技术领域
本发明属于高分子材料技术领域,涉及一种具有高稳定性的高分子复合物及其制备方法,尤其涉及一种通过一种环糊精包合物来获得同时兼具高热稳定性和优异力学性能的聚甲醛复合物及其制备方法。
背景技术
聚甲醛(POM)因具有优良的综合性能而被广泛应用,其主要优点包括强度高,刚性好,硬度大,耐溶剂性和耐蚀性优良,且成型加工性能良好等,因此是十分理想的工程塑料之一。然而,由于特殊的分子结构,其热稳定性较差,在熔融加工期间会发生降解,从而产生大量的甲醛气体,不但污染环境,危害人类健康,且易被氧化为甲酸,并导致聚甲醛发生酸解,使得材料性能进一步下降。
发明内容
本发明的一个目的是针对现有技术的不足,提供一种具有高稳定性的高分子复合物POM-IC-N6。
本发明具有高稳定性的高分子复合物POM-IC-N6为共混物,该共混物包括聚甲醛(作为基体)、环糊精包合物(作为添加剂);聚甲醛和环糊精包合物的质量比为100:0.5~2;
作为优选,聚甲醛和环糊精包合物的质量比为100:1;
本发明的另一个目的是提供制备上述具有高稳定性的高分子复合物POM-IC-N6的方法。
为解决上述技术问题,本发明采用的技术手段包括以下步骤:
步骤(1).将聚甲醛及环糊精包合物分别在80~110℃下真空干燥48~72h;
步骤(2).将干燥后的聚甲醛及环糊精包合物按质量比为100:0.5~2,加入到熔融混炼设备中,于220℃下进行熔融混炼,得到混合物;
所述的熔融混炼设备为密炼机、单螺杆挤出机、双螺杆挤出机;
如将干燥后的聚甲醛及环糊精包合物加入密炼机进行熔融混炼, 预混时密炼机的转子速度为10~30rpm,熔融混炼1~2min,然后将转子速度提升至45~75rpm,熔融混炼5~10min;
如将干燥后的聚甲醛及环糊精包合物加入单螺杆挤出机或双螺杆挤出机进行熔融混炼,喂料时螺杆挤出机的螺杆速度为10~20rpm,挤出时将螺杆速度提升至45~75rpm;
步骤(3).将混合物从熔融混炼设备中出料,降至常温并结晶,得到高热稳定性的聚甲醛复合物。
所述的环糊精包合物为环糊精与尼龙6(简称N6)复合而成,具体制备过程如下:
将环糊精溶于二甲基亚砜(DMSO)、尼龙6溶于甲酸(FormicAcid)、乙酸(Acetis Acid)的混合溶剂中,然后置于40~60℃油浴中加热搅拌1~3小时,降至常温后继续搅拌6~8h,抽滤得到白色沉淀,冷水冲洗后干燥研磨即可获得环糊精包合物粉末;
所述的尼龙6与环糊精的质量比为1:4~8;环糊精与DMSO的质量体积比为1:5.5~11,单位为g/mL;
所述的混合溶剂中甲酸(Formic Acid)、乙酸(Acetis Acid)的体积比为1:4;
作为优选,所述的环糊精为α环糊精;
作为优选,步骤(2)中干燥后的聚甲醛及环糊精包合物按质量比为100:1加入到熔融混炼设备进行熔融混炼。
本发明的有益效果是:
本发明创新性地将一种环糊精包合物作为添加剂成功地对POM进行了改性,表现出两方面的优点:(1)组成简单,且添加量小,通过简单添加即可实现聚甲醛材料热稳定性的大幅提高,这在之前从未有过报道;(2)此外,此种聚甲醛复合物强度有提高,可满足实际需要。
本发明选择一种环糊精包合物的原因如下:(1)这种环糊精包合物为尼龙6与环糊精的复合物,N6氨基上的氢对甲醛的加成反应来捕捉甲醛,在环糊精包合物中,氨基与环糊精的羟基协同作用,使得材料的热稳定性得到大幅提高;(2)使得材料的强度有大幅提高。
本发明的高分子复合物极大提高了聚甲醛的热稳定性,且保证了材料优异的力学性能,可以应用在汽车工业、建筑、电子电器等等领域。
附图说明
图1为对比例1~2、实施例2-1所制备的材料在氮气气氛下的热重分析图;
图2为对比例1~2、实施例2-1所制备的材料在氮气气氛下的微商热重分析图;
图3为对比例1~2、实施例2-1所制备的材料的力学性能图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步的分析。
首先制备环糊精包合物,具体如下:
实施例1-1.
将4g环糊精溶于22mL二甲基亚砜(DMSO)中,1g尼龙6溶于1mL甲酸(Formic Acid)、4mL乙酸(Acetis Acid)的混合溶剂中,然后将上述两种溶液混合后置于40℃油浴中加热搅拌3小时,降至室温后继续搅拌8h,抽滤得到白色沉淀,冷水冲洗后干燥研磨即可获得环糊精包合物粉末。
实施例1-2.
将8g环糊精溶于88mL二甲基亚砜(DMSO)中,1g尼龙6溶于1mL甲酸(Formic Acid)、4mL乙酸(Acetis Acid)的混合溶剂中,然后将上述两种溶液混合后置于60℃油浴中加热搅拌1小时,降至室温后继续搅拌6h,抽滤得到白色沉淀,冷水冲洗后干燥研磨即可获得环糊精包合物粉末。
实施例1-3.
将5g环糊精溶于40mL二甲基亚砜(DMSO)中,1g尼龙6溶于1mL甲酸(Formic Acid)、4mL乙酸(Acetis Acid)的混合溶剂中,然后将上述两种溶液混合后置于50℃油浴中加热搅拌2小时,降至室温后继续搅拌7h,抽滤得到白色沉淀,冷水冲洗后干燥研磨即可获得环糊精包合物粉末。
然后利用实施例1-1~1-3制备得到的环糊精包合物与聚甲醛制 备聚甲醛复合物POM-IC-N6,具体如下:
对比例1.
步骤(1).将聚甲醛在80~110℃下真空干燥48~72h;
步骤(2).将60g干燥后的聚甲醛加入密炼机中,于220℃下熔融共混,10~30rpm转速下熔融混炼1~2min,然后将转子速度提升至45~75rpm,熔融混炼5~10min。
步骤(3).将聚甲醛熔体从密炼机中出料,降至常温并结晶,得到聚甲醛材料。
对比例2.
步骤(1).将聚甲醛、N6分别在80~110℃下真空干燥48~72h;
步骤(2).将60g干燥后的聚甲醛与0.6g干燥后的N6加入密炼机中,于220℃下熔融共混,10~30rpm转速下熔融混炼1~2min,然后将转子速度提升至45~75rpm,熔融混炼5~10min。
步骤(3).将共混物从密炼机中出料,降至常温并结晶,得到聚甲醛复合物材料。
对比例2制备的聚甲醛复合物中聚甲醛与N6的质量比为60:0.6。
实施例2-1.
步骤(1).将聚甲醛、环糊精包合物分别在80~110℃下真空干燥48~72h;
步骤(2).将60g干燥后的聚甲醛与0.6g干燥后的环糊精包合物加入密炼机中,于220℃下熔融共混,10~30rpm转速下熔融混炼1~2min,然后将转子速度提升至45~75rpm,熔融混炼5~10min。
步骤(3).将共混物从密炼机中出料,降至常温并结晶,得到聚甲醛复合物材料POM-IC-N6。
实施例2-1制备的聚甲醛复合物POM-IC-N6中聚甲醛与环糊精包合物的质量比为60:0.6。
将对比例1~2、实施例2-1所制备的材料进行热稳定性测试,其测试条件为:从30℃以10℃/min的升温速率升至600℃;氮气氛围。
表1对比例1~2、实施例2-1所制备的材料氮气气氛下热稳定性测试结果
如图1、2所示,详细数据见表1,纯聚甲醛(对比例1)初始降解温度(T5%)只有310℃,降解百分之五十时对应的温度(T50%)约340℃,最大热失重对应的温度(Tmax)在327℃,表明纯聚甲醛的热稳定性很差。添加N6之后,T5%提高7.51℃,T50%提高10.8℃,Tmax提高23.73℃,证明虽然N6的加入让聚甲醛的热稳定性有了一定程度的提高,但提高幅度不大。而添加环糊精包合物之后,T5%提高35.01℃,T50%提高60.5℃,Tmax提高80.09℃,证明添加环糊精包合物能大幅度提高聚甲醛复合物的热稳定性。
将对比例1~2、实施例2-1所制备的材料进行力学性能测试,其测试条件为:拉伸速率10mm/min;常温。
表2对比例1~2、实施例2-1所制备的材料基本力学性能
样品 屈服强度(MPa) 断裂伸长率(﹪) 对比例1 54.59 47.075 对比例2 61.71 64.27 实施例2-1 62.89 12.84
如图3及表2所示,纯聚甲醛(对比例1)在加入环糊精包合物之后,虽然断裂伸长率有所下降,但是强度有大幅提高。
实施例2-2
步骤(1).将50g聚甲醛、0.25g环糊精包合物分别在80℃下真空干燥72h;
步骤(2).将干燥后的聚甲醛及环糊精包合物加入到密炼机220℃下进行熔融混炼,预混时密炼机的转子速度为10rpm,熔融混炼2min,然后将转子速度提升至45rpm,熔融混炼10min;
步骤(3).将混合物从熔融混炼设备中出料,降至常温并结晶,得到高热稳定性的聚甲醛复合物POM-IC-N6。
实施例2-3
步骤(1).将50g聚甲醛、1g环糊精包合物分别在110℃下真空干燥48h;
步骤(2).将干燥后的聚甲醛及环糊精包合物加入到密炼机220℃下进行熔融混炼,预混时密炼机的转子速度为30rpm,熔融混炼1min,然后将转子速度提升至75rpm,熔融混炼5min;
步骤(3).将混合物从熔融混炼设备中出料,降至常温并结晶,得到高热稳定性的聚甲醛复合物POM-IC-N6。
实施例2-4
步骤(1).将50g聚甲醛、0.3g环糊精包合物分别在90℃下真空干燥65h;
步骤(2).将干燥后的聚甲醛及环糊精包合物加入到单螺杆挤出机中于220℃下进行熔融混炼,喂料时螺杆挤出机的螺杆速度为10rpm,挤出时将螺杆速度提升至45rpm;
步骤(3).将混合物从熔融混炼设备中出料,降至常温并结晶,得到高热稳定性的聚甲醛复合物POM-IC-N6。
实施例2-5
步骤(1).将50g聚甲醛、0.6g环糊精包合物分别在100℃下真空干燥55h;
步骤(2).将干燥后的聚甲醛及环糊精包合物加入到单螺杆挤出机中于220℃下进行熔融混炼,喂料时螺杆挤出机的螺杆速度为20rpm,挤出时将螺杆速度提升至75rpm;
步骤(3).将混合物从熔融混炼设备中出料,降至常温并结晶,得到高热稳定性的聚甲醛复合物POM-IC-N6。
实施例2-6
步骤(1).将50g聚甲醛、0.8g环糊精包合物分别在85℃下真空干燥70h;
步骤(2).将干燥后的聚甲醛及环糊精包合物加入到双单螺杆挤出机中于220℃下进行熔融混炼,喂料时螺杆挤出机的螺杆速度为10rpm,挤出时将螺杆速度提升至45rpm;
步骤(3).将混合物从熔融混炼设备中出料,降至常温并结晶,得到高热稳定性的聚甲醛复合物POM-IC-N6。
实施例2-7
步骤(1).将50g聚甲醛、0.7g环糊精包合物分别在95℃下真空干 燥50h;
步骤(2).将干燥后的聚甲醛及环糊精包合物加入到双螺杆挤出机中于220℃下进行熔融混炼,喂料时螺杆挤出机的螺杆速度为20rpm,挤出时将螺杆速度提升至75rpm;
步骤(3).将混合物从熔融混炼设备中出料,降至常温并结晶,得到高热稳定性的聚甲醛复合物POM-IC-N6。
上述实施例并非是对于本发明的限制,本发明并非仅限于上述实施例,只要符合本发明要求,均属于本发明的保护范围。