3D打印用弹性木塑复合材料及其制备方法与应用.pdf

上传人:T****z 文档编号:10131433 上传时间:2021-06-05 格式:PDF 页数:9 大小:314.32KB
收藏 版权申诉 举报 下载
3D打印用弹性木塑复合材料及其制备方法与应用.pdf_第1页
第1页 / 共9页
3D打印用弹性木塑复合材料及其制备方法与应用.pdf_第2页
第2页 / 共9页
3D打印用弹性木塑复合材料及其制备方法与应用.pdf_第3页
第3页 / 共9页
文档描述:

《3D打印用弹性木塑复合材料及其制备方法与应用.pdf》由会员分享,可在线阅读,更多相关《3D打印用弹性木塑复合材料及其制备方法与应用.pdf(9页完成版)》请在专利查询网上搜索。

1、(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 202011008406.6 (22)申请日 2020.09.23 (71)申请人 湖南大学 地址 410082 湖南省长沙市岳麓区麓山南 路1号 (72)发明人 李文生武凤影周春苗阳绮 李湘洲贺萍周小平 (74)专利代理机构 长沙星耀专利事务所(普通 合伙) 43205 代理人 宁星耀 (51)Int.Cl. C08L 75/04(2006.01) C08L 23/08(2006.01) C08L 53/02(2006.01) C08L 71/02(2006.01) C08L 。

2、51/06(2006.01) C08K 3/38(2006.01) C08K 3/04(2006.01) C08K 7/00(2006.01) C08K 3/22(2006.01) C08K 5/12(2006.01) C08K 13/04(2006.01) C08G 18/66(2006.01) C08G 18/65(2006.01) C08G 18/64(2006.01) C08G 18/42(2006.01) C08G 18/32(2006.01) C08G 18/48(2006.01) B33Y 70/10(2020.01) B33Y 10/00(2015.01) B33Y 40/20。

3、(2020.01) (54)发明名称 一种3D打印用弹性木塑复合材料及其制备 方法与应用 (57)摘要 一种3D打印用弹性木塑复合材料及其制备 方法与应用, 该3D打印用弹性木塑复合材料由木 粉、 木质素、 氢化木质素、 秸秆粉或竹粉中的一 种, 及异氰酸酯、 端羟基聚醇低聚物、 扩链剂、 偶 联剂、 相容剂、 抗氧化剂、 润滑剂、 增韧剂、 催化剂 和微纳碳材料制成。 本发明还包括所述弹性木塑 复合材料的制备方法。 本发明弹性木塑复合材料 的生产成本低, 易降解, 具有较好的拉伸强度、 冲 击强度和良好的弹性, 润滑性和流动性优异, 3D 打印线材出丝流畅, 打印件表面光滑, 层间粘结 力强。

4、, 耐磨性和韧性优良; 可以替代难降解的3D 打印用TPU线材, 拓展3D打印的可选材料范围; 可 采用常规设备制造, 无需苛刻条件; 具有良好的 环境效益。 权利要求书2页 说明书6页 CN 112126215 A 2020.12.25 CN 112126215 A 1.一种3D打印用弹性木塑复合材料, 其特征在于, 主要由木粉、 木质素、 氢化木质素、 秸 秆粉或竹粉中的一种, 及异氰酸酯、 端羟基聚醇低聚物、 扩链剂、 偶联剂、 相容剂、 抗氧化剂、 润滑剂、 增韧剂、 催化剂和微纳碳材料制成。 2.根据权利要求1所述的3D打印用弹性木塑复合材料, 其特征在于, 所述各原料的重量 份配比。

5、为: 木粉、 木质素、 氢化木质素、 秸秆粉或竹粉525份, 异氰酸酯2040份, 端羟基聚醇 低聚物3060份, 扩链剂515份, 偶联剂0.12. 5份, 相容剂08份, 抗氧化剂0.250.5份, 润 滑剂0.51.5份, 增韧剂0.51.5份, 催化剂0.020.2份, 微纳碳材料06份。 3.根据权利要求2所述的3D打印用弹性木塑复合材料, 其特征在于, 所述各原料的重量 份配比为: 木粉、 木质素、 氢化木质素、 秸秆粉或竹粉615份, 异氰酸酯2535份, 端羟基聚醇 低聚物3555份, 扩链剂612份, 偶联剂0.152份, 相容剂16份, 抗氧化剂0.250.5份, 润滑 剂。

6、1.52.5份, 增韧剂1.52.5份, 催化剂0.050.1份, 微纳碳材料0.55份。 4.根据权利要求13之一所述的3D打印用弹性木塑复合材料, 其特征在于, 所述偶联剂 为硅烷类偶联剂、 马来酸酐、 异氰酸酯中的一种或几种的混合物。 5.根据权利要求14之一所述的3D打印用弹性木塑复合材料, 其特征在于: 所述端羟基 聚醇低聚物为聚酯、 聚醚和聚己内酯 (PCL) 的一种或几种的混合物。 6.根据权利要求15之一所述的3D打印用弹性木塑复合材料, 其特征在于: 所述木粉、 木质素、 氢化木质素、 秸秆粉和竹粉的粒径为75600目。 7.根据权利要求16之一所述的3D打印用弹性木塑复合材。

7、料, 其特征在于, 所述抗氧化 剂为抗氧化剂1010、 抗氧化剂1076、 抗氧化剂TNPP、 抗氧化剂168或抗氧化剂Ultranox815A; 所述微纳碳材料优选碳纤维、 碳纳米管或纳米石墨片。 8.一种如权利要求17之一所述的3D打印用弹性木塑复合材料的制备方法, 其特征在 于, 包括以下步骤: (1) 将干燥的木粉、 木质素、 氢化木质素、 秸秆粉或竹粉通过超微粉碎机进一步粉碎, 然 后过筛, 得到75600目的木质类细粉, 烘干, 冷却至室温; 将得到的木质类细粉加入氢氧化 钠溶液中, 搅拌, 再用去离子水洗涤、 过滤, 将得到的固体粉末干燥, 加入偶联剂, 进行改性 处理; (2)。

8、 将端羟基聚醇低聚物和改性木质类细粉放入烧杯中, 加入抗氧剂, 真空干燥, 降温, 加入催化剂, 边搅拌边加入预热好的异氰酸酯, 搅拌反应, 加入1,4-丁二醇, 升温, 待搅拌均 匀后, 将材料转移至烘箱中, 得到弹性木塑复合材料; (3) 将步骤二所得弹性木塑复合材料处理成粒料, 加入干燥的其余木质类细粉、 微纳碳 材料和其他添加剂, 干燥、 称量并混匀; 将混匀料加入到熔融共混螺旋挤出机, 制成直径为 1.75 (0.05) mm或3.00 (0.08) mm的FDM复合线材, 螺杆各段温度为200210, 210215 , 210215, 210215, 200, 螺杆转速为820r/。

9、min; 所述线材通过冷却后, 进入卷线 机收卷, 得3D打印用弹性木塑复合材料线材成品。 9.如权利要求1-8之一所述3D打印用弹性木塑复合材料在3D打印器件制造中的应用。 10.根据权利要求9所述3D打印用弹性木塑复合材料在3D打印器件制造中的应用, 其特 征在于, 将权利要求8所述弹性木塑复合材料线材装入桌面3D打印机中, 使用3D设计软件设 计3D模型, 在设定的打印温度、 进丝速度条件下, 制得3D打印器件; 优选的是, 将所述3D打印 器件放入微波炉中, 调节火力为中高火, 进行38min辐照处理, 然后降至室温, 即得增强3D 权利要求书 1/2 页 2 CN 112126215。

10、 A 2 打印器件。 权利要求书 2/2 页 3 CN 112126215 A 3 一种3D打印用弹性木塑复合材料及其制备方法与应用 技术领域 0001 本发明涉及一种3D打印材料, 尤其是涉及一种由木质类原料改性的TPU基高性能 3D打印用弹性木塑复合材料及其制备方法与应用。 背景技术 0002 聚氨酯, 简称PU, 是主链含NHCOO重复结构单元的一类聚合物。 由异氰酸酯单 体与羟基化合物聚合而成。 由于含强极性的氨基甲酸酯基, 不溶于非极性基团, 具有良好的 耐油性、 韧性、 耐磨性、 耐老化性和粘合性。 热塑性聚氨酯弹性体 (TPU) 由于具有高强度、 好 的高温稳定性、 耐油和耐化学。

11、性、 好的低温弹性、 耐紫外线、 耐生物性、 耐水解性, 虽然相比 于钢铁和大多数硬质塑料, PU没有很高的硬度, 但是在一些需要耐磨性的应用中, PU弹性 体却有比钢铁更优秀的表现, 尤其是在有液体介质存在时, 在湿摩擦过程中, PU弹性体的耐 磨性能优于其他塑料与金属材料。 但是, 一般来说, TPU难以降解。 而且合成TPU的原材料成 本较高, 因此限制了TPU材料的推广应用。 0003 木塑复合材料, 简称WPC, 是以工厂废弃木材、 木质素和塑料基材为主要原料, 通过 高分子界面相容原理复合而成的一种新型环保的可降解可循环利用的材料, 可作为一种新 的木材替代品。 使用WPC能够对资。

12、源进行综合利用, 同时也能保护环境, 这对节约木材, 保护 世界森林资源意义重大。 WPC既具有木材的环保和可降解性, 也兼具普通聚合物材料的硬度 以及较优异的力学性能。 同时还具有优异的加工性、 强度高、 尺寸稳定性好等优势。 是一种 值得研究开发的新型绿色环保材料, 在物流、 建筑模板、 地板等领域中有广泛应用。 0004 目前, WPC的基材主要为PP、 PE、 PVC、 PS、 PLA以及ABS等。 用于3D打印的以TPU为基材 的WPC未见报道。 CN 201810730961.6公开了一种用于3D打印的热塑性聚氨酯弹性体增韧木 粉/聚乳酸复合材料线材的共混制备方法, 该材料基体是P。

13、LA, 少量的TPU起到增韧作用, 但 不是基材, 断裂伸长率仅增加了18%, 制得的材料较聚氨酯耐磨性较差。 0005 3D打印, 简称3D printing, 是一种按照电脑辅助设计逐层生产并最终形成完整产 品的材料加工方法。 它作为近些年迅速发展起来的新型增材制造技术, 被称为第三次工业 革命的核心之一。 随着增材制造技术的不断发展, 3D打印已经被广泛应用于生物、 医学、 电 子、 建筑以及手工制造等行业。 相对于传统制造方法如挤出成型、 模压成型等, 3D打印技术 不仅能够快速成型结构复杂而精细的产品, 而且还可以根据不同功能、 性能需求选择不同 材料进行快速制造。 凭借这一优势, 。

14、3D打印越来越受到人们的重视, 越来越多的3D打印产品 已经被应用到人们的生活、 学习和工作当中。 目前常见的几种3D打印技术中, FDM技术具有 制造简单, 成本低廉的优势。 FDM打印机的价格便宜, 成型工艺简单, 设备维护便捷, 成型材 料主要为线材。 0006 3D打印材料是3D打印的物质基础。 现有已经投入使用的3D材料品种较为单一, 而 且现有线材的生产成本高, 产品使用性能较差, 用户的材料选择范围非常有限。 3D打印材料 成为了制约3D打印技术发展的瓶颈和挑战。 目前可用于3D打印的弹性木塑复合材料的开发 和应用较少, 开发新型弹性3D打印木塑复合材料, 也是我国生物质资源的高。

15、值化利用方法。 说明书 1/6 页 4 CN 112126215 A 4 发明内容 0007 本发明要解决的技术问题是, 克服现有3D打印材料生产成本高、 成型品的性能较 差、 难降解等缺陷, 提供一种生产成本低, 易降解, 成型品性能优异的3D打印用弹性木塑复 合材料。 可代替难降解的3D打印材料, 具有良好的环境效益和应用价值。 0008 本发明解决其技术问题采用的技术方案是, 一种3D打印用弹性木塑复合材料, 主 要由木粉、 木质素、 氢化木质素、 秸秆粉、 竹粉 (概括简称为 “木质类粉体” ) 中的一种或几种, 异氰酸酯、 端羟基聚醇低聚物、 1,4-丁二醇、 偶联剂、 相容剂、 抗。

16、氧化剂、 润滑剂、 增韧剂、 催 化剂、 微纳碳材料制成。 0009 进一步, 所述异氰酸酯为合成聚氨酯常见种类的异氰酸酯, 如异佛尔酮二异氰酸 酯 (IPDI) 、 甲苯二异氰酸酯 (TDI) 、 二苯基甲烷二异氰酸酯 (MDI) 。 0010 进一步, 所述端羟基聚醇低聚物为聚酯、 聚醚和聚己内酯 (PCL) 的一种或几种的混 合物。 其中, 聚醚优选的是相对分子质量为1000的聚四氢呋喃。 0011 进一步, 所述扩链剂为聚氨酯挤出成型加工常用的扩链剂。 常用的扩链剂为三羟 甲基丙烷、 氢醌-双( -羟乙基)醚、 1,4-丁二醇、 低分子多元醇等。 0012 进一步, 各原料的重量份配比。

17、为: 木粉、 木质素、 氢化木质素、 秸秆粉或竹粉525 份, 异氰酸酯2040份, 端羟基聚醇低聚物3060份, 1,4-丁二醇515份、 偶联剂0.252.5份, 相容剂08份, 抗氧化剂0.250.5份, 润滑剂0.51.5份, 增韧剂0.51.5份, 催化剂0.020.2 份, 微纳碳材料06份。 0013 进一步, 各原料的优选重量份配比为: 木粉或木质素、 氢化木质素、 秸秆粉、 竹粉6 18份, 异氰酸酯2535份, 端羟基聚醇低聚物3555份, 1,4-丁二醇612份, 偶联剂0.52份, 相容剂16份, 抗氧化剂0.250.5份, 润滑剂1.52.5份, 增韧剂1.52.5份。

18、, 催化剂0.050.1 份, 微纳碳材料0.55份。 0014 进一步, 所述微纳碳材料优选碳纤维、 碳纳米管、 纳米石墨片等。 0015 进一步, 所述偶联剂为硅烷类偶联剂、 马来酸酐、 异氰酸酯中的一种或几种的混合 物。 0016 进一步, 所述木粉、 木质素、 氢化木质素、 秸秆粉或竹粉的粒径为75600目; 优选的 是100500目。 0017 进一步, 所述抗氧化剂为抗氧化剂1010、 抗氧化剂1076、 抗氧化剂TNPP、 抗氧化剂 168或抗氧化剂Ultranox815A。 0018 进一步, 所述润滑剂、 增韧剂为塑料挤出成型加工常用助剂。 常用润滑剂为聚乙二 醇、 硬脂酸、。

19、 硬脂酸丁酯、 油酰胺、 乙撑双硬脂酰胺等; 常用增韧剂为氢化苯乙烯-丁二烯嵌 段共聚物、 环己烷二甲酸二丁酯、 环己烷1, 2-二甲酸二异壬基酯、 聚己二酸/对苯二甲酸丁 二酯、 聚乙烯-乙酸乙烯酯等。 0019 进一步, 所述相容剂为马来酸酐接枝聚烯烃或异氰酸酯。 0020 进一步, 所述偶联剂为硅烷类偶联剂、 马来酸酐、 异氰酸酯中的一种或几种的混合 物。 0021 进一步, 所述催化剂为有机锡类催化剂如二月桂酸二丁基锡、 辛酸亚锡、 二 (十二 烷基硫) 二丁基锡催化剂。 0022 进一步, 还可添加通用抗菌防霉剂, 以防止材料发霉, 例如, 硼酸锌、 氧化锌、 纳米 说明书 2/6 。

20、页 5 CN 112126215 A 5 银或高分子-无机抗菌剂等。 0023 本发明3D打印用弹性木塑复合材料的制备方法, 包括以下步骤: (1) 将干燥的木粉或木质素、 氢化木质素、 秸秆粉、 竹粉通过超微粉碎机进一步粉碎, 然 后过筛得到75600目的木质类细粉烘干、 冷却至室温; 将得到的木质类细粉加入氢氧化钠 溶液中, 搅拌, 再用去离子水洗涤、 过滤, 将得到的固体干燥; 加入偶联剂, 进行改性处理; (2) 端羟基聚醇低聚物和改性木质类细粉放入烧杯中, 加入抗氧剂, 真空干燥, 降温, 加 入催化剂, 边搅拌边加入预热好的异氰酸酯, 在一定温度下搅拌反应, 加入计量好的1,4-丁。

21、 二醇, 升温, 待搅拌均匀后将材料转移至烘箱中, 得到弹性木塑复合材料; (3) 将步骤 (2) 所得弹性木塑复合材料处理成粒料, 加入干燥的其余木质类细粉、 微纳 碳材料和其他添加剂, 干燥、 称量并混匀; 将混匀料加入到熔融共混螺旋挤出机, 制成直径 为1.75 (0.05) mm或3.00 (0.08) mm的FDM复合线材, 螺杆各段温度为200210, 210215 , 210215, 210215, 200, 螺杆转速为820r/min; 所述线材通过冷却后进入卷线机 收卷, 得3D打印用弹性木塑复合材料线材成品。 0024 应用所述弹性木塑复合材料线材进行3D打印, 优选以下方。

22、法: 将制得的木塑复合 材料线材装入桌面3D打印机中, 使用3DS MAX或草图大师等软件设计3D模型, 在设定的打印 温度、 进丝速度条件下, 即制得3D打印器件。 0025 进一步优选的是, 将3D打印器件放入微波炉中, 调节火力为中高火, 进行38min辐 照处理, 降至室温, 取出增强3D打印器件成品。 0026 本发明木塑复合材料的热降解实验结果显示, 本发明材料的起始降解温度高于 250, 799.5时的残余量约为5%, DTG峰值1约为330, DTG峰值2约为403。 本发明材料 的加工温度约为210, 起始降解温度远高于加工温度, 说明本发明木塑复合材料具有很好 的热稳定性。。

23、 本发明木塑复合材料力学拉伸性能测试实验参照GB/T 16421-1996进行试验, 拉伸强度为100mm/min测得产品的拉伸强度和断裂伸长率。 0027 本发明弹性木塑复合材料润滑性和流动性优异, 有助于打印过程顺畅进行, 不会 堵住打印设备的喷嘴, 提高了设备的工作效率和产品合格率。 0028 本发明弹性木塑复合材料的制备方法使用常规设备, 无需苛刻条件, 易于推广。 本 发明之TPU基FDM材料弹性木塑复合材料与现有TPU基弹性木塑复合材料相比, 具有明显的 优势。 可通过配方设计增减木质粉体粒度与含量、 软硬端单体种类与含量、 微纳碳材料种类 与含量, 以及微波辐照后处理工艺条件等多。

24、种方法调控拉伸强度和断裂伸长率, 使之适应 满足客户的需求, 根据实际参数来确定采用普通FDM打印机打印, 或采用弹性体专用3D打印 机进行打印, 以便进丝顺畅。 0029 TPU抗冲击强度和耐磨性好, 弹性性能优于其他硬质材料, 被广泛应用于我们生活 的方方面面, 本发明在聚氨酯合成反应过程中, 加入木粉或木质素、 氢化木质素、 秸秆粉、 竹 粉等可降解生物质, 利用木质素或氢化木质素基团、 酸酐基团与TPU的异氰酸根发生化学反 应, 同时两者还可以形成稳定的氢键, 基于此, 将TPU引入到木塑复合材料中, 通过酸酐基团 的 “架桥” 作用, 将塑料和植物纤维连接起来, 降低表面张力, 提高。

25、便面粘合力, 改善生物质 和热塑性树脂的相容性, 提高木塑复合材料的力学性能, 充分发挥了TPU的耐磨性和韧性, 拓宽了木塑材料的使用范围, 又降低了成本, 显著改善了3D打印材料产品性能差的问题。 0030 本发明弹性木塑复合材料生产成本低, 同时作为增强材料, 能够提升现有打印材 说明书 3/6 页 6 CN 112126215 A 6 料的力学性能, 实现生物质资源的高附加值利用, 拓展3D打印材料的多样性和可选菜单。 在 3D打印定制个性化柔性穿戴器件、 耐磨产品、 防摔玩具、 抗冲击件、 手机外壳、 耐低温部件的 原型快速迭代、 小批量定制等领域具有潜在的应用价值。 具体实施方式 0。

26、031 以下通过实施例对本发明作进一步的详细说明, 但不应将此理解为对本申请权利 要求请求保护范围的限制。 在不脱离本发明发明思路的情况下, 根据本领域普通技术的知 识和惯用手段做出的各种替换或变更, 均应包含在本申请权利要求请求保护的范围内。 0032 实施例1 原料组分与重量份配比: 0.3份偶联剂KH540、 47份聚己内酯、 11份木粉、 2份相容剂乙 烯-丙烯酸酯共聚物、 0.3份抗氧剂1076、 0.05份二月桂酸二丁基锡催化剂, 29.5份异佛尔酮 二异氰酸酯, 6.9份扩链剂1,4-丁二醇, 1.5份润滑剂聚乙二醇、 1.5份增韧剂氢化苯乙烯-丁 二烯嵌段共聚物。 0033 制。

27、备: 将木粉置于100下烘干2h, 以降低含水量; 将干燥的木粉通过超微粉碎机 进一步粉碎, 得到粒径更小的木粉, 将经过粉碎的木粉通过振动过筛器过筛, 得到100目的 木粉, 过筛后的木粉放于100烘箱中烘干2h, 最后置于干燥器中冷却至室温; 将得到的木 粉加入已经配制好的25%的氢氧化钠溶液中, 搅拌1h, 去离子水反复洗涤至中性, 之后过滤, 将得到的固体在70烘箱中干燥4h, 之后升温到100, 烘干至质量不再变化, 然后加入0.3 份偶联剂KH540, 进行改性处理; 将47份聚己内酯和6份木粉、 2份相容剂放入烧杯中, 加入 0.3份抗氧剂, 在200真空干燥2小时, 降温至60。

28、, 加入0.05份二月桂酸二丁基锡, 边搅拌 边加入预热至60的29.5份异佛尔酮二异氰酸酯, 在此温度下搅拌反应2小时, 加入7份扩 链剂1,4-丁二醇, 加入完毕后, 升温至80, 待搅拌均匀后将材料转移至90烘箱中, 熟化 48小时, 得到弹性木塑复合材料。 将弹性木塑复合材料处理成粒料, 加入5份木粉和其他添 加剂, 干燥、 称量并进行混合。 将混合料加入到熔融共混单螺旋挤出机, 制成直径为1.75 ( 0.05) mm的FDM复合线材, 螺杆各段温度为200, 210, 210, 210, 200, 螺杆转速为 15r/min。 所述线材通过水槽冷却后进入卷线机收卷成成品。 将线材装。

29、入桌面3D打印机中, 使用3DS MAX软件设计3D模型, 在适宜的打印温度、 进丝速度条件下, 制得3D打印器件。 0034 表1实施例1材料的力学性能检测结果数据 材料拉伸强度 (MPa)断裂伸长率/%邵A硬度 实施例19.564095 实施例2 原料组分与重量份配比: 17份竹粉、 3份偶联剂KH560、 39.1份相对分子质量为1000的聚 四氢呋喃、 5份马来酸酐接枝聚丙烯相容剂、 0.4份抗氧剂168, 0.05份辛酸亚锡催化剂, 24份 异佛尔酮二异氰酸酯, 5份扩链剂1,4-丁二醇, 2份纳米碳纤维、 0.5份硼酸锌、 2份硬脂酸丁 酯润滑剂、 聚乙烯-乙酸乙烯酯增韧剂。 00。

30、35 制备: 将竹粉置于110下烘干2h, 以降低含水量。 将干燥的竹粉通过超微粉碎机 进一步粉碎, 得到粒径更小的竹粉, 将经过粉碎的竹粉通过振动过筛器过筛, 得到550目的 竹粉, 过筛后的竹粉放于100烘箱中烘干2h, 最后置于干燥器中冷却至室温。 将得到的竹 粉加入乙酰酐中进行乙酰化, 之后用去离子水反复洗涤至中性, 之后过滤, 将得到的固体烘 说明书 4/6 页 7 CN 112126215 A 7 干水分, 得到乙酰化的竹粉, 在12份竹粉中加入3份偶联剂KH560, 进行改性处理, 再加入 39.1份聚四氢呋喃、 5份相容剂、 0.4份抗氧剂, 在200真空干燥2小时, 降温至6。

31、0, 加入 0.05份辛酸亚锡, 边搅拌边加入计量好, 预热至60的24份异佛尔酮二异氰酸酯, 在此温度 下搅拌反应2小时, 加入计量好的5份扩链剂1,4-丁二醇, 加入完毕后, 升温至80, 待搅拌 均匀后将材料转移至90烘箱中, 熟化48小时, 得到弹性木塑复合材料。 将弹性木塑复合材 料处理成粒料, 加入5份竹粉和2份纳米碳纤维、 0.5份硼酸锌等其他添加剂, 干燥、 称量并进 行混合。 将混合料加入到熔融共混单螺旋挤出机, 制成直径为1.75 (0.05) mm的FDM复合线 材, 螺杆各段温度为205, 210, 205, 205, 200, 螺杆转速为10r/min。 所述线材通过。

32、 水槽冷却后进入卷线机收卷得成品。 将线材装入桌面3D打印机中, 使用草图大师等软件设 计3D模型, 在适宜的打印温度、 进丝速度条件下, 制得3D打印器件。 将其放入微波炉中, 调节 火力为中高火, 进行3.5min的微波处理, 待成品降至室温, 取出3D打印器件产品。 0036 表2实施例2材料的力学性能检测结果数据 材料拉伸强度 (MPa)断裂伸长率(%)邵A硬度 实施例29.8451085 对比例5.723062 实施例3 原料组分与重量份配比: 0.95份偶联剂KH570, 46份相对分子质量为1000的聚四氢呋 喃、 18份秸秆粉、 0.5份抗氧剂TNPP、 0.05份二月桂酸二丁。

33、基锡催化剂, 26.5份二苯基甲烷二 异氰酸酯原料, 3份扩链剂三羟甲基丙烷, 1.2份纳米石墨片、 0.8份纳米氧化锌, 1.5份润滑 剂硬脂酸、 1.5份增韧剂环己烷二甲酸二丁酯。 0037 制备: 将竹粉置于110下烘干2h, 以降低含水量。 将干燥的秸秆粉通过超微粉碎 机进一步粉碎, 得到粒径更小的秸秆粉, 将经过粉碎的秸秆粉通过振动过筛器过筛, 得到 250目的秸秆粉, 过筛后的秸秆粉放于110烘箱中烘干2h, 最后置于干燥器中冷却至室温。 将得到的秸秆粉加入已经配置好的20%的氢氧化钠溶液中, 搅拌1h, 去离子水反复洗涤至中 性, 之后用漏斗过滤, 将得到的固体在70烘箱中干燥4。

34、h, 之后升温到100, 烘干至质量不 再变化, 然后加入1份偶联剂KH570, 进行改性处理。 将48份聚四氢呋喃和8份秸秆粉放入烧 杯中, 加入抗氧剂, 在200真空干燥2小时, 降温至80, 加入催化剂, 边搅拌边加入计量 好, 预热至80的27份二苯基甲烷二异氰酸酯, 在此温度下搅拌反应2小时, 加入3份扩链剂 三羟甲基丙烷, 加入完毕后, 升温至80, 待搅拌均匀后将材料转移至90烘箱中, 熟化48 小时, 得到弹性木塑复合材料。 将弹性木塑复合材料处理成粒料, 加入10份秸秆粉和1.2份 纳米石墨片、 0.8份纳米氧化锌等其他添加剂, 干燥、 称量并进行混合。 将混合料加入到熔融 。

35、共混单螺旋挤出机, 制成直径为1.75 (0.05) mm的FDM复合线材, 螺杆各段温度为205, 210, 205, 205, 200, 螺杆转速为8r/min。 所述线材通过水槽冷却后进入卷线机收卷 成成品。 将线材装入桌面3D打印机中, 使用AUTOCAD等软件设计3D模型, 在适宜的打印温度、 进丝速度条件下, 制得3D打印器件。 将3D打印器件放入微波炉中, 调节火力为中高火, 进行 5min的微波处理, 待成品降至室温取出。 0038 表3实施例3材料的力学性能检测结果数据 材料拉伸强度 (MPa)断裂伸长率(%)邵A硬度 实施例311.342075 说明书 5/6 页 8 CN。

36、 112126215 A 8 对比例5.723062 实施例4 原料组分与重量份配比: 34.05份相对分子质量为1000的聚四氢呋喃、 10份木质素、 12 份氢化木质素、 2份马来酸酐接枝聚乙烯相容剂、 0.4份抗氧剂168, 0.05份二 (十二烷基硫) 二丁基锡催化剂催化剂, 25份异佛尔酮二异氰酸酯, 9份1,4-丁二醇, 4份碳纳米管, 2份聚乙 二醇润滑剂、 1.5份环己烷二甲酸二丁酯增韧剂。 0039 制备: 将34.6份聚四氢呋喃和12份氢化木质素、 2份相容剂放入烧杯中, 加入0.4份 抗氧剂, 在200真空干燥2小时, 降温至60, 加入催化剂, 边搅拌边加入计量好, 预。

37、热至60 的27份二苯基甲烷二异氰酸酯, 在此温度下搅拌反应2小时, 加入计量好的10份氢醌-双 ( -羟乙基)醚, 加入完毕后, 升温至80, 待搅拌均匀后将材料转移至90烘箱中, 熟化48 小时, 得到弹性木塑复合材料。 将弹性木塑复合材料处理成粒料, 10份木质素、 4份碳纳米管 等其他添加剂, 干燥、 称量并进行混合。 将混合料加入到熔融共混单螺旋挤出机, 制成直径 为3.00 (0.08) mm的FDM复合线材, 螺杆各段温度为205, 210, 205, 205, 200, 螺 杆转速为19r/min。 所述线材通过水槽冷却后进入卷线机收卷成成品。 将线材装入桌面3D打 印机中, 。

38、使用3DS MAX等软件设计3D模型, 在适宜的打印温度、 进丝速度条件下, 制得3D打印 器件。 将其放入微波炉中, 调节火力为中高火, 进行8min的微波处理, 待成品降至室温取出 增强的3D打印器件。 0040 表4 实施例4材料的力学性能检测结果数据 材料拉伸强度 (MPa)断裂伸长率(%)邵A硬度 实施例215.3434085 对比例5.723062 所述对比例的材料为现有热塑性聚氨酯弹性体 (TPU) 材料。 从以上所述实施例可见, 本 发明弹性木塑复合材料的力学性能参数拉伸强度、 断裂伸长率、 邵A硬度明显优于现有热塑 性聚氨酯弹性体 (TPU) 材料, 非常适合用于制作3D打印器件; 且易降解; 由于掺有木质类粉 料, 生产成本也低。 说明书 6/6 页 9 CN 112126215 A 9 。

展开阅读全文
内容关键字: 打印 弹性 复合材料 及其 制备 方法 应用
关于本文
本文标题:3D打印用弹性木塑复合材料及其制备方法与应用.pdf
链接地址:https://www.zhuanlichaxun.net/pdf/10131433.html
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1