图像处理方法、装置、计算机设备及存储介质.pdf

上传人:姓*** 文档编号:10347281 上传时间:2021-06-18 格式:PDF 页数:25 大小:692.21KB
收藏 版权申诉 举报 下载
图像处理方法、装置、计算机设备及存储介质.pdf_第1页
第1页 / 共25页
图像处理方法、装置、计算机设备及存储介质.pdf_第2页
第2页 / 共25页
图像处理方法、装置、计算机设备及存储介质.pdf_第3页
第3页 / 共25页
文档描述:

《图像处理方法、装置、计算机设备及存储介质.pdf》由会员分享,可在线阅读,更多相关《图像处理方法、装置、计算机设备及存储介质.pdf(25页完成版)》请在专利查询网上搜索。

1、(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 202010747849.0 (22)申请日 2020.07.30 (71)申请人 腾讯科技 (深圳) 有限公司 地址 518057 广东省深圳市南山区高新区 科技中一路腾讯大厦35层 (72)发明人 王昌安罗泽坤彭瑾龙李剑 王亚彪汪铖杰李季檩黄飞跃 (74)专利代理机构 广州三环专利商标代理有限 公司 44202 代理人 熊永强杜维 (51)Int.Cl. G06F 16/55(2019.01) G06F 16/583(2019.01) G06F 17/18(2006.01) 。

2、(54)发明名称 图像处理方法、 装置、 计算机设备及存储介 质 (57)摘要 本发明实施例公开了一种图像处理方法、 装 置、 计算机设备及存储介质, 其中方法包括: 获取 待处理图像, 并构建所述待处理图像中每个对象 的特征向量组; 分别对所述每个对象的特征向量 组中的特征向量进行分类, 得到每个对象的分类 结果; 根据所述每个对象的分类结果, 确定所述 每个对象的对象分布信息, 所述对象分布信息用 于指示任一对象的相邻对象相对于所述任一对 象的分布情况, 所述任一对象与所述任一对象的 相邻对象为相同类型的对象; 根据所述待处理图 像中每个对象的对象分布信息, 确定所述待处理 图像的图像类型。

3、, 可提升对图像类型进行划分时 的准确度。 权利要求书3页 说明书15页 附图6页 CN 111625672 A 2020.09.04 CN 111625672 A 1.一种图像处理方法, 其特征在于, 包括: 获取待处理图像, 并构建所述待处理图像中每个对象的特征向量组; 分别对所述每个对象的特征向量组中的特征向量进行分类, 得到每个对象的分类结 果; 根据所述每个对象的分类结果, 确定所述每个对象的对象分布信息, 所述对象分布信 息用于指示任一对象的相邻对象相对于所述任一对象的分布情况, 所述任一对象与所述任 一对象的相邻对象为相同类型的对象; 根据所述待处理图像中每个对象的对象分布信息,。

4、 确定所述待处理图像的图像类型。 2.根据权利要求1所述的方法, 其特征在于, 所述待处理图像是样本图像集中的任一样 本图像, 所述样本图像集被划分为多个图像子集; 所述根据所述待处理图像中每个对象的 对象分布信息, 确定所述待处理图像的图像类型, 包括: 获取所述样本图像集对应的多个图像子集, 并根据所述待处理图像中每个对象的对象 分布信息, 从所述多个图像子集中确定出所述待处理图像所属的目标图像子集; 将所述目标图像子集中样本图像的图像类型作为所述待处理图像的图像类型, 其中, 同一图像子集中的样本图像的图像类型相同。 3.根据权利要求1所述的方法, 其特征在于, 所述待处理图像是样本图像。

5、集中的任一样 本图像, 所述样本图像集被划分为多个图像子集, 所述多个图像子集至少包括第一图像子 集和第二图像子集; 所述方法还包括: 从所述样本图像集中获取所述第一图像子集和所述第二图像子集, 并获取用于进行对 象估计的初始模型; 采用所述第一图像子集对所述初始模型进行训练, 得到用于识别第一图像类型的图像 的目标模型, 以及, 采用所述第二图像子集对所述初始模型进行训练, 得到用于识别第二图 像类型的图像的目标模型; 其中, 所述第一图像类型为所述第一图像子集的样本图像的图像类型, 所述第二图像 类型为所述第二图像子集的样本图像的图像类型。 4.根据权利要求2所述的方法, 其特征在于, 所。

6、述获取所述样本图像集对应的多个图像 子集, 包括: 根据所述待处理图像中每个对象的对象分布信息, 确定用于指示所述待处理图像中对 象密度的第一表征信息; 获取所述样本图像集中除所述待处理图像之外的其他样本图像的第二表征信息; 根据所述第一表征信息和所述第二表征信息对所述样本图像集进行聚类运算, 得到多 个图像子集, 处于同一图像子集的样本图像的表征信息所指示的对象密度处于同一密度范 围。 5.根据权利要求4所述的方法, 其特征在于, 所述对象分布信息包括用于对所述特征向 量组中的特征向量进行分类的类别指示信息, 以及所述特征向量组中被划分到每个类别指 示信息对应类别的特征向量的数量。 6.根据。

7、权利要求5所述的方法, 其特征在于, 所述根据所述待处理图像中每个对象的对 象分布信息, 确定用于指示所述待处理图像中对象密度的第一表征信息, 包括: 根据所述类别指示信息, 对所述待处理图像中每个对象的对象分布信息进行叠加, 确 权利要求书 1/3 页 2 CN 111625672 A 2 定每个类别指示信息对应类别的特征向量的向量总数; 对所述向量总数进行归一化处理, 并将归一化处理后的向量总数作为指示所述待处理 图像中对象密度的第一表征信息。 7.根据权利要求1所述的方法, 其特征在于, 所述分别对所述每个对象的特征向量组中 的特征向量进行分类, 包括: 确定多个类别指示信息, 并确定每。

8、个类别指示信息所指示的特征向量的取值变化范 围; 根据所述特征向量组中各特征向量的取值, 和所述每个类别指示信息所指示的特征向 量的取值变化范围, 对所述特征向量组中的特征向量进行分类。 8.根据权利要求7所述的方法, 其特征在于, 所述待处理图像是样本图像集中的任一样 本图像, 所述确定多个类别指示信息, 包括: 确定所述样本图像集中每个对象的特征向量组, 并根据所述每个对象的特征向量组确 定所述样本图像集对应的特征向量集; 对所述特征向量集进行聚类运算, 以将所述特征向量集中属于相同取值变化范围的特 征向量划分到同一个向量子集; 确定每个向量子集对应的聚类中心, 并将所述聚类中心作为类别指。

9、示信息, 所述类别 指示信息所指示的特征向量的取值变化范围包括: 所述聚类中心对应向量子集中特征向量 的取值变化范围。 9.根据权利要求7所述的方法, 其特征在于, 所述根据所述特征向量组中各特征向量的 取值, 和所述每个类别指示信息所指示的特征向量的取值变化范围, 对所述特征向量组中 的特征向量进行分类, 包括: 选取任一类别指示信息作为目标类别指示信息; 针对所述特征向量组中的任一特征向量, 判断所述任一特征向量的取值是否属于该目 标类别指示信息所指示的取值的目标变化范围; 若是, 则将所述任一特征向量划分到所述目标类别指示信息指示的类别中。 10.根据权利要求1所述的方法, 其特征在于,。

10、 所述待处理图像是待识别的任一图像; 所 述确定所述待处理图像的图像类型之后, 所述方法还包括: 获取用于识别所述待处理图像的图像类型的目标识别模型; 采用所述目标识别模型对所述待处理图像进行识别, 并确定所述待处理图像中对象的 数量。 11.一种图像处理装置, 其特征在于, 包括: 获取单元, 用于获取待处理图像; 构建单元, 用于构建所述待处理图像中每个对象的特征向量组; 分类单元, 用于分别对所述每个对象的特征向量组中的特征向量进行分类, 得到每个 对象的分类结果; 确定单元, 用于根据所述每个对象的分类结果, 确定所述每个对象的对象分布信息, 所 述对象分布信息用于指示任一对象的相邻对。

11、象相对于所述任一对象的分布情况, 所述任一 对象与所述任一对象的相邻对象为相同类型的对象; 所述确定单元, 还用于根据所述待处理图像中每个对象的对象分布信息, 确定所述待 权利要求书 2/3 页 3 CN 111625672 A 3 处理图像的图像类型。 12.一种计算机设备, 其特征在于, 包括处理器、 输入设备、 输出设备和存储器, 所述处 理器、 所述输入设备、 所述输出设备和所述存储器相互连接, 其中, 所述存储器用于存储计 算机程序, 所述计算机程序包括程序指令, 所述处理器被配置用于调用所述程序指令, 执行 如权利要求110任一项所述的方法。 13.一种计算机可读存储介质, 其特征。

12、在于, 所述计算机可读存储介质存储有计算机程 序, 所述计算机程序包括程序指令, 所述程序指令当被处理器执行时使所述处理器执行如 权利要求110任一项所述的方法。 权利要求书 3/3 页 4 CN 111625672 A 4 图像处理方法、 装置、 计算机设备及存储介质 技术领域 0001 本申请涉及计算机技术领域, 尤其涉及一种图像处理方法、 装置、 计算机设备及存 储介质。 背景技术 0002 随着计算机技术的不断深入发展, 基于对图像的分析处理, 可确定出图像的多种 不同的图像特性, 如可基于对图像的分析处理, 确定出图像中对象的数量, 或者基于对图像 的分析处理, 确定出图像中对象的类。

13、型等信息。 当前, 为了实现对图像类型的划分, 常采用 的是通过对图像分析处理, 并以确定出的图像中包括的对象的数量为依据进行划分, 通常 地, 将对象数量多于预设阈值的图像划分为一个类型, 将对象数量少于预设阈值的图像划 分为另一个类型, 而仅参照图像中对象的数量对图像进行类型的划分是较为片面的, 由此 可见, 如何提升对图像类型进行划分的准确度, 成为了当前的研究热点。 发明内容 0003 本发明实施例提供了一种图像处理方法、 装置、 计算机设备及存储介质, 可提升对 图像类型进行划分时的准确度。 0004 一方面, 本发明实施例提供了一种图像处理方法, 包括: 获取待处理图像, 并构建所。

14、述待处理图像中每个对象的特征向量组; 分别对所述每个对象的特征向量组中的特征向量进行分类, 得到每个对象的分类结 果; 根据所述每个对象的分类结果, 确定所述每个对象的对象分布信息, 所述对象分布信 息用于指示任一对象的相邻对象相对于所述任一对象的分布情况, 所述任一对象与所述任 一对象的相邻对象为相同类型的对象; 根据所述待处理图像中每个对象的对象分布信息, 确定所述待处理图像的图像类型。 0005 再一方面, 本发明实施例提供了一种图像处理装置, 包括: 获取单元, 用于获取待处理图像; 构建单元, 用于构建所述待处理图像中每个对象的特征向量组; 分类单元, 用于分别对所述每个对象的特征向。

15、量组中的特征向量进行分类, 得到每个 对象的分类结果; 确定单元, 用于根据所述每个对象的分类结果, 确定所述每个对象的对象分布信息, 所 述对象分布信息用于指示任一对象的相邻对象相对于所述任一对象的分布情况, 所述任一 对象与所述任一对象的相邻对象为相同类型的对象; 所述确定单元, 还用于根据所述待处理图像中每个对象的对象分布信息, 确定所述待 处理图像的图像类型。 0006 再一方面, 本发明实施例提供了一种智能终端, 包括处理器、 输入设备、 输出设备 和存储器, 所述处理器、 输入设备、 输出设备和存储器相互连接, 其中, 所述存储器用于存储 说明书 1/15 页 5 CN 11162。

16、5672 A 5 支持终端执行上述方法的计算机程序, 所述计算机程序包括程序指令, 所述处理器被配置 用于调用所述程序指令, 执行如下步骤: 获取待处理图像, 并构建所述待处理图像中每个对象的特征向量组; 分别对所述每个对象的特征向量组中的特征向量进行分类, 得到每个对象的分类结 果; 根据所述每个对象的分类结果, 确定所述每个对象的对象分布信息, 所述对象分布信 息用于指示任一对象的相邻对象相对于所述任一对象的分布情况, 所述任一对象与所述任 一对象的相邻对象为相同类型的对象; 根据所述待处理图像中每个对象的对象分布信息, 确定所述待处理图像的图像类型。 0007 再一方面, 本发明实施例提。

17、供了一种计算机可读存储介质, 所述计算机可读存储 介质中存储有程序指令, 所述程序指令被处理器执行时, 用于执行如第一方面所述的图像 处理方法。 0008 在本发明实施例中, 计算机设备在获取到待处理图像后, 可构建该待处理图像中 每个对象的特征向量组, 从而可分别对该每个对象的特征向量组中的特征向量进行分类, 得到该每个对象的分类结果, 计算机设备基于对待处理图像中每个对象的特征向量组的分 类, 可进一步地根据该每个对象的分类结果, 确定出该每个对象的对象分布信息, 计算机设 备基于该待处理图像中每个对象的对象分布信息, 则可确定出可用于表征该待处理图像中 对象密度的图像类型, 使得计算机设。

18、备了基于该待处理图像中每个对象的相邻对象相对于 该每个对象的分布情况, 确定出待处理图像的类型, 由于确定出的图像类型可用于表征待 处理图像中对象的密度, 可提升计算机设备在进行图像密度和类型的确认时的精度。 附图说明 0009 为了更清楚地说明本发明实施例技术方案, 下面将对实施例描述中所需要使用的 附图作简单地介绍, 显而易见地, 下面描述中的附图是本发明的一些实施例, 对于本领域普 通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。 0010 图1a是本发明实施例提供的一种构建特征向量的示意图; 图1b是本发明实施例提供的一种视觉词袋模型的示意图; 图2是。

19、本发明实施例提供的一种图像处理方法的示意流程图; 图3是本发明实施例提供的一种对象密度热力分布图的示意图; 图4是本发明实施例提供的一种图像处理方法的示意流程图; 图5是本发明实施例提供的一种图像处理装置的示意性框图; 图6是本发明实施例提供的一种计算机设备的示意性框图。 具体实施方式 0011 随着人工智能技术研究和进步, 人工智能技术在多个领域展开研究和应用, 例如 常见的智能家居、 智能穿戴设备、 虚拟助理、 智能音箱、 智能营销、 无人驾驶、 自动驾驶、 无人 机、 机器人、 智能医疗、 智能客服等, 相信随着技术的发展, 人工智能技术将在更多的领域得 到应用, 并发挥越来越重要的价值。

20、。 本发明实施例提供的方案涉及人工智能的图像处理技 术, 使得计算机设备可基于待处理图像中每个对象对应的对象分布信息, 确定出待处理图 说明书 2/15 页 6 CN 111625672 A 6 像的图像类型, 可提升计算机设备识别待处理图像的图像类型的准确度。 在一个实施例中, 该待处理图像可以是用于对进行对象识别的初始模型进行模型训练的样本图像集中的任 一样本图像, 该计算机设备则可通过对样本图像集的划分, 确定出该待处理图像的图像类 型, 其中, 计算机设备可根据图像密度将样本图像集中的图像划分为多个不同的图像子集, 以将该样本图像集中同一类型的图像划分到相同的子集中, 使得计算机设备实。

21、现了基于类 型对样本图像集中图像的划分, 进一步地, 计算机设备后续可采用划分得到的不同图像子 集, 分别对初始模型进行模型训练, 从而得到用于对不同类型的图像进行识别的目标模型, 由于计算机设备在进行模型训练时, 用于对该初始模型进行训练的样本图像的图像类型相 同, 那么也就可以提升计算机设备在对初始模型进行模型训练时的专一性。 可以理解的是, 采用相同类型的样本图像对初始模型进行训练得到的目标模型的对象识别能力较强, 从而 也就提高了计算机设备调用目标模型在对待识别的图像进行对象识别时的准确性, 在一个 实施例中, 该计算机设备可以是服务器, 或者, 该计算机设备也可以是终端设备, 本发明。

22、实 施例中, 对计算机设备不做限定。 0012 在一个实施例中, 计算机设备在确定待处理图像的图像类型时, 可先构建该待处 理图像中每个对象的特征向量组, 其中, 特征向量组中的特征向量用于指示与该特征向量 组对应的对象与相邻对象之间的距离, 具体地, 特征向量组中特征向量的取值大小用于指 示对应对象与相邻对象之间的距离, 可以理解的是, 特征向量的取值越大, 则该对应对象与 相邻对象之间的距离越远, 而如果特征向量的取值越小, 则该对应对象与相邻对象之间的 距离则越近, 基于图像中的对象分布在空间上的变化的连续性, 计算机设备可通过统计待 处理图像中对应对象的相邻对象与该对应对象之间距离的远。

23、近程度, 来描述该对应对象对 应于待处理图像中的图像区域的对象密集程度。 其中, 该待处理图像中的图像区域的对象 密集程度用于表征该待处理图像的图像类型, 相同类型的图像中各图像区域的对象密集程 度相同, 在一个实施例中, 基于该特征向量组中特征向量的分布情况即可确定出该对应对 象的相邻对象在该对应对象周围的分布情况, 如该特征向量组中特征向量的分布情况为: 取值较大的特征向量多于取值较小的特征向量, 则可以确定该对应对象的相邻对象较为稀 疏地分布在该对应对象的周围, 而如果该特征向量组中特征向量的分布情况为: 取值较小 的特征向量多于取值较大的特征向量, 则确定对应对象的相邻对象较为密集地分。

24、布在该对 应对象的周围, 其中, 该相邻包括直接相邻或者间接相邻。 0013 在一个实施例中, 该特征向量组中的特征向量例如可以是N近邻距离向量, 其中, 每个N近邻距离向量的取值用于计算对应对象与相邻的N个对象中的任一对象之间的像素 距离, N为大于等于1的正整数, 在一个实施例中, 计算机设备可从待处理图像中任意选取N 个与对应对象相邻的对象, 从而可基于该对应对象和选取的N个对象在待处理图像中的位 置, 构建该对应对象的N近邻距离向量, 或者, 计算机设备还可从待处理图像中选取与该对 应对象相距最近的N个对象, 并基于该对应对象和选取的N个对象在图像中的位置, 构建该 对应对象的N近邻距。

25、离向量, 或者, 计算机设备还可将待处理图像中除该对应对象之外的其 余所有对象作为选取出的N个对象, 并构建该对应对象的N近距离向量。 在一个实施例中, 该 对应对象的相邻对象为与该对应对象为相同类型的对象, 如在该对应对象为用户对象时, 与该用户对象相邻的对象也为用户对象, 在该对应对象为动物图像或者植物图像时, 则与 动物图像相邻的对象也为动物图像, 与植物图像相邻的对象也为植物图像。 其中, 计算机设 说明书 3/15 页 7 CN 111625672 A 7 备在确定该对应对象与相邻对象之间的特征向量时, 可从该对应对象的任意对象特征出 发, 并将指向该相邻对象的对应对象特征的向量作为。

26、该对应对象的特征向量, 该对象特征 例如可以是人头, 胳膊或者树根等。 其中, 若该待处理图像如图1a所示, 该对应对象为用户 对象, 则该用户对象例如可以是如图1a中由10标记的用户对象, 那么计算机设备构建的该 用户对象10的特征向量组中的特征向量 (N近邻距离向量) 则例如可以是如图1a所示的向 量。 0014 在计算机设备确定出待处理图像中每个对象的特征向量组后, 可分别对该每个对 象的特征向量组中的特征向量进行分类, 从而可得到每个对象的分类结果, 进一步地, 计算 机设备可基于对每个对象的分类结果, 确定该每个对象的对象分布信息, 在一个实施例中, 计算机设备在对特征向量组中的特征。

27、向量进行分类时, 需要先确定出用于对特征向量进行 分类的类别指示信息, 具体地, 计算机设备可在确定出该待处理图像所属的样本图像集后, 确定该样本图像集中的每个对象的特征向量组, 从而可根据该每个对象的特征向量组确定 出该样本图像集对应的特征向量集, 计算机设备在确定出样本图像集对应的特征向量集 后, 可基于视觉词袋 (Bag of Visual Word, Bovw) 模型中提出的提取图像关键特征的方法, 对该特征向量集进行聚类运算处理, 从而确定出多个聚类中心, 从而可将确定出的聚类中 心作为该类别指示信息。 在一个实施例中, 计算机设备在确定出类别指示信息后, 在对特征 向量组中的特征向。

28、量进行分类时, 可将该特征向量组中特征向量的取值和类别指示信息指 示的特征向量的取值变化范围进行对比, 从而可根据对比结果对该特征向量组中的特征向 量进行分类, 其中, 该聚类运算例如可以是K均值 (K-Means) 聚类算法, 或者一种基于滑窗的 算法, 如均值漂移 (Mean-shift) 聚类算法等。 0015 在一个实施例中, 该视觉词袋模型是词袋 (Bag of Word, BOW) 模型从自然语言处 理与分析领域向图像处理与分析领域的一次自然推广, 可实现对图像的表达方式的转换, 在采用视觉词袋模型对图像进行处理后, 可得到用于描述该图像中对象分布的分布信息, 该分布信息例如可以是。

29、直方图, 在具体实现中, 针对任意图像, 计算机设备可调用Bovw模型 从该任意图像中提取出基本特征元素, 从而可通过统计图像中该基本特征元素出现的频 率, 进一步地, 计算机设备可基于该提取出的基本特征元素和每个基本特征元素出现的频 率, 构建图像对应的直方图, 该直方图的横坐标为提取出的基本特征元素, 纵坐标为每个基 本特征元素对应的出现频率, 基于视觉词袋模型可实现将图像转换为直方图的表达方式。 在一个实施例中, 如图1b所示, 计算机设备可从如图1b中由11标记的图像中提取基本特征 元素, 提取得到的基本特征元素包括如图1b中由12标记的特征元素所示, 计算机设备在从 图像中提取基本特。

30、征元素时, 可从图像中提取尺度不变特征变换 (Scale Invariant Feature Transform, SIFT) 特征, 或者加速稳健特征 (Speeded Up Robust Features, SURF) 特征, 又或者方向梯度直方图 (Histogram of Oriented Gradient, HOG) 特征, 计算机设备 在从图像中提取出基本特征元素后, 可基于提取出的基本特征元素, 确定每个基本特征元 素对应的出现频率, 从而构建该图像对应的直方图, 其中, 该直方图如图1b中如13标记的直 方图所示, 该直方图的横坐标为基本特征向量, 纵坐标为对应的出现频率, 可。

31、以理解的是, 纵坐标对应数值越大, 则说明对应基本特征元素的出现频率也就越多。 在一个实施例中, 计 算机设备在对该特征向量组中的特征向量进行分类处理, 并确定出每个对象的对象分布信 息后, 则可基于该待处理图像中每个对象的对象分布信息, 确定该待处理图像的图像类型, 说明书 4/15 页 8 CN 111625672 A 8 其中, 该图像类型用于指示该待处理图像中的对象密度, 可以理解的是, 相同图像类型的图 像中的对象密度是相同的, 或者, 相同图像类型的图像中的对象密度是处于同一密度范围 内的。 0016 请参见图2, 是本发明实施例提出的一种图像处理方法的示意流程图, 如图2所示, 。

32、该方法可包括: S201, 获取待处理图像, 并构建所述待处理图像中每个对象的特征向量组。 0017 在一个实施例中, 计算机设备在确定出待处理图像后, 可从该待处理图像中选取 任一对象, 并确定该待处理图像中任一对象的相邻对象, 其中, 该任一对象的相邻对象是指 在该待处理图像中与该任一对象之间的图像距离小于或等于预设距离阈值的对象, 如图1a 所示, 若该任一对象为图1a中由10标记的对象, 则该任一对象10的相邻对象例如可以包括 在如图1a所示的待处理图像中与任一对象10之间的图像距离小于或等于预设距离阈值的 对象。 或者, 计算机设备还可将待处理图像, 除确定出的任一图像之外的其余所有。

33、图像均作 为该任一对象的相邻对象。 计算机设备在从待处理图像中确定出任一对象后, 在构建该任 一对象的特征向量组时, 可先从该任一对象中确定出目标对象特征, 从而可从该目标对象 特征出发, 并指向该任一对象的相邻对象的目标对象特征的向量作为特征向量组中的特征 向量, 该目标对象特征是和待处理图像中选取的任一对象关联的对象特征, 从该待处理图 像中选取的任一对象为用户对象时, 对应的对象特征例如可以是人头, 胳膊, 或者手臂等, 而如果从待处理图像中选取的任一对象为植物时, 对应的对象特征例如可以是植物的根部 或者顶部等。 0018 按照上述的构建待处理图像中任一对象的特征向量组的方法, 计算机。

34、设备可实现 对待处理图像中每个对象的特征向量组的构建, 从而可基于对待处理图像中每个对象的特 征向量组的构建, 对该特征向量组中的特征向量进行分类, 即转而执行步骤S202。 在一个实 施例中, 该特征向量组中的特征向量用于指示对应对象和该对应对象的相邻对象之间的图 像距离, 具体地, 该特征向量的取值可指示对应对象和该对应对象的相邻对象之间的图像 距离。 在一个实施例中, 计算机设备还可通过对每个对象的特征向量组中特征向量的取值 的分布情况, 确定每个对象周围的相邻对象相对于该每个对象的分布情况, 在一个实施例 中, 针对任一特征向量组, 计算机设备若确定该任一特征向量组中特征向量的取值后,。

35、 判断 较大取值的特征向量多于较小取值的特征向量, 那么说明该任一特征向量组对应对象的向 量对象是稀疏地分布在该对应对象周围的, 或者, 如果计算机设备确定较大取值的特征向 量少于较小取值的特征向量, 那么则说明该任一特征向量组对应对象的向量对象是密集地 分布在该对应对象周围的。 0019 在一个实施例中, 较大取值可以是指大于等于第一阈值的取值, 该第一阈值例如 可以是5, 或者8等, 较小取值则可以是小于该第一阈值的取值, 或者该较小取值也可以是小 于等于第二阈值的取值, 举例来说, 若该第一阈值为5, 第二预设长度阈值为2, 则该较大取 值是指大于等于5的取值, 较小取值是指小于5的取值。

36、; 或者, 该较大取值是指大于等于5的 取值, 而该较小取值是指小于等于2的取值。 0020 S202, 分别对所述每个对象的特征向量组中的特征向量进行分类, 得到每个对象 的分类结果。 0021 S203, 根据所述每个对象的分类结果, 确定所述每个对象的对象分布信息, 所述对 说明书 5/15 页 9 CN 111625672 A 9 象分布信息用于指示任一对象的相邻对象相对于所述任一对象的分布情况, 所述任一对象 与所述任一对象的相邻对象为相同类型的对象。 0022 在步骤S202和步骤S203中, 计算机设备在完成对待处理图像中每个对象的特征向 量组的构建后, 可分别对该每个特征向量组。

37、中的特征向量进行分类, 针对任一特征对象的 特征向量组, 计算机设备可先确定出用于对特征向量组中的特征向量进行分类的类别指示 信息, 从而可基于该类别指示信息, 对特征向量组进行分类, 以将该特征向量组中的特征向 量分别划分到不同类别指示信息所指示的类别中。 在一个实施例中, 类别指示信息所指示 的类别是基于特征向量的取值的变化范围不同而确定的, 那么, 计算机设备可先确定类别 指示信息, 以指示一个变化范围的取值, 该类别指示信息例如可以是对应指示的变化范围 中最小的取值, 或者, 该类别指示信息也可以是对应指示的变化范围中最大的取值, 或者, 也可以是对应指示的变化范围中的均值等, 或者,。

38、 计算机设备还可直接用该变化范围作为 该类别指示信息, 本发明实施例中, 对类别指示信息的确定方式不做限定。 可以理解的是, 计算机设备基于类别指示信息对特征向量组中特征向量的划分, 即是将特征向量组中的特 征向量按照向量的取值的变化范围进行划分的, 例如类别指示信息所指示的特征向量的取 值的变化范围可分别为01, 35, 大于15时, 那么计算机设备在对特征向量组中的特征向量 进行划分时, 即是基于该变化范围将特征向量组中的特征向量划分到三个子组中的。 0023 在一个实施例中, 计算机设备在对每个对象的特征向量组进行分类得到分类结果 后, 可进一步地根据该梅特对象的特征向量组的分类结果, 。

39、确定该每个对象对应的对象分 布信息, 可以理解的是, 基于计算机设备对每个特征向量组中特征向量的分类, 可实现将取 值处于相同变化范围的划分到同一个类别中, 也就是说, 被划分到同一个类别中的特征向 量的取值是处于相同的变化范围的, 那么基于对特征向量组的分类, 计算机设备可进一步 确定出该每个对象的分布信息, 该对象分布信息包括: 用于对该特征向量组中的特征向量 进行分类的类别指示信息, 以及该特征向量组中被划分到每个类别指示信息对应类别的特 征向量的数量。 基于该分布信息指示的每个类别下特征向量的数量, 计算机设备可确定出 该每个对象的相邻对象相对于每个对象的分布情况。 在一个实施例中, 。

40、计算机设备在确定 出每个对象的对象分布信息后, 若类别指示信息指示的向量的取值的变化范围分别01, 3 5, 大于15, 而针对任一对象的特征向量组中被划分到每个变化范围对应类别下的特性向量 的数量对应为70, 5, 8, 那么由于01变化范围对应类别下的特征向量的数量最多, 则计算机 设备可确定该任一对象周围的相邻对象是紧密地分布在该任一对象周围的。 0024 在一个实施例中, 该对象分布信息可以是直方图或折线图, 计算机设备在对待处 理图像中每个对象的特征向量组进行分类后, 则可基于每个对象的分类结果, 构建每个对 象的直方图或折线图, 以直观地显示该每个对象周围的相邻对象相对于该每个对象。

41、的分别 情况, 其中, 该直方图或折线图的横坐标为用于对所述特征向量组中的特征向量进行分类 的类别指示信息, 纵坐标则为所述特征向量组中被划分到每个类别指示信息对应类别的特 征向量的数量。 计算机设备在确定出待处理图像中每个对象的对象分布信息后, 则可基于 该每个对象的对象分布信息, 确定出该待处理图像的图像类型, 即转而执行步骤S204。 0025 S204, 根据所述待处理图像中每个对象的对象分布信息, 确定所述待处理图像的 图像类型。 0026 在一个实施例中, 计算机设备根据待处理图像中每个对象的对象分布信息, 可确 说明书 6/15 页 10 CN 111625672 A 10 定出。

42、该待处理图像中每个对象的相邻对象相对于每个对象在待处理图像中的分布情况, 使 得计算机设备可基于该每个对象的分布情况确定出待处理图像中对象的分布密度, 进一步 地, 计算机设备可基于该待处理图像中对象的分布密度, 确定该待处理图像的图像类型, 可 以理解的是, 若该待处理图像中多于预设数量阈值的对象的对象分布信息所指示的对象的 分布密度为紧密分布, 则可确定该待处理图像的图像类型为紧密分布类型, 而若该待处理 图像中少于预设数量阈值的对象的对象分布信息所指示的对象的分布密度为稀疏分布, 则 可确定该待处理图像的图像类型为稀疏分布类型。 0027 在一个实施例中, 计算机设备在根据待处理图像中每。

43、个对象的对象分布密度, 确 定该待处理图像的图像类型时, 可按照预设的图像顺序确定该待处理图像的图像类型, 若 计算机设备确定的待处理图像中, 处于待处理图像上方的对象的对象分布信息指示对应对 象的对象分布信息为紧密分布的, 而处于待处理图像下方的对象分布信息指示的对应对象 的对象分布信息为稀疏分布的, 则计算机设备可确定该待处理图像是按照从上到下的顺序 按照先紧后疏的顺序排布的; 或者, 计算机设备还可按照从下到上, 或者从左到右, 或者从 中心向周围扩散的顺序确定待处理图像的图像类型。 0028 在本发明实施例中, 计算机设备在获取到待处理图像后, 可构建该待处理图像中 每个对象的特征向量。

44、组, 从而可分别对该每个对象的特征向量组中的特征向量进行分类, 得到该每个对象的分类结果, 计算机设备基于对待处理图像中每个对象的特征向量组的分 类, 可进一步地根据该每个对象的分类结果, 确定出该每个对象的对象分布信息, 计算机设 备基于该待处理图像中每个对象的对象分布信息, 则可确定出可用于表征该待处理图像中 对象密度的图像类型, 使得计算机设备了基于该待处理图像中每个对象的相邻对象相对于 该每个对象的分布情况, 确定出待处理图像的类型, 由于确定出的图像类型可用于表征待 处理图像中对象的密度, 可提升计算机设备在进行图像密度和类型的确认时的精度。 0029 在一个实施例中, 计算机设备可。

45、基于深度学习技术对待处理图像进行处理, 并通 过深度卷积网络从待处理图像中提取图像特征, 从而可基于提取的图像特征, 并采用带跳 跃链接的上采样操作来逐步恢复待处理图像的分辨率, 以获得同时具有高级语义信息和细 节信息的高分辨率特征图, 计算机设备可对得到的该待处理图像对应的高分辨率特征图进 行预测, 从而得到该待处理图像对应的对象密度热力分布图, 如图3所示。 在具体实现中, 对 象密度热力分布图反映了待处理图像中单位像素在实际场景中对应位置的平均人数, 计算 机设备在生成该对象密度热力分布图时, 可先从待处理图像中选取任一对象特征点, 并 可将选取的对象特征点表示为与待处理图像相同大小的一。

46、张图, 即该图像 中只有表示的位置为1, 其余位置均为0, 那么, 该待处理图像中的对象则可表示为 , 基于对该待处理图像中对象的表示进行积分, 就可以得到该待处 理图像中的总人数, 进一步地, 计算机设备可调用高斯核对该待处理图像中对象的表示 进行卷积操作, 即可得到该待处理图像的对象密度热力分布图。 在一个实施例 中, 由于高斯核是归一化处理后的, 所以计算机设备在采用高斯核进行卷积得到的密度图D 进行积分后也可以得到总人数。 在一个实施例中, 计算机设备在对待处理图像进行对象估 计时, 即是采用人群密度估计网络对待处理图像进行预测, 得到该待处理图像的对象密度 热力分布图, 从而可对预测。

47、得到的对象密度热力图进行积分得到对应的对象总数。 说明书 7/15 页 11 CN 111625672 A 11 0030 在一个实施例中, 由于实际场景中对象的分布密度变化范围较大 (从没有对象分 布到充满对象) , 而且对象分布尺度的变化也较大 (从较远的较小对象到较近的较大对象) , 若计算机设备仅使用深度卷积网络对分布差异较大的场景进行训练时, 优化后的预测网络 为了对所有场景表现得较为均匀, 在单一尺度或者密度的场景表现往往不理想, 限制了对 待处理图像中对象估计的准确性, 基于此, 本发明实施例提出了一种图像处理方法, 通过聚 类算法将具有相同 (或相似) 对象分布的进行类别划分,。

48、 从而可采用划分后的每个类别的图 像分别对初始模型进行训练, 以提升计算机设备调用训练得到的目标模型进行对象预测的 能力。 在具体实现中, 计算机设备可基于词袋模型对图像进行类别划分, 在一个实施例中, 计算机设备可先确定出从样本图像集中对象的特征向量 (如上述的N近邻距离向量) ; 从而 可对确定出的所有特征向量进行聚类获取词典, 该词典包括的单词即为聚类中心, 该聚类 中心可后续作为对图像进行分类的类别指示信息; 计算机设备在确定出词典后, 可利用词 典对样本图像集中的每张样本图像的对象分布进行统计, 从而可通过统计得到的对象分布 信息对每张样本图像的人群密集程度进行表征, 再使用聚类算法。

49、, 将处于相同密度范围的 样本图像进行归类, 从而将样本图像集划分为多个图像子集。 0031 在一个实施例中, 如图4所示, 是本发明实施例提出的一种图像处理方法的示意流 程图, 如图4所示, 该方法可包括: S401, 获取待处理图像, 并构建所述待处理图像中每个对象的特征向量组。 0032 在一个实施例中, 步骤S401的具体实施方式可参见上述实施例中步骤S201的具体 实施方式, 在此不再赘述。 0033 S402, 分别对所述每个对象的特征向量组中的特征向量进行分类, 得到每个对象 的分类结果。 0034 S403, 根据所述每个对象的分类结果, 确定所述每个对象的对象分布信息, 所述。

50、对 象分布信息用于指示任一对象的相邻对象相对于所述任一对象的分布情况, 所述任一对象 与所述任一对象的相邻对象为相同类型的对象。 0035 在步骤S402和步骤S403中, 待处理图像是样本图像集中的任一样本图像, 计算机 设备基于如步骤S401所述的对待处理图像中每个对象的特征向量组进行构建的方法, 可得 到样本图像集中每个对象的特征向量组, 进一步地, 该计算机设备可基于该样本图像集中 每个对象对应的特征向量组, 可得到该样本图像集对应的特征向量集, 进一步地, 计算机设 备可采用聚类算法对该特征向量集进行聚类运算, 并将聚类运算后得到的各聚类簇的聚类 中心作为单词, 并组成词典, 其中,。

展开阅读全文
内容关键字: 图像 处理 方法 装置 计算机 设备 存储 介质
关于本文
本文标题:图像处理方法、装置、计算机设备及存储介质.pdf
链接地址:https://www.zhuanlichaxun.net/pdf/10347281.html
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1