在衬底上形成金属敷层的方法 本发明涉及一种在制造印刷电路板,特别是带微孔和精细结构的印刷电路板时在带聚合物表面的衬底上形成金属敷层的方法,它是通过涂敷导电的聚合物层并接着再进行金属化,其中导电聚合物层在金属化工序之前宜用含锡的胶体钯溶液掺杂。带微孔和精细结构的印刷电路板多用所谓的装配工艺(Buied Up-Technologie)制造。在这种情况下通常用已制成的双面线路作芯体,再用聚合物涂敷,按照当前的技术水平其上的微孔采用光刻或藉助激光制造,该微孔作为盲通路通向下一导电面。
接着按照DE-A-19502988所叙述的技术进行聚合物的表面结构化、Pd-引晶以及藉助无外部电流的铜沉积使整个线路表面金属化。该“化学”铜层有时用电解加强。
在其余的工序中用相应的导线组形成走线图。通过多次重复这种操作方式可形成较多层数的多层体,因此称为顺序装配。
DE 3806884报导了一种形成印刷电路板通路孔(即孔壁的金属化)方法,该法基于内在导电聚合物。衬底在一种具氧化作用的溶液中进行预处理、漂洗、然后浸入一种吡咯、呋喃、噻吩和/或其衍生物的单体水溶液中,再在酸性溶液中进行后继处理。在这种情况下在不导电的表面上(聚合物,玻璃等)上选择性地生成一种内在导电的聚合物膜,该膜接着以电流金属化。
孔壁地金属化要接通相当于印刷电路板厚度的距离。一般说来要金属化的距离很少>4mm。内在导电的聚合物的电导率通常足够使金属化在数分钟内完成。铜在这类聚合物上的横向生长率随聚合物的种类不同在0.1-2.5mm/min之间波动。按照这种生长值,整个面积达0.2m2(有时更大)的印刷电路板的表面金属化只能在很长的时间内以极差的层厚分布完成。这种印刷电路板无论如何都不符合技术要求。因此需要明显提高这类内在导电聚合物的电导率,并要明显增大这种聚合膜上的横向金属生长率。
DE 195 02 988叙述了一种方法以解决上面提出的问题。按照DE 38 06 884叙述的方法,首先在衬底聚合物上覆以一种导电聚合物。但在以电流金属化之前仍用一种含金属离子的水溶液,优选一种含锡的胶体钯溶液处理。其间该内在导电聚合物被补充掺杂。用这种方式可达到改进电导率值,以及首先增大横向生长率。在聚-3,4亚乙二氧基噻吩的情况下,金属生长值可达5mm/min。然而这样的值对于表面金属化仍不能令人满意。导电聚合物在衬底的聚合物上的附着是有缺陷的。因此需要形成能牢固附着在衬底聚合物上的导电聚合膜,这种情况下附着强度值至少需要达到5N/cm,甚至需要达到10N/cm。
因此,本发明的目的在于首先在聚合物衬底上提供有足够附着的导电聚合物膜以及进一步提高铜的横向生长率。
这些目的通过下列方式达到,印在金属化之前与一种铜(Ⅱ)盐溶液接触。最好是衬底的表面在涂敷导电聚合物之前至少用下列工序处理一次。a)藉助强碱水溶液、有机溶剂或碱性溶剂溶胀,b)用碱性高锰酸盐溶液处理,以及c)用一种还原剂处理。
衬底表面因而先进行结构化。这发生在工序a),即用一种浸渍剂、一种适当的溶剂混合物以及用苛性钠或苛性钾处理。经过这样处理的衬底聚合物表面接着在碱性高锰酸盐溶液中进一步结构化。这种情况下应形成尽可能多的、尽可能在整个面积上均匀分布的微孔,其直径只有数μm或更小,这些微孔能改善导电聚合物的附着。已知这类浸渍剂和碱性高锰酸盐溶液对于所谓的多层Desmear-方法是很典型的,未曾报导的是通过这些工序可明显改善导电聚合物层的附着能力。
随衬底聚合物的不同,宜多次进行浸渍和高锰酸盐处理,以便得到相应的表面结构化。该方法的最后一个工序在各种情况下都是一还原过程,其中来自高锰酸盐处理的残渣,即二氧化锰被还原,从而使表面重新不含残渣。作为还原剂H2O2特别合适。
为了实施本发明的方法,衬底聚合物的浸渍用一种溶剂或一种溶剂混合物进行,有时甚至优选添加一种碱金属氢氧化物,然后用碱性高锰酸盐溶液处理,最后再进行上述的还原工序。这些措施导致衬底聚合物均匀粗糙化和结构化,并保证与要涂敷的导电聚合物层的良好附着。
曾经表明,如果在化学处理之前聚合物衬底先经机械预处理,则可得到特别好的附着力值,为此适宜采用刷、喷砂或者优选采用浮石粉处理,后者称为“浮石刷”或“浮石喷砂”。这种方式可再将附着力提高大约30-40%。
导电聚合物层的形成原则上按DE 38 06 884叙述的方式实现。
按本发明预处理的,即结构化的表面先在一种具有氧化作用的浴中,优选一种pH范围为1-14,更优选为5-8的高锰酸钾溶液预处理。为了改进待生成的聚合物膜的附着,可在氧化工序之前先在所谓的调理槽中按DE-A-42 05 190所述进行浸渍。
然后经漂洗,再将衬底送入3,4-亚乙二氧基噻吩的单体溶液中,接着将附着有单体的衬底不经漂洗放入酸性溶液中,由于氧化聚合的结果形成导电聚合物膜。在以高锰酸钾作氧化剂的情况下,第一步生成衬底聚合物和KMnO4的反应产物,即二氧化锰层,该二氧化锰层是浸渍过聚合物的,在上述酸性溶液中起氧化剂的作用。
酸宜选用硫酸、磷酸或磺酸;特别适宜的是多磷酸或聚合型磺酸。本发明的一个特别优选的实施方案采用聚苯乙烯磺酸或其盐。
这种方式形成的导电聚合物层的电阻与工作参数以及首先是与所用的酸或所用的单体化合物有关,通常界于5-500KΩ之间。而电阻通过印刷电路板穿孔测量。测量时板的厚度d=1.6mm,孔直径为1.0mm。
采用3,4-亚乙二氧基噻吩以及聚苯乙烯磺酸可获得最低电阻值。
对于大面积金属化而言,起决定作用的是铜的横向生长率,采用3,4-亚乙二氧基噻吩和聚苯乙烯磺酸时其最佳值可达30mm/min。但这个值对表面沉积仍然不够。因此,按照本发明先进行一种后继处理,即按照DE-A-195 02 988通过一种含锡的钯胶体溶液掺杂,以提高铜的横向生长率。
为此,以导电聚合物敷层的衬底放入一种这类的含金属的溶液中。该溶液涉及一种钯的胶体溶液,它用锡(Ⅱ)盐作胶体稳定剂。这种钯“催化剂”多年来用作塑料衬底的化学金属化的活化溶液。但是本发明所采用的溶液所含的钯浓度高于常规溶液,即约50mg/l-数克/l。
通过这种后继处理,导电聚合物膜上加载了金属,即Pb和Sn2+,经过漂洗之后,加载过的板放入铜(Ⅱ)盐溶液,该溶液有时含络合剂、稳定剂和pH-调节剂。这时看起来铜以离子交换沉积到导电聚合物膜上。这不仅导至电阻下降,而且导至铜横向生长率的增高。基于本发明的导电聚合物、金属掺杂和与铜(Ⅱ)盐溶液接触的组合,铜的横向生长率从2.5mm/min增大到40mm/min或更高;这就可能进行下一步大面积电解金属化,例如镀铜,使平面衬底上在足够短的时间内获得均匀的金属分布和良好的附着。
曾经设想,通过补充加入金属可使金属化过程中的晶种形成明显加快,从而并使横向生长加快。
本发明的工艺步骤优选如下:1. 浸渍 T:40-85℃ t:0.5-15min
漂洗2. 碱性KMnO4 T:60-95℃ t:1-30min
漂洗3. 还原 T:20-45℃ t:0.2-5min
漂洗这种操作有时可完整或部分地,有时亦可多次重复进行。4. 调理 T:20-60℃ t:0.1-5min
漂洗5. KMnO4 T:50-95℃ t:0.3-10min
(pH 1-14)6. 漂洗
有时可采用漂洗顺序,即用水、硫酸溶液(pH 1-5)、水、弱碱溶液(pH 7-9)再用水进行。7. 单体 T:10-40℃ t:0.3-7min8. 酸 T:10-40℃ t:0.3-10min9. 金属溶液Ⅰ T:20-70℃ t:0.2-10min
(含锡的钯胶体溶液)
漂洗10. 金属溶液Ⅱ T:20-80℃ t:0.2-10min
(铜(Ⅱ)盐溶液)
漂洗11. 有时干燥或退火12. 酸洗 T:20-30℃ t:0.1-5min
(5-10%酸)
有时漂洗13. 电解金属化
通常金属化的电流密度约为0.5-10A/dm2,根据装置的设计(立式或卧式)选择时间,该时间保证预期的金属层的沉积。
漂洗14. 干燥15. 退火
经过这种处理的聚合物衬底具有大面积结构(例如印刷电路板尺寸为405×535mm)的高附着强度的均匀金属化。
有时工序7和8可组成一个步骤。优选方式为卧式处理。
本方法将根据下面的实施例作较详细的阐述。
实施例
全部试验皆用两种不同的聚合物衬底进行并在其上实现金属化。当然本发明的方法不限于这些聚合物衬底。
聚合物A:环氧聚合物(标准FR-4基材)
聚合物B:环氧聚合物(ProbelecXB7081,光电介质);Probelec
是Ciba特制化学用品公司的一种商标。
根据不同的试验目,所用的衬底尺寸有所不同。规定:
横向铜生长 35×100mm
附着强度 35×100mm
金属的掺杂 0.5dm2面积Ⅰ.聚合物衬底的结构化
衬底试片每次均在轻微搅动下用所述浸渍过程处理。后面的操作步骤亦在浸渍过程中进行,但特别应该指出,本发明的方法也可在流动式装置中(无论是立式的或卧式的)进行,都能达到同样的结果。这点亦适用于电流金属化。通常过程时间的明显减小在具体情况下与浸渍参数有关。
从生产而言,本发明的方法优选以流动式装置实施。由于本方法原则上与浸渍式装置或流动式装置概念无关,下面只讨论浸渍式过程。
下面所述的操作步骤、浓度、时间、温度以及化学成分并不限制本发明,而仅仅是优选的实施方案。
聚合物A的预处理 1. 浸渍 T:55℃ t:10min
(水溶液,330ml/l
N-甲基吡咯烷酮和
12g/l NaOH) 2. 水漂洗 T:RT(室温) 2次每次1min 3. 氧化 T:80 t=12min
(水溶液,65g/l
KMnO4和40g/l NaOH) 4. 水漂洗 T:RT 3次每次1min 5. 还原 T:RT t=1min
(水溶液,50ml/l
H2O2,35%和50ml/l
H2SO4) 6. 水漂洗 T:RT 2次每次1min 7. 干燥
聚合物B的预处理 1. 浸渍 T:80℃ t:1min
Enplate MLB 2010*
(加NaOH的溶剂混合
物) 2. 水漂洗 T:RT t=5min 3. 氧化 T:80℃ t=5min
(水溶液,60g/l KMnO4
和45g/l NaOH) 4. 水漂洗 T:RT t=5min 5. 还原
同聚合物A的5 6. 水漂洗
在一个优选实施方案中,步骤3-6重复一次,步骤3的时间提高至t=8min,然后干燥。
有时,操作程序可多次重复。
在预处理之后聚合物衬底具有均匀的结构化,并拥有大量表面小孔穴(φ约1-3μm)。经过这种结构化的表面对要涂敷的导电聚合物提供了良好的附着基础。
Ⅱ.用导电聚合物敷层
选择聚3,4-亚乙二氧基噻吩(Poly-EDT)作导电聚合物层,因为用它可取得最好的结果。
总共试验四种不同的操作过程。
操作过程1
1.调理槽(按照DE-A-
42 05 190)
Blasolit V** T:40℃ t:1min 2. 水漂洗 T:RT 2次各1min 3. 氧化 T:80℃ t=2min
(水溶液,70g/l KMnO4,
其pH-值用稀酸调至7
左右) 4. 水漂洗 T:RT 3次各1min 5. 单体溶液 T:RT t=1min
DMSE,CATV-10**
(含约1.5%EDT) 6. 酸
6.1 20g/l聚苯乙烯磺酸
或:
6.2 150g/l H2SO4水溶液 7. 水漂洗 T:RT 2次各1min 8. 干燥 * Enthone-OMI公司产品 ** 德国 Blasberg Enthone-OMI 公司产品
操作过程2
步骤1-4与操作过程1相同,导电聚合物膜在一个步骤中形成。 5. 聚合溶液 T:RT t=3min
(水溶液,0.12%EDT,
0.15%乳化剂(例如芳
基聚乙二醇醚)和0.4%
聚苯乙烯磺酸) 6. 水漂洗 7. 干燥
操作过程3 1. 溶剂-调理槽 T:55℃ t:8min
Condisolve HP**(按
照DE-A-42 05 190) 2. 水漂洗 T:RT 2次各1min 3. 氧化 T:75℃ t=3min
(水溶液,60g/l KMnO4
和40g/l NaOH。
KMnO4含量大约保持在
10-20g/l) 4. 水漂洗 T:RT 3次各1min 5. 聚合溶液 T:RT t=3min
5.1 聚合溶液同操作过程2
5.2 水溶液,0.3%EDT,
0.4%乳化剂和6g/l 多磷酸(84%的) 6. 水漂洗 7. 干燥
操作过程4 1. 溶剂-调理槽 T:55℃ t:8min
Condisolve HP** 2. 水漂洗 T:RT 2次各1min 3. 氧化 T:80℃ t=10min
(参见操作过程3,3。)
其余同操作过程3。Ⅲ. 导电聚合物层用含金属的溶液进行后处理
方案1(相当于DE 195 02 988) 1. 8%HCl水溶液 T:RT t=2min 2. 含金属的溶液Ⅰ T:RT t=5min
Pd-胶体溶液, 1g/l钯
20g/l氯化锡(Ⅱ)和
8%HCl 3. 8%的HCl水溶液 T:RT t=2min 4. 水漂洗 5. 干燥
方案2 1. 含金属溶液Ⅰ T:45℃ t=4min
ABC 888M*** (胶体Pd-溶液,约含 300mg/l的Pd 胶体稳定剂:氯化锡(Ⅱ)) 2. 水漂洗 T:RT 2次各1min 3. 加速 T:45℃ t=1min
ABC 580 S*** 4. 水漂洗 T:RT 2次各1min 5. 干燥 方案3 1. 含金属的溶液Ⅰ T:45℃ t=4min
ABC 888M***(s.o.) 2. 漂洗 3. 含金属的溶液Ⅱ T:63℃ t=5min
(水溶液,5g/l
CuSO4×5H2O,
50g/l Na2CO3
50g/l NaOH
30g/l酒石酸钾钠) 4. 水漂洗 T:RT 2次各1min 5. 干燥
所叙述的浓度、时间、温度和化学组分并不限制本发明方法的范围,而只是本方法的优选实施方案。
***表示以色列高级电镀技术(APT)公司的一种产品
Ⅳ.经本发明处理的聚合物衬底的金属化
由于这类衬底的镀铜具有显著的重要性,下面只将电解镀铜作为金属化过程描述。
可采用工业镀铜的常规方法中的镀铜的电解质,CUPROSTAR LP-1**被证明是特别适宜的一种无光铜电解质,因此在实施例中采用此种电解质。
衬底先在一种硫酸水溶液(约5-10%(体积))中酸洗30-60秒,然后在铜电解质CUPROSTAR LP-1中镀铜。
电解质组成:
铜 20g/l
H2SO4 200g/l
NaCl 100g/l
添加剂LP-1** 4mg/l
电流密度: 2A/dm2
镀铜时间各实施例不同。
结果与是否采用常规直流沉积或者是采用脉冲-可逆-沉积无关。在后一种情况下脉冲程序调为100ms阴极和1ms阳极,其间阳极电流密度通常选择较高的(2-3比1)。
各例的结果及其条件列于下表(实施例1-26)。可以明显看出,通过掺杂金属离子,特别是用含锡的钯胶体溶液可供横向生长明显提高。这样的生长值可使大面积在短时间内实现金属化。
经过本发明的预处理得到的附着强度值同样是合格的。
实施例27/28
实施例22和25的试验顺序被重复,只是在化学结构化之前增加浮后粉处理。
处理速度: 3.5m/min
停留时间: 约15s
材料 2/0N
(Vogel und Prenner公司产品)
在这种条件下附着强度值可达约10N/cm。
剥离强度按DIN 53 494进行。
衬底: 3.5×10cm
层厚度: 40μm±4μm
试样条 10mm宽,拉伸距离50mm
剥离速率: 75mm/min实施例预处理聚合物涂敷 后继处理聚合物衬底 电阻 (KΩ)Cu的横向生长 [mm/min] 金属掺杂 [mg/dm2] Pd Cu附着强度[N/cm] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26无无聚合物A无无无聚合物A无无无无无无无无无无无聚合物B聚合物B聚合物B聚合物B无聚合物B聚合物B聚合物B操作过程1/6.1操作过程1/6.2操作过程1/6.1操作过程2操作过程4/5.1操作过程4/5.2操作过程4/5.1操作过程1/6.1操作过程1/6.2操作过程1/6.1操作过程1/6.2操作过程1/6.1操作过程1/6.2操作过程4/5.1操作过程4/5.2操作过程4/5.1操作过程4/5.2操作过程1/6.1操作过程1/6.1操作过程1/6.1操作过程1/6.1操作过程1/6.1操作过程3/5.1操作过程3/5.1操作过程3/5.1操作过程2无无无无无无无方案1方案1方案3方案3方案2方案2方案3方案3方案1方案1无无方案1方案2方案3无无方案3方案3 A A A A A A A A A A A A A A A A A B B B B B B B B B 5.5 4.0 27.0 8.7 4.3 11.0 10.0 11.0 15.0 8.4 18.0 49.0 140.0 22.0 55.0 10.0 40.0 - 7.7 16.0 125.0 24.0 - 21.0 300.0 360.0 2.8 2.2 2.5 5.4 4.9 3.8 3.1 3.1 2.3 16.6 9.3 3.5 7.3 >25.0 20.6 4.5 6.8 6.0 6.3 3.5 22.4 38.9 0 7.7 28.6 11 - - - - - - - 0.48 0.20 0.68 1.16 0.28 0.76 0.48 - 0.28 - 0.44 1.00 0.12 0.52 0.40 - 0.76 - - - - - 0.56 - 0.12 - 0.12 0.72 - - - - 0.20 0.35 0.20 0.96 - - - - - - - - - - - - - - - - -无4.03.01.37.6无4.610.34.6