书签 分享 收藏 举报 版权申诉 / 16

OsFLA19蛋白在调控植物叶夹角中的应用.pdf

  • 上传人:li****8
  • 文档编号:9144825
  • 上传时间:2021-02-10
  • 格式:PDF
  • 页数:16
  • 大小:9.11MB
  • 摘要
    申请专利号:

    CN201310009507.9

    申请日:

    20130110

    公开号:

    CN103923916A

    公开日:

    20140716

    当前法律状态:

    有效性:

    失效

    法律详情:

    IPC分类号:

    C12N15/113,C12N15/11,C12N15/63,C12N5/10,C12N1/15,C12N1/19,C12N1/21,A01H5/00

    主分类号:

    C12N15/113,C12N15/11,C12N15/63,C12N5/10,C12N1/15,C12N1/19,C12N1/21,A01H5/00

    申请人:

    中国科学院植物研究所

    发明人:

    种康,陈丽萍,马岩,徐云远,王晓夏

    地址:

    100093 北京市海淀区香山南辛村20号中国科学院植物研究所

    优先权:

    CN201310009507A

    专利代理机构:

    北京纪凯知识产权代理有限公司

    代理人:

    关畅

    PDF完整版下载: PDF下载
    内容摘要

    本发明公开了OsFLA19蛋白在调控植物叶夹角中的应用。本发明提供了沉默或失活目的植物中OsFLA19蛋白编码基因表达的物质在调控植物叶夹角中的应用;所述OsFLA19蛋白的氨基酸序列为序列表中的序列2。所述调控植物叶夹角为增大植物叶夹角。本发明的实验证明,本发明发现的OsFLA19编码基因部分特异序列组成的DNA分子构建到目的载体pTCK303中,得到RNA干扰载体,利用农杆菌介导法将RNA干扰载体转化水稻Kitaake愈伤组织,得到OsFLA19的RNAi株系,该植株与未转入该基因的水稻相比表现出明显叶夹角增大的特性,说明沉默OsFLA19表达与提高水稻叶夹角密切相关。

    权利要求书

    1.沉默或失活目的植物中OsFLA19蛋白编码基因表达的物质在调控植物叶夹角中的应用;所述OsFLA19蛋白的氨基酸序列为序列表中的序列2。 2.根据权利要求1所述的应用,其特征在于:所述OsFLA19蛋白编码基因的核苷酸序列为序列表中的序列1。 3.根据权利要求1或2所述的应用,其特征在于:所述沉默或失活目的植物中OsFLA19蛋白编码基因表达的物质为如下1)-3)中的至少一种:1)RNA分子,为如下(a)或(b):(a)序列表的序列4所示的RNA分子;(b)与序列表的序列4反向互补的RNA分子;2)编码所述RNA分子的DNA分子;3)含有所述DNA分子的重组载体、表达盒、转基因细胞系或重组菌。 4.根据权利要求3所述的应用,其特征在于:所述DNA分子的核苷酸序列为序列表中的序列3或序列表中的序列3自5’末端第16-1199位核苷酸;所述重组载体为将所述DNA分子插入表达载体中,得到的载体。 5.根据权利要求1-4中任一所述的应用,其特征在于:所述目的植物为双子叶植物或单子叶植物。 6.一种培养转基因植物的方法,包括如下步骤:沉默或失活目的植物中OsFLA19蛋白编码基因表达,得到转基因植物,所述转基因植物的叶夹角大于所述目的植物;所述OsFLA19蛋白的氨基酸序列为序列表中的序列2。 7.根据权利要求6所述的方法,其特征在于:所述OsFLA19蛋白编码基因的核苷酸序列为序列表中的序列1。 8.根据权利要求6或7所述的方法,其特征在于:所述沉默或失活目的植物中OsFLA19蛋白编码基因表达为将权利要求3-5中任一所述应用中的所述DNA分子导入目的植物中。 9.根据权利要求8所述的方法,其特征在于:所述将权利要求3-5中任一所述应用中的所述DNA分子通过权利要求3-5中任一所述应用中的所述重组载体导入目的植物。 10.根据权利要求6-9中任一所述的方法,其特征在于:所述目的植物为双子叶植物或单子叶植物。

    说明书

    技术领域

    本发明涉及生物技术领域,尤其涉及一种OsFLA19蛋白在调控植物叶夹角中的 应用。

    背景技术

    水稻是全世界重要的粮食作物之一,占全球谷类作物种植面积的1/3。随着人口迅 速增长,全球粮食危机日益严重。我国城市化进程、水资源限制等导致耕地面积减少, 加上种植结构调整,我国的水稻实际种植面积已有下降趋势,要满足巨大人口增长对 稻米的需求,解决粮食安全问题,必须实现水稻育种上的新突破。20世纪60年代, 我国选育出综合性状良好的矮秆抗倒品种,开创了我国水稻矮化育种的新纪元,矮秆 水稻品种的选育和推广成为水稻育种实践中非常重要的研究课题。因此,发掘和鉴定 影响水稻矮化的基因,开展矮化相关基因的定位、克隆及作用机理等方面的研究,实 现对于水稻株高的定向改良,具有十分重要的理论意义和应用价值。

    矮化作为水稻的一种优良性状,具有抗倒伏和增产的作用,并且水稻矮秆基因的 发掘和育种利用已为人类粮食生产做出了巨大贡献。然而,中国矮秆资源十分贫乏、 矮秆基因单一化以及可利用的矮源比较稀少,遗传研究表明,生产上应用的矮秆和半 矮秆品种绝大多数是带有sd1的品种及其衍生品种,但是由于sd1基因与不良农艺性 状的连锁,使其在生产上广泛利用潜伏着由遗传单一而带来的风险(Yu et al.,2005)。 因此创建、筛选非sd1矮源,以扩大水稻矮秆基因的遗传基础,增加遗传多样性或者 作为矮秆基因的储备是极为重要和必要的,该项研究受到广大水稻育种工作者和种质 资源工作者的高度重视;到目前为止,已发现多种矮化突变体,而大多数突变体都过度 矮化或不具备实用的农艺性状。因此挖掘新的矮杆资源,通过多种途径探求对育种具 有应用价值的新矮源,无论在理论上还是在育种实践上都将具有非常重要的实用价值。

    水稻植株矮化一般认为是矮秆基因的作用导致水稻植株形态学或细胞学上的变 化,如节间变短和细胞数目减少等;同时,基因的表达还受到外部环境以及内源条件 的影响。近年来,对水稻矮化相关基因的遗传学、矮化突变体的激素调控以及矮化相 关基因的克隆和利用等方面开展了广泛而深入的研究,尤其在利用基因工程手段控制 水稻株高方面取得了很大的进步。植物激素几乎参与水稻生长发育的整个过程,植物矮 化突变与植物赤霉素(Gibberellin,GA)和油菜素类固醇(Brassinosteroid,BR)有关;少数 植物矮化突变与生长素(Auxin,IAA)有关。水稻矮化突变体dwarfl(d1)是GA钝感型突 变体,表现为矮化、叶宽且呈墨绿色、花序紧密。研究表明,水f稻1G基Adwar因编码的 是结合蛋白,该蛋白在植物的生长发育中发挥着重要作用f1GTP(Ashikari et al.,1999)。 Sasaki等分离的水稻矮化突变体gid2也是GA钝感突变体,因抑制GA的信号传导,导 致植株矮化(Sasaki et al.,2003)。水稻brd1突变体是是一种BR缺陷型矮化突变体, 外源施加BR能恢复到正常表型。该突变体叶鞘短、叶片短而弯曲、分蘖少、不育。 内源BR含量分析发现BR合成过程中的BR-6-氧化酶减少(Mori et al.,2002)。Hong等 研究发现,矮化突变体d2是BR敏感型突变体,外源施加10-6M的BL(BR的一种活性形 式),能使突变体的表型恢复到野生型,利用d2突变体克隆了D2基因,该基因编码细胞色 素P450家族中一个新成员,属于与BR合成酶高度相似的CYP90D家族(Hong et al.,2003)。随着RFLP、RAPD、AFLP、SSR等分子标记技术的开展及广泛应用,许多 控制株高性状的基因已得到了定位和克隆,利用这些基因控制GA或者BR的生物合 成或者信号传导从而获得适合的株高,将是未来生产的重要手段(Mori et al.,2002; Hong et al.,2003;Hedden et al.,2003;Sakamoto et al.,2003)。

    水稻产量与它的株型密切相关,除了株高,还包括分蘖数目、分蘖角度、花形态 和叶夹角等。直立叶片株型和密植相结合是目前获得水稻增产的新策略,拥有直立叶 片的植株能够吸收更多的阳光促进光合作用和种子灌浆,从而提高整株的产量。水稻 对油菜素内酯(BR)响应的一个重要形态特征就是产生直立叶片的表型。多年来科学家 们对水稻中BRs合成和信号转导分子机制的研究投入了极大的热情,越来越多的水稻 BRs合成和信号转导的关键元件被克隆和印证。BR合成减少的突变体以及信号减弱的 突变体表现出矮化、叶片直立、种子变小等特征,例如brd2、d2、d11、brd1、d61, 相反,超表达合成基因或者信号转导的正调控因子能够增大叶夹角的角度,例如超表 达BZR1。因此,分离水稻油菜素内酯信号元件,不仅完善了水稻油菜素内酯信号传 递的分子机制,而且对于改良水稻株型、提高水稻产量也有重要意义。

    具有类成束蛋白结构域(Fasciclin-like domain)的阿拉伯半乳聚糖蛋白 (Arabinogalactan proteins,AGP)是阿拉伯半乳聚糖蛋白家族中的一类,它不仅包含 有类AGP的糖基化区域,而且还存在l-2个fasciclin-like结构域,该类蛋白被许多实 验证明行使分子粘连的功能。Faik等通过生物信息学的方法分析了水稻和小麦中的 FLA基因,结果发现,这些谷物类的FLA蛋白与拟南芥的有相同的结构,包含 fasciclin-like和AGP-like结构域。这些基因中的70%也被推测含有GPI-锚定序列。RNA gel blot分析发现大多数FLA基因在种子和根中微弱表达,而且大多数小麦FLA基因 的表达因非生物条件的胁迫而下调(Faik et al.,2006)。到目前为止,水稻基因组中FLA 基因家族已有29个成员被鉴定出来。在拟南芥基因组中已经报道的FLA类基因一共 有24个成员。目前关于植物FLA蛋白的功能还知之较少,己有的证据表明,FLA蛋 白可能在细胞伸长、细胞粘连和次生壁成熟的过程中起作用。拟南芥一个sos5(fla4) 突变体生长在高盐浓度的培养基上时,表现出根尖膨胀、根的伸长受到了抑制,测序 结果显示突变位点位于该基因内的fasciclin-like结构域中,因此,FLA4是细胞增殖所 必需的(shi et al.,2003)。拟南芥另一个FLA基因AtFLA11,其mRNA在花序茎和荚果 的厚壁组织(sclerenchyma)中特异表达,且表达强度随着果实的成熟不断增强,推测 AtFLA11可能促进次生细胞壁的木质化,对次生细胞壁的成熟有重要的作用(Ito et al., 2005)。

    目前,虽然人们对AGP类基因家族蛋白的研究已经取得了一定的进展,但在水稻 中的研究还比较少,该类基因参与的生物学过程还不清楚。

    发明内容

    本发明的一个目的是提供沉默或失活目的植物中OsFLA19蛋白编码基因表达的 物质的用途。

    本发明提供了沉默或失活目的植物中OsFLA19蛋白编码基因表达的物质在调控 植物叶夹角中的应用;所述OsFLA19蛋白的氨基酸序列为序列表中的序列2。

    上述应用中,所述OsFLA19蛋白编码基因的核苷酸序列为序列表中的序列1。

    上述应用中,所述沉默或失活目的植物中OsFLA19蛋白编码基因表达的物质为 如下1)-3)中的至少一种:

    1)RNA分子,为如下(a)或(b):

    (a)序列表的序列4所示的RNA分子(单链RNA或双链RNA);

    (b)与序列表的序列4反向互补的RNA分子(单链RNA或双链RNA);

    2)上述RNA分子的DNA分子;

    3)含有所述DNA分子的重组载体、表达盒、转基因细胞系或重组菌。

    上述应用中,所述DNA分子的核苷酸序列为序列表中的序列3或序列表中的序列 3自5’末端第16-1199位核苷酸;

    所述重组载体为将所述DNA分子插入表达载体中,得到的载体,在本发明的实施 例中,表达载体具体为载体pTCK303。

    上述应用中,所述调控植物叶夹角为增大植物叶夹角。

    上述应用为将所述DNA分子导入目的植物中,得到转基因植物,所述转基因植物 的叶夹角大于所述目的植物;

    所述叶夹角具体为剑叶夹角或剑叶下第一叶夹角;

    上述应用中,所述目的植物为双子叶植物或单子叶植物;所述单子叶植物具体为 水稻。

    本发明的另一个目的是提供一种培养转基因植物的方法。

    本发明提供的方法,包括如下步骤:沉默或失活目的植物中OsFLA19蛋白编码 基因表达,得到转基因植物,所述转基因植物的叶夹角大于所述目的植物;所述 OsFLA19蛋白的氨基酸序列为序列表中的序列2。

    上述方法中,所述OsFLA19蛋白编码基因的核苷酸序列为序列表中的序列1。

    上述方法中,所述沉默或失活目的植物中OsFLA19蛋白编码基因表达为将上述 应用中的所述DNA分子导入目的植物中,得到转基因植物。

    上述方法中,所述将上述应用中的所述DNA分子通过上述应用中的所述重组载体 导入目的植物。

    所述叶夹角为剑叶夹角或剑叶下第一叶夹角。

    上述方法中,所述目的植物为双子叶植物或单子叶植物;所述单子叶植物具体为 水稻。

    本发明的实验证明,本发明发现的OsFLA19,将其编码基因部分特异序列组成的 DNA分子构建到目的载体pTCK303中,得到RNA干扰载体,利用农杆菌介导法将 RNA干扰载体转化水稻Kitaake愈伤组织,经潮霉素筛选和PCR检测,得到OsFLA19 的RNAi株系,该植株与未转入该基因的水稻相比表现出明显叶夹角增大的特性,说 明沉默OsFLA19表达与提高水稻叶夹角密切相关。

    附图说明

    图1为RT-PCR方法扩增到OsFLA19的全长cDNA中较特异的序列

    图2为RNAi表达载体OsFLA19RNAi的部分结构示意图

    图3为转基因水稻的Real-time-PCR鉴定

    图4为OsFLA19RNAi转基因水稻叶夹角变大表型观察

    具体实施方式

    下述实施例中所使用的实验方法如无特殊说明,均为常规方法。

    下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。

    实施例1、干扰OsFLA19编码基因表达载体OsFLA19RNAi的构建及干扰DNA 分子的获得

    1、干扰OsFLA19编码基因表达的靶片段的获得

    根据在GenBank提交的水稻基因序列,找到编码OsFLA19基因,其完整读码框 序列GenBank号为NM_001053180(序列1;编码的蛋白命名为OsFLA19,其氨基酸序 列为序列表中序列2),据此设计正反向引物,5′端引物:5′-CGG GGTACC ACTAGTCAATAAGGAGCACAAGAAG-3′(下划线序列为KpnⅠ、SpeⅠ位点),3′端引物:5′-CGC GGATCC GAGCTC CTGAGTGAATCATCATCAACA-3′(下划线序列为BamHⅠ、SacⅠ 位点),以三叶期Kitaake水稻(Oryza sativaL.cv.Kitaake,Qu et al.,J.Exp.Bot.2008,59: 24172424,公众可从中国科学院植物研究所获得,以下简称为野生型水稻。)幼苗总 RNA反转录的cDNA为模板,采用RT-PCR方法扩增到OsFLA19全长cDNA中316bp 的特异序列。具体操作过程如下:

    水稻总RNA的提取:选取三叶期Kitaake水稻。幼苗100mg为材料,在液氮中 研磨,将液氮中研碎的冻干粉转入到含1ml Trizol试剂(Invitrogen)的1.5ml离心管 中,充分混匀;室温25℃放置5分钟;每管中加入0.2ml新鲜氯仿,剧烈振摇15秒, 25℃温育2~3分钟;12,000rpm,4℃,离心15分钟;把上清的水相0.5ml转移到一 个新的1.5ml离心管中,加0.5ml异丙醇,室温放置10分钟使RNA沉淀;12,000rpm, 4℃,离心10分钟;去上清,将RNA沉淀用1ml75%乙醇清洗2次,超净台吹至半 干;用50μl DEPC-ddH2O重悬沉淀,60℃水浴10分钟,以溶解RNA沉淀。将此RNA 溶液分装后-70℃保存,备做反转录的模板。

    RT-PCR:取1μl上述RNA样品,用DEPC-ddH2O稀释100倍,用分光光度计测 定RNA浓度。参照RT-PCR试剂盒(Promega)说明书,根据RNA的定量结果,取2 μg该RNA,加1.0μgOligo dT引物,用DEPC-ddH2O补充至15μl,混匀后70℃变性 5分钟,冰浴5分钟。短暂离心后,加入25μl反转录混合物(5μl M-MLV5×Reaction Buffer,6μl dNTP Mixture(2.5mM),1μl M-MLV Reverse Transcriptase,0.5μl RNase Inhibitor,12.5μl DEPC-ddH2O)。混匀后,42℃水浴1小时完成反转录过程;75℃水 浴10分钟使反转录酶失活,得到含有第一链cDNA的混合物。

    取1μl上述第一链cDNA作为PCR的模板,按以下体系进行PCR反应:0.2μl LA Taq(5U/μl)、10μl2×GC buffer,1.8μl dNTPs,0.5μl5′端引物(10μM),0.5μl3′端引 物(10μM),加ddH2O终体积20μl。引物序列如前,PCR程序为:94°C预变性3分 钟后进入PCR循环,循环参数为94°C30秒变性→58°C30秒复性→72°C1分钟延伸, 30个循环后在72°C继续合成10分钟。

    扩增的PCR产物经过0.8%的琼脂糖凝胶电泳分离,结果如图1所示,从图中可 以看出,得到分子量大约0.3kb的条带,用AxyPrep DNA凝胶回收试剂盒回收该片断 得到20μl回收产物。进行测序分析,测序结果316bp的PCR片段具有序列表中序列1 自5’末端第713-1028之间的核苷酸,将该PCR片段命名为A。

    克隆载体的构建和纯化:取3.5μl上述回收片段,加入T4-DNA连接酶1μl(3U/ μl)、2×连接酶缓冲液5μl、pGEM-T Easy载体(Promega)0.5μl(50mg/ml)4℃连 接过夜,将连接产物转化大肠杆菌DH5α感受态细胞,经含羧苄青霉素的抗性平板筛 选得到转化子,得到质粒pTeasy-A。

    经过测序,质粒pTeasy-A为将序列表中序列1自5’末端第713-1028之间的核苷 酸插入pGEM-T Easy载体中得到的质粒。

    2、OsFLA19RNAi表达载体的构建

    pTCK303载体酶切:用限制性内切酶SpeⅠ和SacⅠ双酶切载体pTCK303(pTCK303 记载在如下文献中:Wang Z,Chen C,Yunyuan Xu,et al.2004.A Practical Vector for Efficient Knockdown of Gene Expression in Rice(Oryza sativa).Plant MolecularBiology reporter22:1-9.;公众可从中国科学院植物研究所获得),酶 切体系为:质粒10μl、10x酶切缓冲液5μl、SpeⅠ1μl(10U/μl)、SacⅠI0.8μl (10U/μl),加ddH2O补充反应体系至50μl,37℃酶切4小时。用琼脂糖凝胶电泳 对酶切产物进行分离,回收14621bp线性化的pTCK303大片段,溶于20μl ddH2O中。

    正向片段和反向片段的获得:用限制性内切酶SpeⅠ和SacⅠ同样条件双酶切 pTeasy-A并回收316bp酶切产物,命名为OsFLA19F(正向片段)。同样,用限制性内 切酶BamHI和KpnI对载体pTeasy-A进行双酶切并回收316bp酶切产物,命名为 OsFLA19R(反向片段)。

    OsFLA19RNAi表达载体:取回收的316bp的OsFLA19F产物10μl、回收的载体 pTCK303溶液6μl,与T4DNA连接酶2μl(3U/μl)、10x连接酶缓冲液2μl混和,16℃ 连接16小时,得到连接产物,将连接产物转入大肠杆菌中,得到转化子。提取转化子 的质粒,送去测序,将该质粒命名为OsFLA19F/pTCK303。测序成功的该质粒用限制性 内切酶KpnI和BamH进行双酶切,酶切体系为:质粒10μl、10x酶切缓冲液5μl、Kpn I1μl(10U/μl)、BamH I0.8μl(10U/μl),加ddH2O补充反应体系至50μl,37℃酶 切4小时。用琼脂糖凝胶电泳对酶切产物进行分离,回收14937bp线性化的 OsFLA19F/pTCK303大片段,溶于20μl ddH2O中。取回收的316bp的OsFLA19R产物 10μl、回收的载体OsFLA19F/pTCK303溶液6μl,与T4DNA连接酶2μl(3U/μl)、10x 连接酶缓冲液2μl混和,16℃连接16小时,得到连接产物,将连接产物转入大肠杆菌 中,得到转化子。提取转化子的质粒,送去测序。

    该质粒为将序列表中的序列3所示的DNA分子插入pTCK303载体的SpeⅠ和 BamH间得到的质粒,即为含有正反向插入目的片段OsFLA19F和OsFLA19R的重组 载体,命名为OsFLA19RNAi(OsFLA19RNAi载体结构图谱如图2所示)。

    序列3所示的DNA分子由正向片段、内含子和反向片段组成,正向片段为序列 表中序列3自5’末端第884-1199位核苷酸(即为序列表中序列1自5’末端第713-1028 的核苷酸),内含子序列表中序列3自5’末端第394-871位核苷酸;反向片段为序列表 中序列3自5’末端第16-331位核苷酸。序列3所示的DNA分子编码的RNA为单链 RNA或者双链RNA,该RNA为序列表的序列4所示的RNA分子或与序列表的序列4 反向互补的RNA分子。

    实施例2、干扰OsFLA19编码基因表达转基因水稻的获得及表型研究

    一、干扰OsFLA19编码基因表达转基因水稻的获得

    1、干扰OsFLA19编码基因表达转基因水稻的获得

    遗传转化:参照电激仪(EasyJecT Plus电激仪,英国EquiBio公司)操作指南, 将质粒OsFLA19RNAi用电击法转化农杆菌EHA105(Biovector Co.,LTD公司目录号 Biovec-11),经含卡那霉素的抗性平板筛选得到阳性克隆的RNAi工程菌,命名为 EHA105/OsFLA19RNAi。

    水稻阳性苗的筛选:将EHA105/OsFLA19RNAi导入水稻Kitaake(Oryza sativa L.cv Kitaake,野生型水稻)的愈伤组织,将该愈伤组织用含300mg/L头孢霉素的无菌水洗 涤4-5遍,无菌滤纸吸干后转至N6D2S1培养基(在附表中)上,筛选一代。两周后, 转移至N6D2S2培养基(见表1)上筛选二代(2周/代)。取出经过3代筛选生长旺盛 的抗性愈伤组织,转移至预分化培养基(见表1)上,在分化培养箱(12小时光周期, 白天28℃,夜晚25℃)中培养7天;然后转移至分化培养基上,在分化培养箱中培养 至产生再生苗。再生的植株在生根壮苗培养基(见表1)上生根壮苗。待小苗长至10 厘米左右时,打开容器封口膜,炼苗2-3天,然后将小苗移入人工气候室栽培,获得 7个共21棵T0代转OsFLA19RNAi水稻株系。

    表1水稻组织培养和转化过程中使用的培养基及其成分

    2、转基因水稻的鉴定

    1)GUS组织化学染色(pTCK303载体上有GUS基因):将由上述1获得的21 棵T0代转OsFLA19RNAi水稻的2-3mm长的根段分别放到GUS染色液中,抽气几分 钟,然后置于37℃温育过夜,染色后的组织用70%乙醇脱色。根均呈蓝色的植株即为 阳性转基因材料。GUS染色液(pH7.0)组分为:100mM Na3PO4(pH7.0),0.1%Triton X-100,10mM EDTA,0.5mM亚铁氰化钾,0.5mM铁氰化钾,1mg/ml X-Gluc。结 果共鉴定出5个株系合计15棵阳性T0代转OsFLA19RNAi水稻,将此幼苗移至温室 栽培,按照不同株系收种,得到T1代转OsFLA19RNAi水稻种子,在次基础上经过 繁种得到纯合T2代转OsFLA19RNAi水稻种子。在以后的实验中选取T2代转OsFLA19 RNAi水稻(R1)、(R3)和(R6)的纯合种子T2为材料。

    2)定量PCR鉴定:从编号为R1、R3和R6的T2代转OsFLA19RNAi水稻的幼 苗中提取mRNA,并分别转录获得cDNA(参照实施例1中的方法),以野生型水稻(水 稻kitaake)为对照。利用荧光实时定量PCR法,以cDNA为模板,以5′端引物(10 μM)(5′-ACGCTGCTCCGCCTCCTCAA-3′),3′端引物(10μM)(5′- GCCGTCGTAGGTGGTCTTCA-3′)为引物对转基因植株中OsFLA19的表达丰度进行 检测。用于定量分析的试剂为SYBR Green Real-time PCR Master Mix(TOYOBO)。所 用仪器为美国Stratagene公司实时荧光定量PCR仪Mx3000P。吸取1μl第一链cDNA 溶液,稀释50倍作为模板,按以下体系进行PCR反应:10μl SYBR Green Realtime PCR Master Mix,4μl模版,1μl5′端引物1(10μM),1μl3′端引物1(10μM),加ddH2O终体积 20μl。

    用Ubiqutin作为内参,其5′端引物:5′-ACCACTTCGACCGCCACTACT-3′,3′ 端引物为:5′-ACGCCTAAGCCTGCTGGTT-3′。PCR程序为:预变性2分钟,进入 PCR循环,循环参数为94°C15秒→57°C15秒→72°C15秒,共40个循环。

    结果如图3所示,在Ubiqutin基因作为内参的情况下,与野生型水稻(WT)相 比,R1、R3和R6的T2代转OsFLA19RNAi水稻幼苗中OsFLA19的表达丰度有了不 同程度的下调,说明目的基因连接的载体已经成功转入水稻,其干扰了水稻中OsFLA19 基因的表达。

    采用同样的方法将空载体pTCK303转入野生型水稻中,得到转空载体水稻,播种 收种直到得到T2代转空载体水稻,采用上述定量PCR鉴定,结果与野生型无显著差异。

    二、干扰OsFLA19编码基因表达转基因水稻的表型研究

    将野生型水稻、编号为R1和R6的T2代转OsFLA19RNAi水稻和T2代转空载体 水稻的种子播在花卉营养土和蛭石的混合物里(两者的混合比例为9:1),30℃萌发 后放在温室里(25℃)培养至三叶期,经过室外壮苗后,5月中旬移栽到室外水稻网 室中进行培养至抽穗期。

    每个株系8株,实验重复三次,结果取平均值。

    观察叶夹角(剑叶夹角和剑叶下第一叶夹角)发育表型结果如下:

    拍照观察,结果如图4A,其中野生型水稻WT(Kitaake)、T2代转OsFLA19RNAi 水稻(R1、R6),可以看到T2代转OsFLA19RNAi水稻明显的叶夹角变大的表型。

    在播种后约80天统计叶夹角(剑叶夹角为剑叶与茎秆的夹角;剑叶下第一叶夹角 为剑叶下第一叶与茎秆的夹角),野生型水稻剑叶夹角、剑叶下第一叶夹角分别为 41.0、28.8(度);编号为R1的T2代转OsFLA19RNAi水稻叶夹角、剑叶下第一叶 夹角分别为80.0、50.0(度),编号为R6的T2代转OsFLA19RNAi水稻R6叶夹角、 剑叶下第一叶夹角分别为56.0、34.0(度)。

    计算相对叶夹角,相对叶夹角为T2代转OsFLA19RNAi水稻与野生型叶夹角的比 值,将野生型水稻叶夹角记作1,结果如图4B所示,可以看出,野生型水稻的剑叶相 对叶夹角、剑叶下第一叶相对叶夹角和剑叶下第二叶的相对叶夹角均为1,编号为R1 的T2代转OsFLA19RNAi水稻的剑叶相对叶夹角、剑叶下第一叶相对叶夹角为1.95、 1.74,编号为R6的T2代转OsFLA19RNAi水稻的剑叶相对叶夹角、剑叶下第一叶相 对叶夹角为1.37、1.18。T2代转空载体水稻和野生型水稻结果无显著差异。

    说明干扰水稻OsFLA19基因的表达可以提高叶夹角。

    关 键  词:
    OsFLA19 蛋白 调控 植物 夹角 中的 应用
      专利查询网所有文档均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    0条评论

    还可以输入200字符

    暂无评论,赶快抢占沙发吧。

    关于本文
    本文标题:OsFLA19蛋白在调控植物叶夹角中的应用.pdf
    链接地址:https://www.zhuanlichaxun.net/p-9144825.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
    经营许可证编号:粤ICP备2021068784号-1