本申请是申请号为CN200410097888.1(申请日为1998年8月13日)、发明名称为“电路构件连接用的粘结剂,电路板及其制造方法”的中国申请的分案申请,后者是申请号为CN98814271.6(国际申请日为1998年8月13日)的进入国家阶段的PCT申请的分案申请。
技术领域
本发明涉及,例如,为了采用倒装芯片式安装方法把半导体芯片和基板进行粘接固定,同时,使两电极彼此进行电连接而采用的电路构件连接用的粘结剂,以及,电路构件彼此连接的电路板及其制造方法。
背景技术
在半导体安装领域,作为对应于低成本化·高精度化的新安装方案是将IC(集成电路)芯片直接搭载在印刷电路基板或挠性配线板上的倒装芯片式安装已引起人们的注意。
作为倒装芯片式安装方法,已知是在芯片端子上设置焊锡凸点,进行焊锡连接的方法,或通过导电性粘结剂进行电连接的方法。用这些方法,当暴露在各种环境中时,基于连接的芯片和基板的膨胀系数差产生的应力,在连接界面上发生连接的可靠性降低这类问题。因此,在一般情况下,为了缓和连接界面的应力,探讨一种把环氧树脂类底垫材料注入芯片/基板间隙的方法。
然而,这种底垫的注入工序,工艺复杂,在生产性、成本方面是不利的。为了解决该问题,最近,采用具有各向异性导电性和密封功能的各向异性导电性粘结剂的倒装芯片式安装,从其工艺简单性之类的观点上,已引起人们的注意。
但是,把介入各向异性导电粘结剂的芯片,直接搭载在基板上时,在温度循环试验中,基于芯片和基板的热膨胀系数差而在连接部位产生应力,所以,当进行热冲击试验、PCT(加压蒸煮试验)、焊锡浴浸渍试验等的可靠性试验时,发生连接电阻增大以及粘结剂发生剥离这类问题。另外,当在芯片的连接端子上形成凸起电极时,在可靠性试验中,基于芯片和基板热膨胀系数差产生的应力,集中在凸起电极和芯片的界面上,凸起电极从芯片电极界面剥离,产生导通不良等问题。
发明内容
本发明提供,在连接部位不发生电阻增大和粘结剂剥离,和连接可靠性大幅度上升的电路构件连接用粘结剂,以及电路构件彼此连接的电路板及其制造方法。
本发明的第1电路构件连接用粘结剂,它是介于对置的电路电极之间,并且是为了使对置的电路电极间加压的加压方向的电极间进行电连接用的电路构件连接用粘结剂,其特征在于,该粘接剂含有粘结树脂组合物和无机填料,而且相对于粘结树脂组合物100份(重量),含无机填料10~200份(重量)。
另外,本发明的第2电路构件连接用粘结剂,它是介于对置电路的电极之间,并且是为了使对置的电路电极间加压的加压方向的电极间进行电连接的电路构件连接用粘结剂,其特征在于,该粘接剂是具有多层结构的粘接剂,即,含有粘结树脂组合物及无机填料,并且相对于粘结树脂组合物100份(重量),含无机填料10~200份(重量)的第1粘结剂层,和以粘结树脂组合物作为主要成分的第2粘结剂层。
另外,本发明的第3电路构件连接用粘结剂,它是介于对置电路电极之间,并且是为了使对置电路电极间加压的加压方向的电极间进行电连接的电路构件连接用粘结剂,其特征在于,该粘接剂含有粘接树脂组合物和无机填料,在上述粘结剂固化后的110~130℃的平均热膨胀系数在200ppm/℃以下。粘结剂固化后的110~130℃的平均热膨胀系数为30~200ppm/℃是理想的。
另外,本发明的第4电路构件连接用粘结剂,它是介于对置的电路电极之间,并且是为了使对置的电路电极加压的加压方向的电极间进行电连接的电路构件连接用粘结剂,其特征在于,它是具有物理性质互相不同的第3粘结剂层和第4粘结剂层的多层结构的粘结剂。
上述粘结剂固化后的弹性模量,第3粘结剂层>第4粘结剂层,第4粘结剂层固化后在40℃的弹性模量为100~2000MPa是理想的。
另外,上述粘结剂的热膨胀系数,第3粘结剂层<第4粘结剂层,第3粘结剂层达到30~100℃的热膨胀系数是20~70ppm/℃是理想的。
另外,粘结剂的玻璃化转变温度,第3粘结剂层>第4粘结剂层,第3粘结剂层的玻璃化转变温度是120℃以上是理想的。
上述第3及第4中的至少任一种粘结剂层,对粘结树脂组合物100份(重量),含有无机填料10~200份(重量)是理想的。
上述粘结剂,对粘结树脂组合物100份(体积),可以含有导电粒子0.1~30份(体积)。
用上述粘结剂,粘结树脂组合物固化后在40℃下的弹性模量达到30~2000MPa是理想的。
粘结剂组合物,可以含有环氧树脂、丙烯酸类橡胶、潜在性固化剂,作为丙烯酸类橡胶,其分子中含有缩水甘油醚基的是理想的。
上述粘结剂的形状也可以是膜状。
本发明的电路板,是把具有第1连接端子的第1电路构件和具有第2连接端子的第2电路构件,以使第1连接端子和第2连接端子对置地配置,把粘结剂介于上述对置配置的第1连接端子和第2连接端子之间,加热加压使上述对置的第1连接端子和第2连接端子进行电连接的电路板,其特征在于,上述粘结剂是本发明的电路构件连接用粘结剂。
当具有第1连接端子的第1电路构件是具有第1连接端子的无机绝缘基板、具有第2连接端子的第2电路构件为具有第2连接端子的有机绝缘基板时,上述多层结构的粘结剂的第1粘结剂层或第3粘结剂层是粘接在上述第1电路构件一侧使用。
本发明的电路构件连接用粘结剂,是介于对置的电路电极之间,并且是为了使对置的电路电极加压的加压方向的电极间进行电连接的电路构件连接用粘结剂,并且是含有粘结树脂组合物和无机填料,和对粘结树脂组合物100份(重量,)含无机填料10~200份(重量)的电路构件连接用粘接剂,或者,是具有相对于粘结树脂组合物100份(重量)含无机填料10~200份(重量)的第1粘结剂层和粘结树脂组合物作为为主要成分的第2粘结剂层的多层结构的电路构件连接用粘结剂。在这种本发明的电路构件粘结用粘结剂中,相对于粘结树脂组合物100份(重量)含有无机填料10~200份(重量)的电路构件粘结用粘结剂的粘结树脂组合物,固化后在40℃的弹性模量为30~2000MPa者是理想的,此时,粘结剂在40℃的弹性模量可以达到100~5000MPa,超过200MPa而是3500MPa以下是理想的。
粘结树脂组合物固化后在40℃下的弹性模量为30~2000MPa,由于含有无机填料,粘结剂在40℃下的弹性模量超过2000MPa,由于低弹性模量粘结树脂组合物引起的应力缓和,同时,由于无机填料的作用,可以降低热膨胀系数,从而提供一种连接可靠性优良的电路构件连接用的粘结剂。
在以粘结树脂组合物作为主要成分的第2粘结剂层中,希望不含无机填料,然而,为了调整其特性,可以含有较第1粘结剂层的无机填料少的量,例如,低于50%(重量),理想的是低于20%(重量)。
另外,以粘结树脂组合物作为主要成分的第2粘结剂层是固化后40℃下的弹性模量达到100~2000MPa的粘结剂层。
本发明所用的多层结构的粘结剂,希望根据相连接的电路构件的弹性模量或热膨胀系数的大小加以配置。也就是说,希望把粘结剂配置成相对而言在电路构件的弹性模量大的或热膨胀系数小的一侧,粘接相对而言弹性模量大的或热膨胀系数小的或玻璃化转变温度高的第3粘结剂层一侧,而在相对而言弹性模量小的或热膨胀系数大的一侧,粘接相对而言弹性模量小的或热膨胀系数大的或玻璃化转变温度低的第4粘结剂层一侧。
在本发明所用的多层结构的粘结剂中,例如,半导体芯片和有机绝缘基板连接时,为使基于芯片和有机绝缘基板之间的热膨胀系数差的应力缓和为目的,构成有机绝缘基板侧的面的第4粘结剂层固化后40℃下的弹性模量达到100~2000MPa是理想的。构成半导体芯片一侧的面的第3粘结剂层在固化后的40℃下的弹性模量比第4粘结剂层大,达到500~5000MPa的粘结剂层。
另外,为使基于半导体芯片和有机绝缘基板之间的热膨胀系数差的应力缓和为目的,构成半导体芯片侧的面的第3粘结剂层在达到30~100℃的热膨胀系数达到20~70ppm/℃是理想的,构成有机绝缘基板侧的面的第4粘结剂层达到30~100℃的热膨胀系数比第3粘结剂层大,优选是30~100ppm/℃是理想的。
另外,为使基于半导体芯片和有机绝缘基板间热膨胀系数差的应力得到缓和为目的,构成半导体芯片侧的面的第3粘结剂层的玻璃化转变温度是120℃以上,而且,优选的是180℃以下,而构成有机绝缘基板侧的面的第4粘结剂层的玻璃化转变温度比第3粘结剂层小是理想的。
第3和第4的至少任何一方的粘结剂层,可以含有无机填料。
相当于粘结剂粘结后的阶段的粘结膜固化物的热膨胀系数及玻璃化转变温度,例如可以用,真空理工(株)热机械试验机TM-7000(拉 伸型,负载5gf,以5℃/分的速度升温)进行测定。还有,粘结膜的固化,在粘结工序时的加热温度及时间相同的条件下进行,固化可以把粘结膜浸渍在油浴中来进行。这种粘结膜固化物,在用DSC(差示扫描量热法)测定时,在发热量为总固化发热量的90%以上的发热结束了的固化物。
作为本发明中所用的粘结树脂组合物,可以使用环氧树脂和,咪唑类、酰肼类、三氟化硼-胺配合物、锍盐、胺基酰亚胺、聚胺的盐、二氰基二酰胺等潜在性固化剂的混合物,为了缓和基于电路构件热膨胀系数差的应力,在粘结后的40℃下的弹性模量达到30~2000MPa的粘结树脂组合物是理想的。
例如,作为可以得到连接时良好的流动性以及高连接可靠性的粘结树脂组合物,在环氧树脂和,咪唑类、酰肼类、三氟化硼-胺配合物、锍盐、胺基酰亚胺、聚胺的盐、二氰基二酰胺等潜在性固化剂的混合物中,配合在粘结后40℃的弹性模量达到30~2000MPa那样的丙烯酸类橡胶是理想的。
相当于粘结树脂组合物粘结后的阶段的粘结树脂组合物固化物的弹性模量,例如,用レオロジ(株)制造的列奥频谱仪(レオスベクトラ)DVE-4(拉伸型,频率为10Hz,以5℃/分的速度升温,从-40℃测定到250℃),按照DVE法进行测定。还有,粘结树脂组合物固化,是在与粘结工序时的加热温度及时间相同的条件下进行。固化,可把粘结树脂组合物膜浸渍在油浴中进行。该粘结树脂组合物膜固化物,是采用DSC测定时,总固化发热量的90%以上的发热结束了的固化物。
作为环氧树脂,有由表氯醇和双酚A及F、AD等衍生的双酚型环氧树脂、表氯醇和苯酚酚醛清漆或甲酚酚醛清漆衍生的环氧酚醛清漆树脂以及具有含萘环骨架的萘类环氧树脂、缩水甘油基胺、缩水甘油基醚、双酚、在脂环式等1分子内具有2个以上的缩水甘油基的各种环氧化合物等,它们可以单独或2种以上混合使用。这些环氧树脂,使用把杂质离子(Na+、Cl-)以及可水解的氯等降低至300ppm以下的高纯度产品,对于防止电子迁移是理想的。
环氧树脂,为了降低其热膨胀系数以及提高玻璃化转变温度,3官能团以上的多官能团环氧树脂和/或萘类环氧树脂是理想的。作为3官能团以上的多官能团环氧树脂,可以举出,苯酚酚醛清漆型环氧树脂、甲酚酚醛清漆型环氧树脂、三羟基苯基甲烷型环氧树脂、四羟苯基(フ ェニロ-ル)乙烷型环氧树脂、二环戊二烯酚型环氧树脂等。另外,萘类环氧树脂,是在1个分子中具有至少含1个以上萘环骨架的萘酚类、萘二醇类等。
作为丙烯酸类橡胶,可举出以丙烯酸、丙烯酸酯、甲基丙烯酸酯以及丙烯腈中至少一种作为单体成分的聚合物或共聚物,其中,包括含有缩水甘油醚基的丙烯酸缩水甘油酯和甲基丙烯酸缩水甘油酯的共聚物类丙烯酸橡胶是合适的。
这些丙烯酸类橡胶的分子量,从提高粘结树脂组合物的凝聚力这点考虑,20万以上是理想的。丙烯酸类橡胶在粘结树脂组合物中的配合量,在15%(重量)以下时,在粘结后的40℃下的弹性模量超过2000MPa,而成为40%(重量)以上时,可谋求低弹性模量,但是使连接时的熔融粘度升高,使连接电极之间,或者,连接电极和导电粒子的界面的熔融粘结剂的排斥性降低,所以,无法确保连接电极之间,或者,连接电极和导电粒子之间的电导通。因此,作为丙烯酸类的配合量为15~40%(重量)是理想的。在粘结树脂组合物中配合的这种丙烯酸类橡胶,起因于橡胶成分的介质损耗角正切的峰温度在40~60℃附近,从而可以谋求粘结组合物的低弹性模量化。
在粘结树脂组合物固化后的40℃下的弹性模量达到30~2000Mpa是理想的,在粘结剂的40℃下的弹性模量可以是100~5000MPa,也可以超过2000MPa。
另外,在粘结剂中,为了使膜更加容易形成,也可以配合苯氧基树脂等的热塑性树脂。特别是,苯氧基树脂,由于其结构类似于环氧树脂,所以,具有与环氧树脂的相溶性、粘结性优异等的特点所以是理想的。膜的形成,是把至少这些环氧树脂、丙烯酸类橡胶、苯氧基树脂、潜在性固化剂构成的粘结组合物和导电粒子溶解在有机溶剂中,或通过进行分散制成液态,涂布在可以剥离的基体材料表面上,在固化剂的活性温度以下除去溶剂进行膜的形成。此时所用的溶剂,芳香烃类溶剂和含氧溶剂的混合溶剂能提高材料的溶解性,是理想的。
作为本发明所用的无机填料,未作特别限定,例如,可以举出熔融的二氧化硅、结晶二氧化硅、硅酸钙、氧化铝、碳酸钙等粉末。无机填料的配合量,相对于粘结树脂组合物100份(重量)为10~200份(重量),为使热膨胀系数降低,配合量愈大效果愈好,然而,当配合量多时, 由于粘结性及连接部位粘结剂的排斥性降低而发生导通不良,当配合量小时,热膨胀系数不能充分降低,所以,20~90份(重量)是理想的。另外,其平均粒径,为了防止导通不良在3μm以下的是理想的。另外,为了防止连接时树脂流动性的下降以及芯片钝化膜的损坏,希望用球状填料。
在本发明的粘结剂中,为了消除芯片的凸点及基板电极的高度偏差,以积极地赋予各向异性导电性为目的,还可以加入。分散导电粒子。在本发明中,导电粒子,例如是Au、Ag、Cu以及焊锡等金属粒子,在聚苯乙烯等高分子球状的核芯材料中,设置Ni、Cu、Au、焊锡等的导电层是更理想的。而且,在导电性粒子的表面,也可以形成Sn、Au、焊锡等的表面层。粒径要比基板的电极的最小间隔小,当电极有高度偏差时,则比高度偏差大的是理想的,1~10μm是理想的。另外,在粘结剂中分散的导电粒子量,对粘结剂树脂组合物100份(体积)为0.1~30份(体积),理想的是0.2~15份(体积)。
本发明的粘结剂,可作为膜状粘结剂使用。
膜状粘结剂,是把环氧树脂、丙烯酸类橡胶、潜在性固化剂等构成的粘结组合物溶解在有机溶剂中,或通过进行分散的办法制成液态,并涂布在可以剥离的基体材料上,在固化剂的活性温度以下通过去除溶剂而制得。
多层结构的膜状粘结剂,例如,是将第1或第3膜状粘结剂和第2或第4膜状粘结剂,分别在由聚对苯二甲酸乙二醇酯、氟类树脂等构成的剥离膜(可剥离性的基体材料)的表面上涂布形成后,对第1或第3膜状粘结剂和第2或第4膜状粘结剂加压,或加压同时一边加热一边进行叠层,制得由第1或第3膜状粘结剂和第2或第4膜状粘结剂构成的膜状粘结剂的方法,另外,在上述剥离膜的表面上,在形成的第1或第3膜状粘结剂(或者,第2或第4膜状粘结剂)上,重叠涂布形成第2或第4膜状粘结剂(或者,第1或第3膜状粘结剂),制得由第1或第3膜状粘结剂和第2或第4膜状粘结剂构成的膜状粘结剂的方法等。
第1或第3膜状粘结剂和第2或第4膜状粘结剂进行叠层所构成的膜状粘结剂的厚度,合计达到20~120μm是理想的,第1或第3膜状粘结剂和第2或第4膜状粘结剂各自的厚度比,第1或第3膜状粘结 剂:第2或第4膜状粘结剂=1∶9~9∶1的范围是理想的。特别是,在半导体芯片和有机绝缘基板的连接中,第1或第3膜状粘结剂:第2或第4膜状粘结剂=3∶7~7∶3的范围是更理想的。
膜状粘结剂的膜厚,与第1及第3电路构件间的间隙相比,愈厚愈好,对应于间隙通常希望5μm以上厚的膜厚。
在本发明中,作为电路构件可以使用以半导体芯片、电阻芯片、电容器芯片等芯片元件、印刷基板和以聚酰亚胺及聚酯为基体材料的挠性配线板等基板。
芯片元件,是在硅、玻璃、陶瓷、化合物半导体基板等非金属无机绝缘基板上形成多个连接端子,而印刷基板、聚酰亚胺及聚酯作为基体材料的挠性配线板等基板是在有机绝缘基板上形成多个连接端子。
可以使用对应于半导体芯片端子的电极(连接端子)所形成的有机绝缘基板作为安装芯片元件的基板。
作为有机绝缘基板,可以使用聚酰亚胺树脂、聚酯树脂的合成树脂膜,或者,在玻璃织物、玻璃无纺布等玻璃基体材料上浸渍聚酰亚胺树脂、环氧树脂、酚树脂等树脂后固化的叠层板。
可以使用具有为与芯片端子连接的电极、该电板形成的表面绝缘层、规定层数的绝缘层、在各绝缘层之间配置的规定层数的配线层、把规定的上述电极和配线层之间进行电连接的导体化了的槽穴的多层配线板。
作为这样的多层配线板,在备有使用玻璃织物绝缘层的基体材料或者在具有1层以上导体电路的配线基板表面上,交叉形成绝缘层和导体电路层的组合式多层基板是理想的。
表面绝缘层,可以采用树脂膜,该树脂膜可以使用环氧树脂、聚酰亚胺树脂、聚酰胺酰亚胺树脂、改性的聚亚苯基醚树脂、苯氧基树脂、酰胺环氧树脂、酚醛树脂及其混合物、共聚物等的膜,而聚砜、聚醚砜、聚醚醚酮、全芳香族液晶聚酯、氟类树脂等耐热性的热塑性工程塑料膜。也可以使用在树脂膜中含有有机或无机填料的膜。作为由玻璃基体材料增强的树脂所构成的绝缘层,可以使用在玻璃织物、玻璃无纺布等玻璃基体材料上浸渍环氧树脂、酚醛树脂等树脂固化的 预浸渍片材。
在电路构件上,通常设置多个连接端子(视场合,单数也可),将上述电路构件的至少1组和设置在这些电路构件上的连接端子的至少一部分相对配置,在相对配置的连接端子间介入粘结剂,进行加热加压,使相对配置的连接端子彼此进行电连接作成电路板。
通过对电路构件的至少一组进行加热加压,对置的连接端子彼此通过直接接触或介入各向异性的导电性粘结剂的导电粒子进行电连接。
在半导体芯片及基板的电极焊区上,通过镀敷形成的凸点及金属导线的先端用焊枪等使其熔融,形成金属球,将该球压接在电极焊区上以后,切断导线,得到设置导线凸点等的凸起电极,可用作连接端子。
将由无机绝缘基板构成的第1电路构件和由有机绝缘基板构成的第2电路构件,采用膜状粘结剂加以连接时为例,来说明电路板的制造方法。
将具有第1连接端子的无机绝缘基板构成的第1电路构件,和具有第2连接端子的有机绝缘基板所构成的第2电路构件,以使其第1连接端子和第2连接端子相对地配置,并且在该相对配置的第1连接端子和第2连接端子之间,介入本发明的电路构件连接用粘结剂,以便使第1或第3粘结剂层成为配置在第1电路构件一侧,并将其加压,通过使对置的第1连接端子和第2连接端子电连接,即可制成本发明的电路板。
具体地说,例如,首先使膜状第2或第4粘结剂层的面在第2电路构件上接触,并使膜状粘结剂在第2电路构件上临时固定。然后,把第1电路构件的电极和第2电路构件的电极进行位置重合,从第1电路构件一侧,一边给每个电极加负荷20~150gf,一边加温10~20秒,使膜状粘结剂达到180~200℃,使膜状粘结剂固化。由此,第1电路构件的电极和第2电路构件的电极进行电连接,同时,第1电路构件和第2电路构件之间,通过膜状粘结剂的固化而保持该连接状态。
对于半导体芯片连接在安装基板上的例子,参照图1及图2进行说明。图1表示半导体芯片和安装基板,用不含导电粒子的粘结剂连接的例子。图2表示在图1的情况下,半导体芯片和安装基板,用含导电粒子的粘结剂连接时的连接部位。
图1表示的电子元件装置,是由安装基板20和其上安装的半导体芯片10构成的。还有,因为图1是显示电子元件装置的一部分,实际上,在安装基板20上,可以搭载其他的半导体芯片等其他元件。
半导体芯片10,在其一个面上形成由连接电极11构成的凸起电极(凸点)。通过该连接电极11,与安装基板进行电连接。
安装基板20具有,多层的绝缘层21、22,和通过上述各绝缘层21、22配置的多层的配线层32、33,和为了与上述半导体芯片10的连接电极11进行连接的连接用电极端子31,和为了使上述配线层32、33中的特定配线层间进行电连接而贯穿上述绝缘层21、22设置的导体34。为了贯穿上述导体34,在绝缘层21、22上,在必要的部位,设置作为通孔的孔25。也就是说,该安装基板构成了树脂复合体系多层配线板。这里的配线层32是作为内层电路设置的,而配线层33及连接用电极端子31是作为外层电路设置的。连接用电极端子31,是作为为在其上搭载芯片的导体电路而发挥作用。
在半导体芯片10上设置的作为连接电板11的凸起电极(凸点),与安装基板20表面上设置的连接用电极端子31的位置重合。在半导体芯片10和安装基板20之间,配置了用于粘结的膜状粘结剂40。在这种状态下,从半导体芯片10一侧通过加压加热,使粘结剂40流动、固化,把设置在半导体芯片10上的连接电极11和在安装基板20表面上设置的连接用电极端子31直接机械地进行连接而得到电连接。
在采用使导电粒子41分散的各向异性导电性粘结剂等的粘结剂40的场合,如图2所示,连接电极11和连接用电极端子31,在其间介入导电粒子41的状态下加以连接,同时,粘结固定。采用各向异性导电性粘结剂40的场合,把必须连接的相对着的电极面加以压接的状态下,在相对着的电极间,通过其间存在的导电粒子进行导通。另外,在相邻的电极之间,粘结剂,虽然内部含有导电粒子,但是由于导电粒子的密度低,则不显示导电性。
上述安装基板20具有,用玻璃基体材料增强的树脂所构成的至少1层以上的第1绝缘层21和构成作为最外层的至少把上述电子构件粘 结固定侧的1层的第2绝缘层22。还有,如图1所示,与上述电子元件粘结固定侧不同的另一侧,设置第2绝缘层22。
按照本发明的粘结剂,除了在半导体芯片和电路构件连接用粘结剂界面可以缓和应力外,而且,作为粘结树脂组合物在40℃的弹性模量为30~2000MPa的场合,更由于粘结树脂组合物,可以吸收热冲击,PCT以及焊锡浴浸渍试验等可靠性试验中产生的应力,所以,即使在可靠性试验后,连接部位的连接电阻增大以及粘结剂不产生剥离,连接的可靠性大幅度上升。按照本发明,由于在电路构件连接用的粘结剂厚度方向,物理性质发生逐渐变化,所以,在热冲击、PCT及焊锡浴浸渍试验等可靠性试验中产生的内部应力可以被吸收,即使在可靠性试验后,连接部位连接阻力增大及粘结剂不发生剥离,连接的可靠性提高。另外,膜状粘结剂,其处理操作也方便。
因此,本发明的粘结剂,对LCD(液晶显示)仪表板和TAB(磁带自动键)、TAB和挠性电路基板、LCD仪表板和IC芯片、IC芯片和印刷基板只在为了连接时的加压方向进行电连接使用是合适的。
本发明的电路板,可以吸收可靠性试验中产生的应力,即使在可靠性试验后,连接部位的连接阻力加大,粘结剂不能剥离,连接的可靠性大幅度上升。另外,用本发明的电路板,通过在芯片一侧使用热膨胀系数小的粘结膜,因可缓和芯片和粘结剂界面应力,故在芯片的电极焊区上设置凸起电极的场合,在温度循环试验下,可以大幅度降低凸起电极从凸起电极的电极焊区上剥离。
附图说明
图1为本发明电子元件装置结构之一例的剖面图。
图2为电子元件和安装基板的连接状态之一例的剖面图。
具体实施方式
实施例1
把苯氧树脂50g、丙烯酸丁酯(40份)、丙烯酸乙酯(30份)、丙烯腈(30份)以及甲基丙烯酸缩水甘油酯(3份)共聚得到的丙烯酸类橡胶(分子量:85万)125g,溶于醋酸乙酯400g中,制得30%溶液。
然后,往上述溶液中添加含有微胶囊型潜在性固化剂的液态环氧树脂(环氧当量:185)325g,搅拌,相对于粘结树脂组合物100份(重量)添加熔融二氧化硅(平均粒径:0.5μm)40份,而且使镍粒子(直径:3μm)2%(体积)分散在其中,制得膜涂布用的溶液。
把该膜涂布用的溶液,用涂胶辊涂布在剥离膜上(有机硅处理过 的聚对苯二甲酸乙二醇酯膜,厚度:40μm),在100℃干燥10分钟,形成厚度45μm的粘结膜a。用动态粘弹性测定器测定该粘结膜a的除去了熔融二氧化硅及镍粒子的只是粘结树脂组合物的40℃的弹性模量是800MPa。
接着,用所得到的粘结膜a,按下法,使带金属凸点(面积:80μm×80μm,间隔30μm,高:15μm,凸点数:288)的芯片(10mm×10mm,厚度:0.5mm)和镀Ni/Au的Cu电路印刷基板进行连接。
首先,在80℃,10kgf/cm2的条件下把粘结膜a(12mm×12mm)粘贴到镀Ni/Au的Cu电路印刷基板(电极高:20μm,厚度:0.8mm)上,然后,剥离去剥离膜,把芯片的凸点和镀Ni/Au的Cu电路印刷基板(厚度:0.8mm)的位置进行重合。然后,在180℃、30g/凸点、20秒的条件下,从芯片上方进行加热、加压,进行正式连接。
正式连接后的连接电阻,每个凸点最高为6mΩ,平均为2mΩ,绝缘电阻为108Ω以上,这些值即使在-55~125℃热冲击试验1000次循环处理、PCT试验(121℃,2个大气压)200小时、260℃的焊锡浴浸渍10秒后,也未发生变化,显示出良好的连接可靠性。
实施例2
把苯氧基树脂50g、丙烯酸丁酯(40份)、丙烯酸乙酯(30份)、丙烯腈(30份)以及甲基丙烯酸缩水甘油酯(3份)共聚得到的丙烯酸类橡胶(分子量:85万)175g,溶于醋酸乙酯525g中,制得30%溶液。
然后,往上述溶液中添加含有微胶囊型潜在性固化剂的液态环氧树脂(环氧当量:185)275g,搅拌,对粘结树脂组合物100份(重量)添加熔融二氧化硅(平均粒径:0.5μm)60份(重量),而且,使镍粒子(直径:5μm)2%(体积)分散于其中,制得膜涂布用溶液。
把该膜涂布用溶液,用涂胶辊涂布在剥离膜(有机硅处理过的聚对苯二甲酸乙二醇酯膜,厚度:40μm)上,于100℃干燥10分钟,形成厚度45μm的粘结膜b。用动态粘弹性测定器测定除去熔融二氧化硅及镍粒子的只有粘结树脂组合物的40℃的弹性模量为400MPa。
然后,用得到的粘结膜b,按下法,把带金属凸点(面积:80μm×80μm,间隔30μm,高度:15μm,凸点数:288)的芯片(10mm×10mm)和镀Ni/Au的Cu电路印刷基板(电极高:20μm,厚度:0.8mm)进行连接。
首先,把粘结膜b(12mm×12mm)于80℃,10kgf/cm2的条件下粘贴到镀Ni/Au的Cu电路印刷基板上,然后,剥离去剥离膜,把芯片的凸点和镀Ni/Au的Cu电路印刷基板的位置进行重合。然后,在170℃、30g/凸点、20秒的条件下,从芯片的上方进行加热、加压,进行正式连接。
正式连接后的连接电阻,每个凸点最高为18mΩ,平均为8mΩ,绝缘电阻为108Ω以上,这些值即使在-55~125℃进行热冲击试验1000次循环处理、PCT试验(121℃,2个大气压)200小时、260℃的焊锡浴浸渍10秒后,也未发生变化,显示出良好的连接可靠性。
实施例3
把苯氧基树脂50g、丙烯酸丁酯(40份)、丙烯酸乙酯(30份)、丙烯腈(30份)以及甲基丙烯酸缩水甘油酯(3份)共聚得到的丙烯酸类橡胶(分子量:85万)100g溶于醋酸乙酯350g,得到30%溶液。
然后,往上述溶液中添加含有微胶囊型潜在性固化剂的液态环氧树脂(环氧当量:185)350g,搅拌,对粘结树脂组合物100份(重量)添加熔融二氧化硅(平均粒径:0.5μm)60份(重量),并且在聚苯乙烯类核芯材料(直径:5μm)的表面使形成Au层的导电粒子5%(体积)分散,制得膜涂布用的溶液.
把该膜涂布用的溶液,用涂胶辊涂布在剥离膜(有机硅处理过的聚对苯二甲酸乙二醇酯膜,厚度:40μm)上,于100℃干燥10分钟,形成厚度45μm的粘结膜c.用动态粘弹性测定器,测定除去了熔融二氧化硅及导电粒子的该粘结膜c只有粘结树脂组合物的40℃的弹性模量为1000MPa。
然后,用得到的粘结膜c,按下法,把带金属凸点(面积:80μm×80μm,间隔30μm,高度:15μm,凸点数:288)的芯片(10mm×10mm,厚度:0.5mm)和镀Ni/Au的Cu电路印刷基板(电极高:20μm,厚度:0.8mm)进行连接。
首先,在80℃、10kgf/cm2的条件下,把粘结膜c(12mm×12mm)粘贴到镀Ni/Au的Cu电路印刷基板上,然后,剥离去剥离膜,把芯片的凸点和镀Ni/Au的Cu电路印刷基板的位置进行重合。然后,在170℃、30g/凸点、20秒的条件下,从芯片的上方进行加热、加压,进行正式连接。
正式连接后的连接电阻,每个凸点最高为5mΩ,平均为1.5mΩ,绝 缘电阻在108Ω以上,这些值即使在-55~125℃进行热冲击试验1000次循环处理、PCT试验(121℃,2个大气压)200小时、260℃的焊锡浴浸渍10秒后也不发生变化,显示出良好的连接可靠性。
实施例4
把苯氧基树脂50g、丙烯酸丁酯(40份)、丙烯酸乙酯(30份)、丙烯腈(30份)以及甲基丙烯酸缩水甘油酯(3份)共聚得到的丙烯酸类橡胶(分子量:85万)100g,溶于醋酸乙酯350g,得到30%溶液。
然后,往上述溶液中添加含有微胶囊型潜在性固化剂的液态环氧树脂(环氧当量:185)350g,搅拌,对粘结树脂组合物100份(重量)添加熔融二氧化硅(平均粒径:0.5μm)40份(重量),而且,把在聚苯乙烯核芯材料(直径:5μm)表面上形成Au层的导电粒子5%(体积)分散在其中,得到膜涂布用的溶液。
把该膜涂布用的溶液,用涂胶辊涂布在剥离膜(有机硅处理过的聚对苯二甲酸乙二醇酯膜,厚度40μm)上,于100℃干燥10分钟,形成厚度45μm的粘结膜d。用动态粘弹性测定器,测定该粘结膜d除去了熔融二氧化硅及导电粒子只有粘结树脂组合物的40℃的弹性模量为1000MPa。另外,用TMA法测定粘结膜d的110~130℃的平均热膨胀系数为111ppm/℃。
然后,用得到的粘结膜d,按下法,使带有金属凸点(面积:50μm×50μm,362个凸点,间隔:20μm,高度:15μm,)的芯片(1.7mm×17mm,厚度:0.5mm)、和带IT0(氧化铟锡)电路的玻璃基板(厚度:1.1mm)进行连接。
首先,在80℃、10kgf/cm2的条件下,把粘结膜d(12mm×12mm)粘贴在带IT0电路的玻璃基板上,然后,剥离剥离膜,把芯片的凸点和带IT0电路的玻璃板的位置进行重合。然后,在180℃、40g/凸点、20秒的条件下,从芯片的上方进行加热、加压,进行正式连接。
正式连接后的连接电阻,每个凸点最高为150mΩ,平均为80mΩ,绝缘电阻在108Ω以上、这些值即使在-40~100℃进行热冲击试验1000次循环处理、PCT试验(105℃,1.2个大气压)100小时也不发生变化,显示出良好的连接可靠性。
实施例5
把苯氧基树脂50g、丙烯酸丁酯(40份)、丙烯酸乙酯(30份)、丙 烯腈(30份)以及甲基丙烯酸缩水甘油酯(3份)共聚得到的丙烯酸类橡胶(分子量:85万)125g,溶于醋酸乙酯400g,得到30%溶液。
然后,往上述溶液中添加含有微胶囊型潜在性固化剂的液态环氧树脂(环氧当量:185)325g,搅拌,对粘结树脂组合物100份(重量)添加熔融二氧化硅(平均粒径:0.5μm)60份(重量),而且,使镍粒子(直径:5μm)2%(体积)分散在其中,得到膜涂布用的溶液。
把该膜涂布用的溶液,用涂胶辊在剥离膜(有机硅处理过的聚对苯二甲酸乙二醇酯膜,厚度40μm)上进行涂布,于100℃干燥10分钟,形成厚度45μm的粘结膜e。用动态粘弹性测定器,测定该粘结膜d除去了熔融二氧化硅及镍粒子只有粘结树脂组合物的40℃的弹性模量为800MPa。
然后,用所得到的粘结膜e,按下法,把无凸点芯片(10mm×10mm,厚度:0.5mm,焊区电极:A1,焊区直径:120μm)和电路上形成的镀Ni/Au的Cu凸点(直径:100μm,间隔:50μm,高度:15mm,凸点数:200)的镀Ni/Au的Cu电路印刷基板进行连接。
首先,把粘结膜e(12mm×12mm),在80℃、10kgf/cm2的条件下,粘贴在镀Ni/Au的Cu电路印刷基板(电极高度:20μm,厚度:0.8mm)上,然后,剥离剥离膜,把芯片的Al焊区和带镀Ni/Au的Cu凸点的镀Ni/Au的Cu电路印刷基板(厚度:0.8mm)进行位置重合。然后,在180℃、30g/凸点、20秒的条件下,从芯片的上方进行加热、加压,进行正式连接。
正式连接后的连接电阻,每个凸点最高为8mΩ,平均为4mΩ,绝缘电阻在108Ω以上,这些值即使在-55~125℃热冲击试验1000次循环处理、PCT试验(121℃、2个大气压)200小时、260℃的焊锡浴浸渍10秒后也不发生变化,显示出良好的连接可靠性。
实施例6
把苯氧基树脂50g、丙烯酸丁酯(40份)、丙烯酸乙醇(30份)、丙烯腈(30份)以及甲基丙烯酸缩水甘油酯(3份)共聚得到的丙烯酸类橡胶(分子量:85万)125g,溶于醋酸乙酯400g,得到30%溶液。
然后,往上述溶液中添加含有微胶囊型潜在性固化剂的液态环氧树脂(环氧当量:185)325g,搅拌,对树脂粘结剂组合物100份(重量)添加熔融二氧化硅(平均粒径:0.5μm)40份(重量)进行分散,得到膜涂布用的溶液。
用涂胶辊把该膜涂布用的溶液涂布在剥离膜上(有机硅处理过的聚对苯二甲酸乙二醇酯膜,厚度40μm)进行涂布,于100℃干燥10分钟,形成第1粘结层的粘结膜f(厚度:25μm)。还有,用动态粘弹性测定器测定该粘结膜f的除去了熔融二氧化硅后的只有粘结树脂组合物的40℃的弹性模量为800MPa。
另外,除了用分散镍粒子(直径:3μm)2%(体积)来代替分散的熔融二氧化硅以外,与粘结膜f的制作同样进行,形成作为第2粘结层的粘结膜g(厚度:25μm)。所得到的粘结膜g在40℃的弹性模量为800MPa。
然后,把所得到的粘结膜f及粘结膜g加以叠层,得到作为复合膜的叠层膜状粘结剂h。
用该叠层膜状粘结剂h,按下法,将带有金属凸点(面积:80μm×80μm,间隔:30μm,高度:15μm,凸点数:288μm)的芯片(10mm×10mm,厚度:0.5mm)和镀Ni/Au的Cu电路印刷基板进行连接。
首先,在80℃、10kgf/cm2的条件下把上述叠层状粘结剂h(12mm×12mm)的粘结膜g(第2粘结剂层)粘贴到镀Ni/Au的Cu电路印刷基板(电极高度:20μm,厚度:0.8mm)上,然后,剥离去剥离膜,在粘结膜f(第1粘结剂层)一侧,使芯片对置,并进行芯片的凸点和镀Ni/Au的Cu电路印刷基板(厚度:0.8mm)的位置重合。然后,在180℃、50g/凸点、20秒的条件下,从芯片的上方进行加热、加压,进行正式连接。
正式连接后的连接电阻,每个凸点最高为6mΩ,平均为2mΩ,绝缘电阻为108Ω以上,这些值即使在-55~125℃热冲击试验1000次循环处理、PCT试验(121℃,2个大气压)200小时、260℃的焊锡浴浸渍10秒后也不发生变化,显示良好的连接可靠性。
实施例7
把苯氧基树脂50g、丙烯酸丁酯(40份)、丙烯酸乙酯(30份)、丙烯腈(30份)以及甲基丙烯酸缩水甘油酯(3份)共聚得到的丙烯酸类橡胶(分子量:85万)175g,溶于醋酸乙酯525g,得到30%溶液。
然后,往上述溶液中添加含有微胶囊型潜在性固化剂的液态环氧树脂(环氧当量:185)275g,搅拌,对树脂粘结剂组合物100份(重量)使熔融硅胶(平均粒径:1μm)60份(重量)进行分散,得到膜涂布用的溶液。
用涂胶辊把该膜涂布用溶液涂布在剥离膜(有机硅处理过的聚对苯二甲酸乙二醇酯膜,厚度40μm)上,于100℃干燥10分钟,形成相当于第1粘结剂层的粘结膜i(厚度:20μm)。用动态粘弹性测定器测定除去了熔融二氧化硅只有粘结树脂组合物的40℃的弹性模量为400MPa。
另外,除了用分散2%(体积)的镍粒子(直径:3μm)来代替分散的熔融二氧化硅以外,与粘结膜i的制作同样进行,形成相当于第2粘结剂层的粘结膜j(厚度:20μm)。所得到的粘结膜j在40℃的弹性模量为400MPa。
然后,把所得到的粘结膜i及粘结膜j加以叠层,得到作为复合膜的叠层膜状粘结剂k。用该叠层膜状粘结剂k,按下法,将带有金属凸点(面积:80μm×80μm,间隔:30μm,高度:15μm,凸点数:288μm)的芯片(10mm×10mm,厚度:0.5mm)和镀Ni/Au的Cu电路印刷基板进行连接。
首先,在80℃、10kgf/cm2的条件下把上述叠层膜状粘结剂k(12mm×12mm)的粘结膜j(第2粘结层)粘贴到镀Ni/Au的Cu电路印刷基板(电极高度:20μm,厚度:0.8mm)上,然后,剥离掉剥离膜,在粘结膜i(第1粘结层)一侧,使芯片对置,芯片的凸点和镀Ni/Au的Cu电路印刷基板(厚度:0.8mm)进行位置重合。然后,在180℃、50g/凸点、20秒的条件下,从芯片的上方进行加热、加压,进行正式连接。
正式连接后的连接电阻,每个凸点最高为18mΩ,平均为8mΩ,绝缘电阻为108Ω以上,这些值即使在-55~125℃热冲击试验1000次循环处理、PCT试验(121℃,2个大气压)200小时、260℃的焊锡浴浸渍10秒后也不发生变化,显示良好的连接可靠性。
实施例8
把苯氧基树脂50g、丙烯酸丁酯(40份)、丙烯酸乙酯(30份)、丙烯腈(30份)以及甲基丙烯酸缩水甘油酯(3份)共聚得到的丙烯酸类橡胶(分子量:85万)100g,溶于醋酸乙酯350g,得到30%溶液。
然后,往上述溶液中添加含有微胶囊型潜在性固化剂的液态环氧树脂(环氧当量:185)350g,搅拌,对粘结树脂组合物100份(重量)使熔融二氧化硅(平均粒径:0.5μm)60份(重量)进行分散,得到膜涂布用的溶液。
用涂胶辊把该膜涂布用的溶液涂布在剥离膜(有机硅处理过的聚 对苯二甲酸乙二醇酯膜,厚度40μm)上,于100℃干燥10分钟,形成相当于第1粘结层的粘结膜m(厚度:25μm)。用动态粘弹性测定器测定该粘结膜f的除去了熔融二氧化硅的只有粘结树脂组合物的40℃的弹性模量为1000MPa。
另外,除了用分散5%(体积)的在聚苯乙烯类核芯材料(直径:5μm)的表面上形成Au层的导电粒子来代替分散的熔融二氧化硅以外,与粘结膜m的制作同样进行,形成相当于第2粘结层的粘结膜n(厚度:25μm)。所得到的粘结膜n在40℃的弹性模量为1000MPa。
然后,把所得到的粘结膜m及粘结膜n加以叠层,得到作为复合膜的叠层膜状粘结剂p。用该叠层膜状粘结剂p,按下法,与带有金属凸点(面积:80μm×80μm,间隔:30μm,高度:15μm,凸点数:288μm)的芯片(10mm×10mm,厚度:0.5mm)和镀Ni/Au的Cu电路印刷基板进行连接。
首先,在80℃、10kgf/cm2的条件下把上述叠层膜状粘结剂p(12mm×12μm)的粘结膜n(第2粘结层)粘贴到镀Ni/Au的Cu电路印刷基板(电极高度:20μm,厚度:0.8mm)上,然后,剥离掉剥离膜,在粘结膜m(第1粘结层)一侧,使芯片对置,芯片的凸点和镀Ni/Au的Cu电路印刷基板(厚度:0.8mm)进行位置重合。然后,在180℃、50g/凸点、20秒的条件下,从芯片的上方进行加热、加压,进行正式连接。
正式连接后的连接电阻,每个凸点最高为5mΩ,平均为1.5mΩ,绝缘电阻为108Ω以上,这些值即使在-55~125℃热冲击试验1000次循环处理、PCT试验(121℃,2个大气压)200小时、260℃的焊锡浴浸渍10秒后也不发生变化,显示良好的连接可靠性。
实施例9
把苯氧基树脂50g、丙烯酸丁酯(40份)、丙烯酸乙酯(30份)、丙烯腈(30份)以及甲基丙烯酸缩水甘油酯(3份)共聚得到的丙烯酸类橡胶(分子量:85万)125g,溶于醋酸乙酯400g,得到30%溶液。
然后,往上述溶液中添加含有微胶囊型潜在性固化剂的液态环氧树脂(环氧当量:185)325g,搅拌,对树脂粘结组合物100份(重量)使熔融二氧化硅(平均粒径:0.5μm)60份(重量)进行分散,得到膜涂布用的溶液。
用涂胶辊把该膜涂布用的溶液涂布在剥离膜上(有机硅处理过的聚对苯二甲酸乙二醇酯膜,厚度25μm),于100℃干燥10分钟,形成相当 于第1粘结层的粘结膜q(厚度:25μm)。用动态粘弹性测定器测定该粘结膜q的除去了熔融二氧化硅的只有粘结树脂组合物的40℃的弹性模量为800MPa。
另外,除了用分散2%(体积)的镍粒子(直径:3μm)来代替分散的熔融二氧化硅以外,与粘结膜q的制作同样进行,形成相当于第2粘结层的粘结膜r(厚度:25μm)。所得到的粘结膜r在40℃的弹性模量为800MPa。
然后,把所得到的粘结膜q及粘结膜r加以叠层,得到作为复合膜的叠层膜状粘结剂s。
用该叠层膜状粘结剂s,按下法,把无凸点芯片(10mm×10mm),厚度:0.5mm,焊区电极:Al,焊区直径:120μm)和在电路上形成镀Ni/Au的Cu凸点(直径:100μm,间隔50μm,高度:15μm,凸点数:200)的镀Ni/Cu的Cu电路印刷基板连接。
首先,在80℃、10kgf/cm2的条件下把上述叠层膜状粘结剂s(12mm×12mm)的粘结膜r(第2粘结层)粘贴到形成镀Ni/Au的Cu凸点(直径:100μm,间隔:50μm,高度:15μm、凸点数:200)的镀Ni/Au的Cu电路印刷基板(电极高度:20μm,厚度:0.8mm)上,然后,把剥离膜剥离掉,在粘结膜q(第1粘结层)一侧,使芯片对置,芯片的凸点和镀Ni/Au的Cu电路印刷基板(厚度:0.8mm)进行位置重合。然后,在180℃、50g/凸点、20秒的条件下,从芯片的上方进行加热、加压,进行正式连接。
正式连接后的连接电阻,每个凸点最高为8mΩ,平均为4mΩ,绝缘电阻为108Ω以上,这些值即使在-55~125℃热冲击试验1000次循环处理、PCT试验(121℃,2个大气压)200小时、260℃的焊锡浴浸渍10秒后也不发生变化,显示良好的连接可靠性。
实施例10
把苯氧基树脂195g和多官能团环氧化物(环氧当量:212)130g,溶于醋酸乙酯1083g,得到30%溶液。
然后,往上述溶液中添加含有微胶囊型潜在性固化剂的液态环氧树脂(环氧当量:185)325g,搅拌,并且,使镍粒子(直径:5μm)2%(体积)进行分散,得到膜涂布用的溶液。
用涂胶辊把该膜涂布用的溶液涂布在剥离膜(有机硅处理过的聚对苯二甲酸乙二醇酯膜,厚度40μm)上,于100℃干燥10分钟,形成相当 于第3粘结层的粘结膜t(厚度:25μm)。固化后的粘结膜t的30~100℃的热膨胀系数为45ppm,玻璃化转变温度为150℃,在40℃的弹性模量为2600MPa。
另外,把苯氧基树脂50g、丙烯酸丁酯(40份)、丙烯酸乙酯(20份)、丙烯腈(30份)及甲基丙烯酸缩水甘油酯(3份)共聚得到的丙烯酸类橡胶(分子量:85万)100g,溶于醋酸乙酯500g,得到30%溶液。
然后,往上述溶液中添加含有微胶囊型潜在性固化剂的液态环氧化物(环氧当量:185)350g,搅拌,并且,使镍粒子(直径:5μm)2%(体积)分散,得到膜涂布用的溶液。
用涂胶辊把上述膜涂布用的溶液涂布在剥离膜(有机硅处理过的聚对苯二甲酸乙二醇酯膜,厚度40μm)上,于100℃干燥10分钟,形成相当于第4粘结层的粘结膜u(厚度:25μm)。固化后的粘结膜u在30~100℃的热膨胀系数为70ppm,玻璃化转变温度为125℃,在40℃的弹性模量为1000MPa。
其次,把粘结膜t和粘结膜u加以叠层,形成作为复和膜的叠层膜状粘结剂v(厚度:50μm)。
其次,用所得到的叠层膜状粘结剂v,按下法,把带有金属凸点(高度:30μm,凸点数:184)的芯片(尺寸:10×10mm,厚度:0.55mm)和镀N i/Au的Cu电路印刷基板(电极高度:20μm,基板厚度:0.8mm)进行连接。
首先,以叠层膜状粘结剂v(尺寸:12×12mm)的粘结膜u(第4粘结层)的面作为印刷基板的一侧,在60℃、0.5MPa的条件下,往镀Ni/Au的Cu回路印刷基板上暂时连接叠层膜状粘结剂v.暂时连接工艺后,把芯片的凸点和镀Ni/Au的Cu电路印刷基板加以位置重合,而在叠层的膜状粘结剂v上放置芯片,然后,在180℃、50g/凸点、20秒的条件下,从芯片上方加热、加压,进行正式连接。
正式连接后的连接电阻,每个凸点最高为10mΩ,平均为2mΩ,绝缘电阻为108Ω以上,这些值即使在-55~125℃热冲击试验1000次循环及110℃、85%RH、PCT试验500小时的试验过程中连续(原位)进行电阻测定,显示良好的连接可靠性。
实施例11
把苯氧基树脂195g和多官能团环氧化物(环氧当量:212)130g,溶于醋酸乙酯1083g,得到30%溶液。
然后,往上述溶液中添加含微胶囊型潜在性固化剂的液态环氧树脂(环氧当量:185)325g,搅拌,对树脂组合物100份(重量)使熔融二氧化硅(平均粒径:0.5μm)20份(重量)并使镍粒子(直径:5μm)2%(体积)进行分散,得到膜涂布用的溶液。
用涂胶辊把上述膜涂布用的溶液涂布在剥离膜(有机硅处理过的聚对苯二甲酸乙二醇酯膜,厚度40μm)上,于100℃干燥10分钟,形成相当于第3粘结层的粘结膜w(厚度:25μm)。固化后的粘结膜w在30~100℃的热膨胀系数为38ppm,玻璃化转变温度为153℃,40℃的弹性模量为3000MPa。
另外,把苯氧基树脂50g、丙烯酸丁酯(40份)、丙烯酸乙酯(20份)、丙烯腈(30份)以及甲基丙烯酸缩水甘油酯(3份)共聚得到的丙烯酸类橡胶(分子量:85万)100g,溶于醋酸乙酯500g,得到30%溶液。
然后,往上述溶液中添加含微胶囊型潜在性固化剂的液态环氧化物(环氧当量:185)350g,搅拌,并且,对树脂组合物100份(重量)使熔融二氧化硅(平均粒径:0.55μm),还有镍粒子(直径:5μm)2%(体积)分散,得到膜涂布用的溶液。
用涂胶辊把该膜涂布用的溶液涂布在剥离膜(有机硅处理过的聚对苯二甲酸乙二醇酯膜,厚度40μm)上,于100℃干燥10分钟,形成相当于第4粘结层的粘结膜x(厚度25μm)。固化后的粘结膜x在30~100℃的热膨胀系数为60ppm,玻璃化转变温度127℃,在4 0℃下的弹性模量为1400MPa。
其次,把粘结膜w和粘结膜x加以叠层,形成作为复和膜的叠层膜状粘结剂y(厚度:50μm)。
其次,用所得到的叠层膜状粘结剂y,按下法,把带有金属凸点(高度:30μm,凸点数:184)的芯片(尺寸:10mm×10mm,厚度:0.5 5mm)和镀Ni/Au的Cu电路印刷基板(电极高度:20μm,基板厚度:0.8mm)进行连接。
以叠层膜状粘结剂y(尺寸:12mm×12mm)的粘结膜x(第4粘结层)的面作印刷基板的一侧,在60℃、0。5MPa的条件下,往镀Ni/Au的Cu 回路印刷基板上暂时连接叠层膜状粘结剂y。暂时连接工序后,把芯片的凸点和镀Ni/Au的Cu电路印刷基板加以位置重合,而在叠层的膜状粘结剂y上放置芯片,然后,在180℃、50g/凸点、20秒的条件下,从芯片上方加热、加压,进行正式连接。
正式连接后的连接电阻,每个凸点最高为10mΩ,平均为2mΩ,绝缘电阻为108Ω以上,这些值即使在-55~125℃的热冲击试验1000次循环及110℃、85%RH、PCT试验500小时的试验过程中连续(原位)进行电阻测定,显示良好的连接可靠性。
比较例1
采用实施例10中得到的叠层膜状粘结剂v,与实施例10同样进行操作,把带有金属凸点(高度:30μm,凸点数:184)的芯片(尺寸:10mm× 10mm,厚度:0.55mm)和镀Ni/Au的Cu电路印刷基板(电极高度:20μm,基板厚度:0.8mm)进行连接。但是,在本比较例中,以叠层膜状粘结剂v(尺寸:12mm×12mm)的粘结膜t(第3粘结层)的面作为印刷基板的一侧。
正式连接后的连接电阻,每个凸点最高为10mΩ,平均为2mΩ,绝缘电阻为108Ω以上,这些值在-55~125℃的热冲击试验500次循环,另外,在110℃、85%RH、PCT试验300小时,导电性不良。
比较例2
把苯氧基树脂195g和多官能团环氧化物(环氧当量:212)130g溶于醋酸乙酯1083g,得到30%溶液。
然后,往上述溶液中添加含有微胶囊型潜在性固化剂的液态环氧化物(环氧当量:185)325g,搅拌,并且,使镍粒子(直径:5μm)2%(体积)加以分散,得到膜涂布用的溶液。
用涂胶辊把该膜涂布用的溶液涂布在剥离膜(有机硅处理过的聚对苯二甲酸乙二醇酯膜,厚度40μm)上,于100℃干燥10分钟,形成厚度50μm的粘结膜z。固化后的粘结膜z在30~100℃的热膨胀系数为45ppm,玻璃化转变温度为150℃,在40℃的弹性模量为2600MPa。
然后,只用所得到的粘结膜z,按下法,把带有金属凸点(高度::30μm,凸点数:184)的芯片(尺寸:10mm×10mm,厚度:0.55mm)和镀Ni/Au的Cu电路印刷基板(电极高度:20μm,基板厚度:0.8mm)进行连接。
首先,在60℃、0.5MPa的条件下,把粘结膜z暂时连接到镀Ni/Au的Cu电路印刷基板上。暂时连接工序后,使芯片的凸点和镀Ni/Au的Cu电路印刷基板的位置重合,在粘结膜z上放置芯片,然后,在180℃、50g/凸点、20秒的条件下,从芯片上方加热、加压,进行正式连接。
正式连接后的连接电阻,每个凸点最高为10mΩ,平均为3mΩ,绝缘电阻为108Ω以上,这些值在-55~125℃的热冲击试验300次循环及260℃的焊锡浴浸渍10秒后,导通不良。对连接部位的剖面观察结果是,在导通不良部位的一部分观察到粘结膜界面发生剥离。
比较例3
把苯氧基树脂50g、丙烯酸丁酯(40份)、丙烯酸乙酯(20份)、丙烯腈(30份)以及甲基丙烯酸缩水甘油酯(3份)共聚得到的丙烯酸类橡胶(分子量:85万)100g,溶于醋酸乙酯500g,得到30%溶液。
然后,往上述溶液中添加含有微胶囊型潜在性固化剂的液态环氧树脂(环氧当量:185)350g,搅拌,并且,使镍粒子(直径:5μm)2%(体积)分散,得到膜涂布用的溶液。
用涂胶辊把上述膜涂布用的溶液涂布在剥离膜(有机硅处理过的聚对苯二甲酸乙二醇酯膜,厚度40μm)上,于100℃干燥10分钟,形成厚度25μm的粘结膜α。固化后,粘结膜α在30~100℃的热膨胀系数为60ppm,玻璃化转变温度125℃,在40℃下的弹性模量为1000MPa。
然后,只用得到的粘结膜α,按下法,把带有金属凸点(高度:30μm,凸点数:184)的芯片(尺寸:10mm×10mm,厚度:0.55mm)和镀Ni/Au的Cu电路印刷基板(电极高度:20μm,基板厚度:0.8mm)进行连接。
首先,在60℃、0.5MPa的条件下,把粘结膜α暂时连接在镀Ni/Au的Cu电路印刷基板上。暂时连接工序后,使芯片的凸点和镀Ni/Au的Cu电路印刷基板进行位置重合,然后,在粘结膜α上放置芯片,然后,在180℃、50g/凸点、20秒的条件下,从芯片上方加热、加压,进行正式连接。
正式连接后的连接电阻,每个凸点最高为10mΩ,平均为2mΩ,绝缘电阻为108Ω以上,而这些值在-55~125℃的热冲击试验30次循环,在热冲击试验的高温试验时,产生导通不良的现象。
工业上利用的可能性
由上所述,按照本发明,可以制造出连接部位的连接电阻增大以及粘结剂不发生剥离,连接可靠性大幅度上升的电路板。