书签 分享 收藏 举报 版权申诉 / 13

一种基于膦功能化聚醚吗啉盐离子液体的烯烃两相氢甲酰化高选择性制备正构醛的方法.pdf

  • 上传人:n****g
  • 文档编号:9077414
  • 上传时间:2021-02-04
  • 格式:PDF
  • 页数:13
  • 大小:538.97KB
  • 摘要
    申请专利号:

    CN201610164773.2

    申请日:

    20160319

    公开号:

    CN105837418A

    公开日:

    20160810

    当前法律状态:

    有效性:

    有效

    法律详情:

    IPC分类号:

    C07C45/50,C07C47/02,B01J31/24,B01J31/06

    主分类号:

    C07C45/50,C07C47/02,B01J31/24,B01J31/06

    申请人:

    青岛科技大学

    发明人:

    金欣,王凡,李淑梅

    地址:

    266000 山东省青岛市崂山区松岭路99号青岛科技大学

    优先权:

    CN201610164773A

    专利代理机构:

    青岛中天汇智知识产权代理有限公司

    代理人:

    郝团代

    PDF完整版下载: PDF下载
    内容摘要

    本发明涉及一种基于膦功能化聚醚吗啉盐离子液体的烯烃两相氢甲酰化高选择性制备正构醛的方法,该方法采用了一种两相催化体系,催化体系由膦功能化的聚醚吗啉盐离子液体、聚醚吗啉盐离子液体、铑催化剂以及反应底物烯烃和反应产物醛组成,在一定的反应温度和合成气压力下进行液/液两相氢甲酰化反应,反应结束后通过简单的两相分离实现铑催化剂的分离和循环,铑催化剂可循环使用多次,催化活性和选择性没有明显的下降,该体系的TOF值达到400‑2800h‑1,催化循环累计TON值达到30966。

    权利要求书

    1.一种基于膦功能化聚醚吗啉盐离子液体的烯烃两相氢甲酰化高选择性制备正构醛的方法,其特征在于:两相催化反应体系是由离子液体相和有机相构成:离子液体相包括膦功能化的聚醚吗啉盐离子液体PPMOILs,聚醚吗啉盐离子液体PMOILs和铑催化剂;有机相是反应底物直链1-烯烃或直链内烯烃或上述烯烃的混合物,或反应产物,或上述烯烃和反应产物的混合物;有机相可引入溶剂,也可不加溶剂;氢甲酰化反应在一定的反应温度和合成气压力下进行,反应结束后可直接通过离子液体相和有机相的两相分离实现铑催化剂的回收和循环使用;也可加入萃取溶剂,然后再通过两相分离实现铑催化剂的回收和循环使用;膦功能化的聚醚吗啉盐离子液体PPMOILs的结构如下:式中:l=1-100;R为H、C-C烷基、苯基或苄基;m=0-100,R为H,C-C烷基、苯基或苄基;R表示磺酸型水溶性膦配体的阴离子,n是膦配体上磺酸基阴离子的总数,其结构如下:式中:R为CH-3-SO;q=0,1或2;r=0,1或2;o=0,1或2;p=0,1或2;n=4+o+p-q-r。 2.按照权利要求1的一种基于膦功能化聚醚吗啉盐离子液体的烯烃两相氢甲酰化高选择性制备正构醛的方法,其特征在于聚醚吗啉盐离子液体PMOILs的结构式如下:式中:l=1-100;R为H、C-C烷基、苯基或苄基;m=0-100,R为H,C-C烷基、苯基或苄基;R为BF,PF,TfN,RSO,其中R为烷基,苯基,烷基取代苯基,其中烷基为C-C烷基。 3.按照权利要求1的一种基于膦功能化聚醚吗啉盐离子液体的烯烃两相氢甲酰化高选择性制备正构醛的方法,其特征是:在惰性气氛下,将膦功能化的聚醚吗啉盐离子液体PPMOILs、聚醚吗啉盐离子液体PMOILs、铑催化剂、底物烯烃以一定的比例混合,其中,底物烯烃是直链1-烯烃或直链内烯烃或上述烯烃的混合物,PPMOILs与铑催化剂中铑的摩尔比是3:1-100:1,最好是5:1-30:1;PMOILs与铑催化剂的摩尔比是10:1-300:1,最好是30:1-50:1;底物烯烃与铑催化剂中铑的摩尔比是100:1-20000:1,最好是1000:1-10000:1;合成气压力是1-10MPa,最好是3-7MPa;反应温度是70-130℃,最好是80-110℃;反应时间是0.25-15小时;体系中可引入溶剂,也可不加溶剂,如果加入溶剂,溶剂与烯烃的体积比是1:10-10:1;反应结束后,通过离子液体相和有机相的两相分离实现铑催化剂的回收,也可加入萃取溶剂,然后通过两相分离实现铑催化剂与有机相的分相,离子液体相通过补加新的烯烃可进行下一次催化循环。 4.按照权利要求1和3的一种基于膦功能化聚醚吗啉盐离子液体的烯烃两相氢甲酰化高选择性制备正构醛的方法,其特征在于铑催化剂是乙酰丙酮二羰基铑Rh(acac)(CO)、RhCl·3HO、[Rh(COD)]BF或[Rh(COD)Cl],COD为1,5-环辛二烯。 5.按照权利要求1的一种基于膦功能化聚醚吗啉盐离子液体的烯烃两相氢甲酰化高选择性制备正构醛的方法,其特征在于反应产物是醛、异构化烯烃、烯烃氢化产物中的一种或几种的混合物。 6.按照权利要求1和3的一种基于膦功能化聚醚吗啉盐离子液体的烯烃两相氢甲酰化高选择性制备正构醛的方法,其特征是:有机相引入的有机溶剂或萃取溶剂是:石油醚、环己烷、C-C烷烃、乙醚、甲基叔丁基醚中的一种或上述溶剂中几种的混合物。

    说明书

    技术领域

    本发明涉及化学化工技术领域,具体地涉及一种基于膦功能化聚醚吗啉盐离子液体的烯烃两相氢甲酰化高选择性制备正构醛的方法。

    背景技术

    铑催化的烯烃氢甲酰化反应是典型的原子经济反应,也是目前文献报道较多的羰基化反应,已成为制备高碳醛/醇的理想方法。均相氢甲酰化具有催化活性高、选择性好和反应条件温和的优点,但长期以来,铑催化剂的分离和循环使用问题一直是均相催化领域关注的焦点。

    近年来,离子液体作为催化剂载体的液/液两相催化体系发展十分迅速,已成为目前最具有应用前景的两相催化体系之一。离子液体两相氢甲酰化是基于离子液体极低的蒸气压、良好的热稳定性和可控的溶解能力,将铑催化剂溶解,以离子液体充当催化剂的“液体载体”,而底物烯烃和产物醛与离子液体不相混溶,反应结束后通过液/液两相分离实现催化剂的循环。

    虽然离子液体两相氢甲酰化在一定程度上解决了铑催化剂的分离循环问题,但离子液体在实际应用中仍然存在很大的局限性。首先,离子液体两相催化体系仍需要大量的离子液体负载和溶解铑催化剂,无论是从经济还是毒理学的角度看,这均不符合绿色化学的要求;二是大量离子液体的应用使底物分子的传质阻力增大,离子液体的负效应(由高粘度、残留杂质等多种复杂因素引起)变得更显著,导致催化活性和选择性严重下降。

    最近,我们发明了一类具有室温液-固相变特性的聚醚烷基胍盐离子液体(ZL201210064537.5),并将其应用于铑催化的高碳烯烃两相氢甲酰化反应中,这类新型的功能化离子液体能够有效固载Rh-TPPTS催化剂,并具有显著的稳定铑催化剂的能力,氢甲酰化反应累计TON值达31188。但这一两相体系仍存在以下问题:一是需要较大量的离子液体作为Rh-TPPTS催化剂的载体,离子液体与铑催化剂前体的质量比达到1000:1;二是由于受到两相催化体系传质阻力的限制,催化活性不高,TOF值只有10-200h-1;三是正构醛的区域选择性较差,正异比仅为2.0:1-2.4:1(正构醛区域选择性67-71%)。

    在另一专利(CN201310370138.6)中,我们发明了一类新型的膦功能化的聚醚烷基胍盐离子液体,并基于这种新型离子液体构建了一个均相催化体系应用于铑催化的高碳烯烃的氢甲酰化反应,这个催化体系的优点是催化活性较高,但需要在催化体系中引入有机溶剂,这无形中增加了催化剂回收循环以及后处理过程的难度和能耗,同时有机溶剂也会引起环境和安全问题,也不符合绿色化学的要求。

    在专利CN201510249869.4中,我们基于膦功能化的聚醚吗啉盐离子液体构建了烯烃两相氢甲酰化体系。在该体系下,膦功能化的离子液体既有膦配体的特性,能与铑形成络合催化剂,又兼备离子液体的溶剂性能,可充当铑催化剂的载体,因此无需再外加大量的其它离子液体,从根本上解决了离子液体用量过高的难题,同时也将离子液体在催化反应中的负效应降至最小;但该体系的正构醛区域选择性非常差(<80%)。

    发明内容

    针对现有技术中存在的不足,本专利基于膦功能化的聚醚吗啉盐离子液体,发明了一种基于膦功能化聚醚吗啉盐离子液体的烯烃两相氢甲酰化高选择性制备正构醛的方法。发明的两相催化体系仅需外加少量的聚醚吗啉盐离子液体PMOILs作为铑催化剂的载体,不仅具有较高的催化活性(TOF=400-2800h-1)、超长的使用寿命(总TON值达到30966)和极低的铑流失量(<0.3%),而且正构醛的区域选择性高达95.2-98.0%(正异比20:1-45:1)。

    技术方案:

    两相催化反应体系是由离子液体相和有机相构成:离子液体相包括膦功能化的聚醚吗啉盐离子液体PPMOILs,聚醚吗啉盐离子液体PMOILs和铑催化剂;有机相是反应底物直链1-烯烃或直链内烯烃或上述烯烃的混合物,或反应产物,或上述烯烃和反应产物的混合物;有机相可引入溶剂,也可不加溶剂;氢甲酰化反应在一定的反应温度和合成气压力下进行,反应结束后可直接通过离子液体相和有机相的两相分离实现铑催化剂的回收和循环使用;也可加入萃取溶剂,然后再通过两相分离实现铑催化剂的回收和循环使用;膦功能化的聚醚吗啉盐离子液体PPMOILs的结构如下:

    式中:l=1-100;R1为H、C1-C16烷基、苯基或苄基;m=0-100,R2为H,C1-C16烷基、苯基或苄基;R3表示磺酸型水溶性膦配体的阴离子,n是膦配体上磺酸基阴离子的总数,其结构如下:

    式中:R4为C6H4-3-SO3-;q=0,1或2;r=0,1或2;o=0,1或2;p=0,1或2;n=4+o+p-q-r。

    在本发明中,应用的聚醚吗啉盐离子液体PMOILs的结构式如下:

    式中:l=1-100;R1为H、C1-C16烷基、苯基或苄基;m=0-100,R2为H,C1-C16烷基、苯基或苄基;R5为BF4-,PF6-,Tf2N-,R6SO3-,其中R6为烷基,苯基,烷基取代苯基,其中烷基为C1-C12烷基。

    对比实验一(参见实施例1-3):本专利基于聚醚吗啉盐离子液体PMOILs构建了烯烃两相氢甲酰化体系作为对比实验。两相催化体系是由离子液体相和有机相构成:离子液体相包括聚醚吗啉盐离子液体PMOILs、铑催化剂和双膦配体BISBI-(SO3Na)2(o=p=1,q=r=2)、BINA-(SO3Na)2(o=p=1,q=r=2)或Xantphos-(SO3Na)2(o=p=1,q=r=2);有机相是反应底物直链1-烯烃;氢甲酰化反应在一定的反应温度和合成气压力下进行,反应结束后可直接通过离子液体相和有机相的两相分离实现铑催化剂的回收和循环使用。实验结果表明:该两相催化体系具有较高的催化活性(TOF=260-2000h-1)、超长的使用寿命(总TON值达到35083)和极低的铑流失量(0.01-0.10%),而且正构醛的区域选择性高达96-98%(正异比24:1-45:1);但该体系仍需要大量的外加离子液体PMOILs溶解铑催化剂,PMOILs与铑催化剂的摩尔比达到300:1-500:1。

    对比实验二(参见实施例4-6):本专利基于膦功能化的聚醚吗啉盐离子液体PPMOILs构建了烯烃两相氢甲酰化体系作为对比实验。两相催化体系是由离子液体相和有机相构成:离子液体相包括膦功能化的聚醚吗啉盐离子液体PPMOILs和铑催化剂;有机相是反应底物直链1-烯烃;氢甲酰化反应在一定的反应温度和合成气压力下进行,反应结束后可直接通过离子液体相和有机相的两相分离实现铑催化剂的回收和循环使用。实验结果表明:该两相催化体系的催化活性较高,PPMOILs与铑催化剂的摩尔比仅为5:1-30:1,无需外加离子液体,从而解决了传统离子液体两相催化体系需要大量离子液体作为催化剂载体的问题;但该体系的正构醛区域选择性较差,仅为63.0-66.7%(正异比1.7:1-2.0:1),主要原因是可能有非双齿配位铑催化剂形成。

    在本发明中,将对比实验一和对比实验二两个催化体系的优点加以融合:用膦功能化的聚醚吗啉盐离子液体PPMOILs代替对比实验一中的磺酸钠型双膦配体,由于PPMOILs既有膦配体的特性,能与铑形成络合催化剂,又兼备离子液体的溶剂性能,与离子液体PMOILs具有很好的相溶性,因此可大大降低外加离子液体PMOILs的用量(PMOILs与铑催化剂的摩尔比为30:1-50:1,是对比实验一和ZL201210064537.5中离子液体用量的十分之一);同时,与对比实验二相比,由于在两相体系中引入少量PMOILs,PPMOILs被稀释,更易形成双齿配位的铑催化剂,该体系的正构醛区域选择性提高至95.2-98.0%(正异比20:1-45:1)。

    典型的基于膦功能化聚醚吗啉盐离子液体的烯烃两相氢甲酰化高选择性制备正构醛的方法如下:在惰性气氛下,将膦功能化的聚醚吗啉盐离子液体PPMOILs、聚醚吗啉盐离子液体PMOILs、铑催化剂、底物烯烃以一定的比例混合,其中,底物烯烃是直链1-烯烃或直链内烯烃或上述烯烃的混合物,PPMOILs与铑催化剂中铑的摩尔比是3:1-100:1,最好是5:1-30:1;PMOILs与铑催化剂的摩尔比是10:1-300:1,最好是30:1-50:1;底物烯烃与铑催化剂中铑的摩尔比是100:1-20000:1,最好是1000:1-10000:1;合成气压力是 1-10MPa,最好是3-7MPa;反应温度是70-130℃,最好是80-110℃;反应时间是0.25-15小时;体系中可引入溶剂,也可不加溶剂,如果加入溶剂,溶剂与烯烃的体积比是1:10-10:1;反应结束后,通过离子液体相和有机相的两相分离实现铑催化剂的回收,也可加入萃取溶剂,然后通过两相分离实现铑催化剂与有机相的分相,离子液体相通过补加新的烯烃可进行下一次催化循环。

    本发明中,铑催化剂是乙酰丙酮二羰基铑Rh(acac)(CO)2、RhCl3·3H2O、[Rh(COD)2]BF4或[Rh(COD)Cl]2,COD为1,5-环辛二烯。

    本发明中,反应产物是醛、异构化烯烃、烯烃氢化产物中的一种或几种的混合物。

    本发明中,有机相引入的有机溶剂或萃取溶剂是:石油醚、环己烷、C6-C12烷烃、乙醚、甲基叔丁基醚中的一种或上述溶剂中几种的混合物。

    具体实施方式

    实施例1

    Rh(acac)(CO)2/BISBI-(SO3Na)2(o=p=1,q=r=2)/[(N-(EO)16Ph)(N-CH3)Mor][CH3SO3-]/1-辛烯体系下两相氢甲酰化反应

    在惰性气氛下,向不锈钢高压反应釜中加入Rh(acac)(CO)2、BISBI-(SO3Na)2、[(N-(EO)16Ph)(N-CH3)Mor][CH3SO3-]和1-辛烯,其比例为:BISBI-(SO3Na)2/Rh(acac)(CO)2=5:1(摩尔比),1-辛烯/Rh(acac)(CO)2=1000:1(摩尔比),[(N-(EO)16Ph)(N-CH3)Mor][CH3SO3-]/Rh(acac)(CO)2=300:1(摩尔比),然后用合成气(H2/CO=1:1)加压至5.0MPa,反应温度100℃,反应时间0.5小时,然后快速冷却至室温,放空合成气后开釜,通过离子液体相和有机相的两相分离实现铑催化剂的回收,也可加入正庚烷萃取,经简单的两相分离得到含有产物醛的有机相,气相色谱分析结果为:1-辛烯的转化率为25.6%,醛的化学选择性91.4%,正构醛与异构醛的摩尔比为29.0:1.0(正构醛的区域选择性96.7%),TOF值为468h-1。

    实施例2

    Rh(acac)(CO)2/BINA-(SO3Na)2(o=p=1,q=r=2)/[(N-(EO)16Ph)(N-CH3)Mor][CH3SO3-]/1-辛烯体系下两相氢甲酰化反应

    在惰性气氛下,向不锈钢高压反应釜中加入Rh(acac)(CO)2、BINA-(SO3Na)2、[(N-(EO)16Ph)(N-CH3)Mor][CH3SO3-]和1-辛烯,其比例为:BINA-(SO3Na)2/Rh(acac)(CO)2=5:1(摩尔比),1-辛烯/Rh(acac)(CO)2=5000:1(摩尔比),[(N-(EO)16Ph)(N-CH3)Mor][CH3SO3-]/Rh(acac)(CO)2=300:1(摩尔比),然后用合成气(H2/CO=1:1)加压至5.0MPa,反应温度100℃,反应时间0.5小时,然后快速冷却至室温,放空合成气后开釜,通过离子液体相和有机相的两相分离实现铑催化剂的回收,也可加入正庚烷萃取,经简单的两相分离得到含有产物醛的有机相,气相色谱分析结果为:1-辛烯的转化率为20.8%,醛的化学选择性96.3%,正构醛与异构醛的摩尔比为36.0:1.0(正构醛的区域选择性97.3%),TOF值为2003h-1。

    实施例3

    Rh(acac)(CO)2/Xantphos-(SO3Na)2(o=p=1,q=r=2)/[(N-(EO)16Ph)(N-CH3)Mor][CH3SO3-]/1-辛烯体系下两相氢甲酰化反应

    在惰性气氛下,向不锈钢高压反应釜中加入Rh(acac)(CO)2、Xantphos-(SO3Na)2、[(N-(EO)16Ph)(N-CH3)Mor][CH3SO3-]和1-辛烯,其比例为:Xantphos-(SO3Na)2/Rh(acac)(CO)2=5:1(摩尔比),1-辛烯/Rh(acac)(CO)2=1000:1(摩尔比),[(N-(EO)16Ph)(N-CH3)Mor][CH3SO3-]/Rh(acac)(CO)2=300:1(摩尔比),然后用合成气(H2/CO=1:1)加压至5.0MPa,反应温度100℃,反应时间0.5小时,然后快速冷却至 室温,放空合成气后开釜,通过离子液体相和有机相的两相分离实现铑催化剂的回收,也可加入正庚烷萃取,经简单的两相分离得到含有产物醛的有机相,气相色谱分析结果为:1-辛烯的转化率为29.6%,醛的化学选择性94.5%,正构醛与异构醛的摩尔比为30.0:1.0(正构醛的区域选择性96.8%),TOF值为559h-1。

    实施例4

    Rh(acac)(CO)2/[(N-(EO)16Ph)(N-CH3)Mor]2[BISBI-(SO3-)2](o=p=1,q=r=2)/1-辛烯体系下两相氢甲酰化反应

    在惰性气氛下,向不锈钢高压反应釜中加入Rh(acac)(CO)2、[(N-(EO)16Ph)(N-CH3)Mor]2[BISBI-(SO3-)2]和1-辛烯,其比例为:[(N-(EO)16Ph)(N-CH3)Mor]2[BISBI-(SO3-)2]/Rh(acac)(CO)2=5:1(摩尔比),1-辛烯/Rh(acac)(CO)2=1000:1(摩尔比),然后用合成气(H2/CO=1:1)加压至5.0MPa,反应温度100℃,反应时间0.5小时,然后快速冷却至室温,放空合成气后开釜,体系自然分成两相,下层为含有铑催化剂的离子液体相,上层为有机相,也可加入正庚烷萃取,经简单的两相分离得到含有产物醛的有机相,气相色谱分析结果为:1-辛烯的转化率为91.7%,醛的选择性90.8%,正构醛与异构醛的摩尔比为1.7:1(正构醛的区域选择性63.0%),TOF值为1665h-1。

    实施例5

    Rh(acac)(CO)2/[(N-(EO)16Ph)(N-CH3)Mor]2[BINA-(SO3-)2](o=p=1,q=r=2)/1-辛烯体系下两相氢甲酰化反应

    在惰性气氛下,向不锈钢高压反应釜中加入Rh(acac)(CO)2、[(N-(EO)16Ph)(N-CH3)Mor]2[BINA-(SO3-)2]和1-辛烯,其比例为:[(N-(EO)16Ph)(N-CH3)Mor]2[BINA-(SO3-)2]/Rh(acac)(CO)2=5:1(摩尔比),1-辛烯/Rh(acac)(CO)2=5000:1(摩尔比),然后用合成气(H2/CO=1:1)加压至5.0MPa,反应温度100℃,反应时间0.5小时,然后快速冷却至室温,放空合成气后开釜,体系自然分成两相,下层为含有铑催化剂的离子液体相,上层为有机相,也可加入正庚烷萃取,经简单的两相分离得到含有产物醛的有机相,气相色谱分析结果为:1-辛烯的转化率为36.0%,醛的选择性76.6%,正构醛与异构醛的摩尔比为1.9:1(正构醛的区域选择性65.5%),TOF值为2758h-1。

    实施例6

    Rh(acac)(CO)2/[(N-(EO)16Ph)(N-CH3)Mor]2[Xantphos-(SO3-)2](o=p=1,q=r=2)/1-辛烯体系下两相氢甲酰化反应

    在惰性气氛下,向不锈钢高压反应釜中加入Rh(acac)(CO)2、[(N-(EO)16Ph)(N-CH3)Mor]2[Xantphos-(SO3-)2]和1-辛烯,其比例为:[(N-(EO)16Ph)(N-CH3)Mor]2[Xantphos-(SO3-)2]/Rh(acac)(CO)2=5:1(摩尔比),1-辛烯/Rh(acac)(CO)2=1000:1(摩尔比),然后用合成气(H2/CO=1:1)加压至5.0MPa,反应温度100℃,反应时间0.5小时,然后快速冷却至室温,放空合成气后开釜,体系自然分成两相,下层为含有铑催化剂的离子液体相,上层为有机相,也可加入正庚烷萃取,经简单的两相分离得到含有产物醛的有机相,气相色谱分析结果为:1-辛烯的转化率为93.5%,醛的选择性95.0%,正构醛与异构醛的摩尔比为2.0:1(正构醛的区域选择性66.7%),TOF值为1777h-1。

    实施例7

    Rh(acac)(CO)2/[(N-(EO)16Ph)(N-CH3)Mor]2[BISBI-(SO3-)2](o=p=1,q=r=2)/[(N-(EO)16Ph)(N-CH3)Mor][CH3SO3-]/1-辛烯体系下两相氢甲酰化反应

    在惰性气氛下,向不锈钢高压反应釜中加入Rh(acac)(CO)2、 [(N-(EO)16Ph)(N-CH3)Mor]2[BISBI-(SO3-)2]、[(N-(EO)16Ph)(N-CH3)Mor][CH3SO3-]和1-辛烯,其比例为:[(N-(EO)16Ph)(N-CH3)Mor]2[BISBI-(SO3-)2]/Rh(acac)(CO)2=5:1(摩尔比),1-辛烯/Rh(acac)(CO)2=1000:1(摩尔比),[(N-(EO)16Ph)(N-CH3)Mor][CH3SO3-]/Rh(acac)(CO)2=30:1(摩尔比),然后用合成气(H2/CO=1:1)加压至5.0MPa,反应温度100℃,反应时间0.5小时,然后快速冷却至室温,放空合成气后开釜,通过离子液体相和有机相的两相分离实现铑催化剂的回收,也可加入正庚烷萃取,经简单的两相分离得到含有产物醛的有机相,气相色谱分析结果为:1-辛烯的转化率为94.6%,醛的化学选择性79.3%,正构醛与异构醛的摩尔比为25.0:1.0(正构醛的区域选择性96.2%),TOF值为1500h-1。

    实施例8

    Rh(acac)(CO)2/[(N-(EO)16Ph)(N-CH3)Mor]2[BINA-(SO3-)2](o=p=1,q=r=2)/[(N-(EO)16Ph)(N-CH3)Mor][CH3SO3-]/1-辛烯体系下两相氢甲酰化反应

    在惰性气氛下,向不锈钢高压反应釜中加入Rh(acac)(CO)2、[(N-(EO)16Ph)(N-CH3)Mor]2[BINA-(SO3-)2]、[(N-(EO)16Ph)(N-CH3)Mor][CH3SO3-]和1-辛烯,其比例为:[(N-(EO)16Ph)(N-CH3)Mor]2[BINA-(SO3-)2]/Rh(acac)(CO)2=5:1(摩尔比),1-辛烯/Rh(acac)(CO)2=5000:1(摩尔比),[(N-(EO)16Ph)(N-CH3)Mor][CH3SO3-]/Rh(acac)(CO)2=30:1(摩尔比),然后用合成气(H2/CO=1:1)加压至5.0MPa,反应温度100℃,反应时间0.5小时,然后快速冷却至室温,放空合成气后开釜,通过离子液体相和有机相的两相分离实现铑催化剂的回收,也可加入正庚烷萃取,经简单的两相分离得到含有产物醛的有机相,气相色谱分析结果为:1-辛烯的转化率为29.8%,醛的化学选择性84.7%,正构醛与异构醛的摩尔比为27.0:1.0(正构醛的区域选择性96.4%),TOF值为2524h-1。

    实施例9

    Rh(acac)(CO)2/[(N-(EO)16Ph)(N-CH3)Mor]2[Xantphos-(SO3-)2](o=p=1,q=r=2)/[(N-(EO)16Ph)(N-CH3)Mor][CH3SO3-]/1-辛烯体系下两相氢甲酰化反应

    在惰性气氛下,向不锈钢高压反应釜中加入Rh(acac)(CO)2、[(N-(EO)16Ph)(N-CH3)Mor]2[Xantphos-(SO3-)2]、[(N-(EO)16Ph)(N-CH3)Mor][CH3SO3-]和1-辛烯,其比例为:[(N-(EO)16Ph)(N-CH3)Mor]2[Xantphos-(SO3-)2]/Rh(acac)(CO)2=5:1(摩尔比),1-辛烯/Rh(acac)(CO)2=1000:1(摩尔比),[(N-(EO)16Ph)(N-CH3)Mor][CH3SO3-]/Rh(acac)(CO)2=30:1(摩尔比),然后用合成气(H2/CO=1:1)加压至5.0MPa,反应温度100℃,反应时间0.5小时,然后快速冷却至室温,放空合成气后开釜,通过离子液体相和有机相的两相分离实现铑催化剂的回收,也可加入正庚烷萃取,经简单的两相分离得到含有产物醛的有机相,气相色谱分析结果为:1-辛烯的转化率为89.2%,醛的化学选择性94.1%,正构醛与异构醛的摩尔比为24.0:1.0(正构醛的区域选择性96.0%),TOF值为1679h-1。

    实施例10

    Rh(acac)(CO)2/[(N-(EO)4Ph)(N-CH3)Mor]2[Xantphos-(SO3-)2](o=p=1,q=r=2)/[(N-(EO)4Ph)(N-CH3)Mor][4-CH3PhSO3-]/1-辛烯体系下两相氢甲酰化反应

    离子液体换为[(N-(EO)4Ph)(N-CH3)Mor]2[Xantphos-(SO3-)2]和[(N-(EO)4Ph)(N-CH3)Mor][4-CH3PhSO3-],[(N-(EO)4Ph)(N-CH3)Mor][4-CH3PhSO3-]/Rh(acac)(CO)2=50:1(摩尔比),其余反应条件与步骤同实施例9,气相色谱分析结果为:1-辛烯的转化率为86.6%,醛的化学选择性75.4%,正构醛与异构醛的摩尔比为24.0:1.0(正构醛的区域选择性96.0%),TOF值为1306h-1。

    实施例11

    Rh(acac)(CO)2/[(N-(EO)100Ph)(N-CH3)Mor]2[Xantphos-(SO3-)2](o=p=1,q=r=2)/[(N-(EO)100Ph)(N-CH3)Mor][CH3SO3-]/1-辛烯体系下两相氢甲酰化反应

    离子液体换为[(N-(EO)100Ph)(N-CH3)Mor]2[Xantphos-(SO3-)2]和[(N-(EO)100Ph)(N-CH3)Mor][CH3SO3-],[(N-(EO)100Ph)(N-CH3)Mor][CH3SO3-]/Rh(acac)(CO)2=10:1(摩尔比),其余反应条件与步骤同实施例9,气相色谱分析结果为:1-辛烯的转化率为95.1%,醛的化学选择性95.8%,正构醛与异构醛的摩尔比为25.0:1.0(正构醛的区域选择性96.2%),TOF值为1822h-1。

    实施例12

    Rh(acac)(CO)2/[(N-(EO)16CH3)(N-CH3)Mor]2[Xantphos-(SO3-)2](o=p=1,q=r=2)/[(N-(EO)16CH3)(N-CH3)Mor][BF4]/1-辛烯体系下两相氢甲酰化反应

    离子液体换为[(N-(EO)16CH3)(N-CH3)Mor]2[Xantphos-(SO3-)2]和[(N-(EO)16CH3)(N-CH3)Mor][BF4],其余反应条件与步骤同实施例9,气相色谱分析结果为:1-辛烯的转化率为35.5%,醛的化学选择性76.4%,正构醛与异构醛的摩尔比为22.0:1.0(正构醛的区域选择性95.7%),TOF值为542h-1。

    实施例13

    Rh(acac)(CO)2/[(N-(EO)16(n-C12H25))(N-CH3)Mor]2[Xantphos-(SO3-)2](o=p=1,q=r=2)/[(N-(EO)16(n-C12H25))(N-CH3)Mor][CH3SO3-]/1-辛烯体系下两相氢甲酰化反应

    离子液体换为[(N-(EO)16(n-C12H25))(N-CH3)Mor]2[Xantphos-(SO3-)2]和[(N-(EO)16(n-C12H25))(N-CH3)Mor][CH3SO3-],1-辛烯/Rh(acac)(CO)2=5000:1(摩尔比),其余反应条件与步骤同实施例9,气相色谱分析结果为:1-辛烯的转化率为26.6%,醛的化学选择性88.5%,正构醛与异构醛的摩尔比为25.0:1.0(正构醛的区域选择性96.2%),TOF值为2354h-1。

    实施例14

    Rh(acac)(CO)2/[(N-(EO)16Ph)(N-n-C16H33)Mor]2[Xantphos-(SO3-)2](o=p=1,q=r=2)/[(N-(EO)16Ph)(N-n-C16H33)Mor][CH3SO3-]/1-辛烯体系下两相氢甲酰化反应

    离子液体换为[(N-(EO)16Ph)(N-n-C16H33)Mor]2[Xantphos-(SO3-)2]和[(N-(EO)16Ph)(N-n-C16H33)Mor][CH3SO3-],1-辛烯/Rh(acac)(CO)2=5000:1(摩尔比),其余反应条件与步骤同实施例9,气相色谱分析结果为:1-辛烯的转化率为31.6%,醛的化学选择性87.8%,正构醛与异构醛的摩尔比为26.0:1.0(正构醛的区域选择性96.3%),TOF值为2774h-1。

    实施例15

    RhCl3·3H2O/[(N-(EO)16Ph)(N-(EO)16Ph)Mor]2[Xantphos-(SO3-)2](o=p=1,q=r=2)/[(N-(EO)16Ph)(N-(EO)16Ph)Mor][CH3SO3-]/1-辛烯体系下两相氢甲酰化反应

    铑催化剂换为RhCl3·3H2O,离子液体换为[(N-(EO)16Ph)(N-(EO)16Ph)Mor]2[Xantphos-(SO3-)2]和[(N-(EO)16Ph)(N-(EO)16Ph)Mor][CH3SO3-],[(N-(EO)16Ph)(N-(EO)16Ph)Mor][CH3SO3-]/Rh(acac)(CO)2=20:1(摩尔比),其余反应条件与步骤同实施例9,气相色谱分析结果为:1-辛烯的转化率为93.8%,醛的化学选择性90.7%,正构醛与异构醛的摩尔比为25.0:1.0(正构醛的区域选择性96.2%),TOF值为1702h-1。

    实施例16

    Rh(acac)(CO)2/[(N-(EO)16Ph)(N-CH3)Mor]2[Xantphos-(SO3-)2](o=p=1,q=r=2)/[(N-(EO)16Ph)(N-CH3)Mor][CH3SO3-]/1-辛烯/正庚烷体系下两相氢甲酰化反应

    体系中加入正庚烷,正庚烷与1-辛烯的体积比为2:1,其余反应条件与步骤同实施例9,气相色谱分析 结果为:1-辛烯的转化率为61.5%,醛的化学选择性71.6%,正构醛与异构醛的摩尔比为23.0:1.0(正构醛的区域选择性95.8%),TOF值为881h-1。

    实施例17

    Rh(acac)(CO)2/[(N-(EO)16Ph)(N-CH3)Mor]2[Xantphos-(SO3-)2](o=p=1,q=r=2)/[(N-(EO)16Ph)(N-CH3)Mor][CH3SO3-]/1-己烯体系下两相氢甲酰化反应

    烯烃换为1-己烯,其余反应条件与步骤同实施例9,气相色谱分析结果为:1-己烯的转化率为97.0%,醛的化学选择性96.6%,正构醛与异构醛的摩尔比为28.0:1.0(正构醛的区域选择性96.6%),TOF值为1874h-1。

    实施例18

    Rh(acac)(CO)2/[(N-(EO)16Ph)(N-CH3)Mor]2[Xantphos-(SO3-)2](o=p=1,q=r=2)/[(N-(EO)16Ph)(N-CH3)Mor][CH3SO3-]/1-十四烯体系下两相氢甲酰化反应

    烯烃换为1-十四烯,其余反应条件与步骤同实施例9,气相色谱分析结果为:1-十四烯的转化率为55.8%,醛的化学选择性89.3%,正构醛与异构醛的摩尔比为23.0:1.0(正构醛的区域选择性95.8%),TOF值为997h-1。

    实施例19

    Rh(acac)(CO)2/[(N-(EO)16Ph)(N-CH3)Mor]2[Xantphos-(SO3-)2](o=p=1,q=r=2)/[(N-(EO)16Ph)(N-CH3)Mor][CH3SO3-]/2-辛烯体系下两相氢甲酰化反应

    烯烃换为2-辛烯,反应时间为1h,其余反应条件与步骤同实施例9,气相色谱分析结果为:2-辛烯的转化率为58.3%,醛的化学选择性74.6%,正构醛与异构醛的摩尔比为20.0:1.0(正构醛的区域选择性95.2%),TOF值为435h-1。

    实施例20-55

    Rh(acac)(CO)2/[(N-(EO)16Ph)(N-CH3)Mor]2[Xantphos-(SO3-)2](o=p=1,q=r=2)/[(N-(EO)16Ph)(N-CH3)Mor][CH3SO3-]/1-辛烯体系下两相氢甲酰化反应循环实验

    在惰性气氛下,向不锈钢高压反应釜中加入Rh(acac)(CO)2、[(N-(EO)16Ph)(N-CH3)Mor]2[Xantphos-(SO3-)2]、[(N-(EO)16Ph)(N-CH3)Mor][CH3SO3-]和1-辛烯,其比例为:[(N-(EO)16Ph)(N-CH3)Mor]2[Xantphos-(SO3-)2]/Rh(acac)(CO)2=20:1(摩尔比),1-辛烯/Rh(acac)(CO)2=1000:1(摩尔比),[(N-(EO)16Ph)(N-CH3)Mor][CH3SO3-]/Rh(acac)(CO)2=60:1(摩尔比),然后用合成气(H2/CO=1:1)加压至5.0MPa,反应温度100℃,反应时间6小时,然后快速冷却至室温,放空合成气后开釜,体系自然分成两相,倾析出上层的有机相,下层含有铑催化剂的离子液体相通过补加新的1-辛烯可进行下一次催化循环,气相色谱分析结果表明:经36次催化循环后,烯烃的转化率、醛化学选择性和正构醛的区域选择性没有明显下降,累计TON值达到30966,单次循环的铑流失量<0.3%,循环实验结果见表1中实施例20-55。

    表1铑催化剂的循环实验

    关 键  词:
    一种 基于 功能 化聚醚吗啉盐 离子 液体 烯烃 两相 氢甲酰化高 选择性 制备 正构醛 方法
      专利查询网所有文档均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    0条评论

    还可以输入200字符

    暂无评论,赶快抢占沙发吧。

    关于本文
    本文标题:一种基于膦功能化聚醚吗啉盐离子液体的烯烃两相氢甲酰化高选择性制备正构醛的方法.pdf
    链接地址:https://www.zhuanlichaxun.net/p-9077414.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
    经营许可证编号:粤ICP备2021068784号-1