以进一步的判断图片上的微生物是氧化亚铁 硫杆菌。 通过用粉煤灰作为填料、 自己设计的白色PVC管塑料柱体作为反应器处理后的酸矿 水中的。
38、氧化亚铁硫杆菌的数量明显减少可以得出减少氧化亚铁硫杆菌的数量对改善酸矿 水的质量有很大的影响。 为了进一步对其进行了解, 随后选取图17图18中各一条杆状结构 的菌, 对其进行扫描, 得出X射线能谱, 如图19酸矿水处理前后样品的X射线能谱分析图所 示。 0092 从处理前后样品的X射线能谱上, 可以很明确的发现酸矿水中浓度最高的元素是 Fe, 通过处理后Fe元素几乎完全去除, 而粉煤灰中的主要元素C使处理后的水样中C元素有 明显的增加, 表明粉煤灰对Fe有很强的去除能力。 0093 酸矿水的群落组成较为简单, 主要由Acidithiobacillus(嗜酸硫杆菌属)、 Acidiphiliu。
39、m(嗜酸化能异养菌)、 Acidibacillus(酸杆菌属)和Ferrovum这几类菌属组成, 其中Acidithiobacillus中的嗜酸氧化亚铁硫杆菌占比最高, 是控制酸矿水产生速率的关 键微生物。 山底河源头处H1和受中性矿水影响的H2物种组成比较相似, 受酸矿水渗入的H3 物种组成发生了显著的变化, 兼性厌氧菌、 厌氧菌、 肝肠菌和致病菌的出现, 表明水体溶解 氧被大量消耗 , 水体有机污染较为严重 , 水质恶化 , 同时水体中也出现了少量的 Acidithiobacillus(嗜酸硫杆菌属)和Acidiphilium(嗜酸化能异养菌)。 0094 氧化亚铁细菌活性检测及扫描电镜分。
40、析均显示处理后水样中的铁氧化细菌得到 明显的减少, 表明减少铁氧化细菌的数量对改善酸矿水的质量有很大的影响。 从处理前后 样品的X射线能谱上, 可以很明确的发现酸矿水中浓度最高的元素是Fe, 通过处理后Fe元素 几乎完全去除, 表明粉煤灰对Fe有很强的去除能力。 0095 本发明说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。 尽管上面对本发明说明性的具体实施方式进行了描述, 以便于本技术领的技术人员理解本 发明, 但应该清楚, 本发明不限于具体实施方式的范围, 对本技术领域的普通技术人员来 讲, 只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内, 这些变化是显 而。
41、易见的, 一切利用本发明构思的发明创造均在保护之列。 说明书 8/8 页 10 CN 111606371 A 10 图1 图2 说明书附图 1/9 页 11 CN 111606371 A 11 图3 图4 说明书附图 2/9 页 12 CN 111606371 A 12 图5 图6 说明书附图 3/9 页 13 CN 111606371 A 13 图7 图8 说明书附图 4/9 页 14 CN 111606371 A 14 图9 图10 图11 说明书附图 5/9 页 15 CN 111606371 A 15 图12 图13 说明书附图 6/9 页 16 CN 111606371 A 16 图14 图15 说明书附图 7/9 页 17 CN 111606371 A 17 图16 图17 说明书附图 8/9 页 18 CN 111606371 A 18 图18 图19 说明书附图 9/9 页 19 CN 111606371 A 19 。
- 内容关键字: 用于 酸性 治理 新型 渗透 反应 装置 填料
新型推拉式化妆容器.pdf
车辆后桥制动油管安装结构.pdf
电动玩具车零件喷漆用工件架.pdf
玩具车.pdf
筒体内外圆机加工支撑装置.pdf
多功能加热破壁料理机.pdf
芳烃吸附分离装置程控球阀.pdf
内衣生产用布料收卷机构.pdf
离心机的转篮机构.pdf
铜及铜合金半连续铸造装置.pdf
积木琴玩具.pdf
健身器材用弹簧减震结构.pdf
包装瓶烫金用定位工装.pdf
积木块.pdf
双孔快速均匀进料滤板组合结构.pdf
快速高效过滤器滤芯.pdf
集成防电墙式恒温阀及应用该恒温阀的热水器.pdf
合金钢异型材成型一体机.pdf
液体药物浓度调节器.pdf
游客分类方法、装置及电子设备.pdf
再生铅环集烟气除尘脱硫设备.pdf
隧道施工支护结构及施工方法.pdf
基于大数据分析的电力系统风险预测方法及系统.pdf
安检图像查验方法和装置.pdf
基于机器学习的半导体电阻值预测方法及系统.pdf
由石墨烯材料制成的散热膜及其应用的手机后盖.pdf
电催化氧化医院废水处理装置.pdf
单相复合钙钛矿陶瓷粉体、微波介质陶瓷材料及其制备方法.pdf
半导体用超纯电子级化学试剂纯化装置.pdf
阵列基板制备方法、阵列基板、显示面板及显示装置.pdf
织机了机时间预测方法.pdf
受限空间内燃气燃爆超、动压测试装置及方法.pdf
一种升降式旋转室外消火栓.pdf
框架结构T型连接柱.pdf
防静电地板吸板器.pdf
一种建筑用箱体或井口预留孔洞活动模具.pdf
速成拉建房屋.pdf
预制桥面板精轧螺纹钢筋弧形连接构造.pdf
一种内固定式伸缩门滑行导轨及伸缩门.pdf
多用途封井器.pdf
一种新型圆弧建筑模板紧固件.pdf
一种超实木防水组合踢脚线.pdf
电气柜前门板门锁装置.pdf
双人正杆器.pdf
一种纳米铝塑复合板.pdf
强磁打捞器.pdf
一种基于无刷直流电机的环卫车电动扫盘系统.pdf
一种可调节型门铰链.pdf
一种用于基桩竖向抗压静载试验的船筏式试验装置.pdf
免贴墙砖.pdf
一种聚氨酯仿石材防火保温装饰复合板.pdf