用作锂二次电池的正极活性材料 的复合氧化物的制备方法 本发明涉及一种含有锂并且用作锂二次电池的正极活性材料的复合氧化物(如LiMn2O4,LiCoO2,LiNiO2等)的制备方法。
已经知道用作锂二次电池的正极活性材料的复合氧化物(如LiMn2O4,LiCoO2,LiNiO2等)可以通过喷雾热分解方法来制备。
在本方法中,所需要的复合氧化物可以在加热的气氛中喷雾和分解含有构成该复合氧化物的金属元素地溶液来制备。
为了获得该溶液,在水中或者在一种醇中具有高溶解性的硝酸盐被用作为含有该金属元素的原材料。例如,就获得LiMn2O4而言,是将硝酸锂和硝酸镁的混合溶液进行喷雾热分解。
然而就获得LiMn2O4而言,使用硝酸盐的传统方法必然会产生NO2,如式(1)所示。在工业化大规模生产条件下,这必然引起要处理大量NO2的问题。
(1)
本发明的目的是通过抑制NO2的产生而解决上述问题,并且提供一种制备用作锂二次电池的正极活性材料的复合氧化物的方法,该锂二次电池具有大的初始容量并且具有优良的充电-放电循环特性。
用作锂二次电池的正极活性材料的含锂复合氧化物的制备方法包括下述步骤:提供一种包括含有构成该复合氧化物的金属元素的有机酸盐和一种在喷雾热分解中产生氧气的材料的水溶液或醇溶液;通过喷雾热分解方法分解上述的溶液并得到复合氧化物的粉末;热处理该复合氧化物的粉末,使它生长成较大的复合氧化物颗粒。
复合氧化物较好是选自锂锰复合氧化物,锂钴复合氧化物和锂镍复合氧化物;更好是选自LiMn2O4,LiCoO2和LiNiO2。
产生氧气的材料较好是硝酸或过氧化氢,有机酸盐较好是甲酸盐。
分解溶液的步骤较好是至少约在400℃以上,更好是在约500-900℃范围内进行,热处理较好是至少约在500℃以上,更好是在约600-900℃范围内进行。
图1是锂二次电池的一个实施例的横截面图。
为了避免处理NO2,本发明的发明人首先研究了使用有机酸盐的方法,这种有机酸盐如乙酸盐,甲酸盐等,该方法不会产生NO2。如下式(2)所示,使用这种有机酸盐时不会产生NO2:
(2)
但是,在这种情况下,大量的氧气被消耗于处理有机盐类,使喷雾热分解过程中气氛中的氧含量降低。这将导致不能合成所需要的复合氧化物,并且产生诸如一氧化碳,乙醛等的有毒气体。因此,必须把氧气导入喷雾热分解装置的气氛中,并且把有毒气体分解和/或氧化处理,这必将增加生产费用。
此外,使用以有机酸盐为原料所得到的正极活性材料的锂二次电池有下述问题:与使用以硝酸盐为原料所得到的正极材料的情况相比较,其单位重量的能量密度(即容量)变小。这是因为有机酸盐燃烧使得喷雾热分解装置的气氛中的氧气变得缺乏,从而可能形成缺氧的锂复合氧化物。
根据上述内容,本发明的发明人发现:使用有机酸盐的同时结合使用喷雾热分解中释放氧气的材料,可以防止复合氧化物形成期间氧气的缺乏以及毒气的产生。本发明中产生氧气的材料较好是一种氧化剂,在喷雾热分解过程中由于氧化反应而产生氧气或氧离子,因为有机酸或其它复合氧化物所不需要的物质会被氧化从而容易地完全烧掉。此外,该材料最好不含有会污染所述复合氧化物的元素。由于这些原因,所以较好是硝酸和过氧化氢,但也可以使用硝酸和过氧化氢之外的其它材料。
按照本发明的方法,在含有构成复合氧化物的金属元素的有机酸盐的水溶液或醇溶液中,加入一种会产生氧的物质以后,通过喷雾热分解过程将该溶液热分解形成复合氧化物粉末。然后对该复合氧化物进行热处理,使复合氧化物粉末成长为复合氧化物颗粒。
在含有构成复合氧化物的金属元素的有机酸盐的溶液中加入产生氧的物质,可以产生氧,供应至溶液喷雾中形成的雾滴之内。因此,与没有氧供应至雾滴内的情况相比,构成复合氧化物的金属元素在均匀的氧气氛中被氧化,从而形成具有均匀成分的复合氧化物。而且,可以补偿在喷雾热解中由于有机盐燃烧而引起的缺氧。因此,与使用硝酸盐的情况相比较,抑制了反应中NO2的产生,并且得到的锂复合氧化物避免了在使用有机盐的情况下会发生的缺氧。
以下,结合参考附图和表格来详细地说明本发明的较佳实施例。
实施例1
首先制备甲酸锂,硝酸锂,甲酸锰和硝酸锰作为构成锂-锰复合氧化物的金属元素的化合物,该锂-锰复合氧化物被用作锂二次电池的正极活性材料。然后精确称量1.0摩尔的甲酸锂(或硝酸锂)和2.0摩尔的甲酸锰(或硝酸锰),并将表1所示的各种组合置于容器内。向容器内加入4,950ml水和50ml浓度为60%、比重为1.38的硝酸,或4,900ml水和100ml的H2O2,或仅仅5,000ml的水(当使用硝酸盐时),搅拌混合物至盐溶解。在喷雾热分解中,硝酸和过氧化氢是产生氧气的物质。
然后,将每种混合溶液从一个喷嘴喷雾到热分解炉子中进行喷雾热分解,以得到各种复合氧化物粉末,所述的热分解炉的温度调节为400-900℃,喷雾速度为1,200毫升/小时。再把所得到的各种复合氧化物置于氧化铝制造的烧箱内,并在500-950℃热处理2小时,得到如表1所示样品1-18的各种锂-锰复合氧化物。表1中附有*的样品是本发明范围以外的对比例的样品,其它的样品是本发明范围的样品。
表1样品号 原材料释氧物质喷雾热分解温度 (℃)热处理温度 (℃) 锂 锰 1 甲酸锂 甲酸锰 硝酸 400 800 2 甲酸锂 甲酸锰 H2O2 400 800 3 甲酸锂 甲酸锰 硝酸 500 800 4 甲酸锂 甲酸锰 H2O2 500 800 5 甲酸锂 甲酸锰 硝酸 800 800 6 甲酸锂 甲酸锰 H2O2 800 800 7 甲酸锂 甲酸锰 硝酸 900 800 8 甲酸锂 甲酸锰 H2O2 900 800 9 甲酸锂 甲酸锰 硝酸 800 500 10 甲酸锂 甲酸锰 H2O2 800 500 11 甲酸锂 甲酸锰 硝酸 800 600 12 甲酸锂 甲酸锰 H2O2 800 600 13 甲酸锂 甲酸锰 硝酸 800 850 14 甲酸锂 甲酸锰 H2O2 800 850 15 甲酸锂 甲酸锰 硝酸 800 950 16 甲酸锂 甲酸锰 H2O2 800 950 *17 硝酸锂 硝酸锰 无 800 800 *18 甲酸锂 甲酸锰 无 800 800
用扫描电子显微镜(SEM)对上述所得到的各种复合氧化物粉末照相,并由照片测得颗粒直径。通过氮吸附法得到各种复合氧化物的比面积。通过X-射线衍射(XRD)分析方法鉴定该复合氧化物。结果如表2所示。
表2样品号平均粒度(微米)比表面积(米2/克) XRD 分析相放电容量(毫安小时/克) 初始100次循环后 1 1.5 3.1LiMn2O4,Mn2O3 83 60 2 1.6 3.0LiMn2O4,Mn2O3 81 57 3 1.7 3.2LiMn2O4 128 123 4 1.7 3.2LiMn2O4 127 120 5 2.3 3.3LiMn2O4 137 133 6 2.3 3.4LiMn2O4 136 131 7 2.5 2.7LiMn2O4 132 129 8 2.6 2.5LiMn2O4 130 128 9 1.9 17.3LiMn2O4 129 110 10 1.9 16.5LiMn2O4 129 112 11 2.0 7.2LiMn2O4 130 123 12 2.1 7.0LiMn2O4 131 121 13 2.2 2.6LiMn2O4 135 132 14 2.3 2.5LiMn2O4 134 130 15 2.4 1.2LiMn2O4 119 115 16 2.4 1.3LiMn2O4 117 114 *17 2.4 3.6LiMn2O4 139 134 *18 2.1 3.2LiMn2O4 127 117
使用所获得的各种复合氧化物作为正极活性材料按如下所述制备二次电池。
用聚对苯二甲酸乙二醇酯作为黏合剂与上述的复合氧化物捏合在一起,使混合物成型为片形,再将该片形物加压连接到SUS网络上制得正极。然后,如图1所示,上述的正极3通过聚丙烯隔离器5迭加到负极4上,叠合时使该正极3的SUS网络面朝外,而迭合的负极4和正极3是被放置在不锈钢的正极外壳1中,使正极3面朝下。隔离器5浸满电解液。将高氯酸锂溶解在碳酸亚丙酯和1,1-二甲氧基乙烷的混合溶剂中所得到的溶液作为电解液。然后,用不锈钢的负极板2将正极外壳的开口封闭,负极板和正极外壳之间夹有绝缘封装部件6,从而得到如图1所示的锂二次电池。
在充电-放电电流密度为0.5毫安/厘米2、充电中止电压为4.3伏特和放电中止电压为3.0伏特的条件下,对所得到的各个锂二次电池进行充电-放电试验。其结果见上表2所示。
从表1和表2的结果可以清楚地看到:通过把硝酸或者过氧化氢之类在喷雾热分解中产生氧的物质加入到诸如甲酸盐(它含有构成锂-锰复合氧化物的金属元素)溶液之类的有机酸盐溶液中,并对该溶液进行喷雾热解热处理,所得到的锂-锰复合氧化物制成的锂二次电池,其初始容量与使用硝酸盐作为原材料制得的锂二次电池相同,而且其充电-放电循环特性是优良的(通过实施例5和6以及实施例17和18之间的比较)。
即使在使用硝酸作为产生氧物质的情况下,所产生的NO2比使用硝酸盐作为原料时低约1/5,在加入H2O2的情况下则变为零,因此在反应后的废气处理变得容易了。而且,可以防止在热分解等过程中由于氧气的缺乏所导致的诸如CO,乙醛等有毒气体的发生。
上例中说明了有机酸盐是甲酸盐的情况,使用诸如乙酸盐之类的其它有机酸盐的情况与上述情况是一样的。然而,有机酸盐中间,以氧化分解所需要的氧气最少的甲酸盐为最好。
在上述的实施例中,已经说明了锂-锰复合氧化物为LiMn2O4的情况,但是本发明并不限于这种情况,在使用其中部分的Mn被Li,Cr,Fe,Co,Ni,Mg,Al等取代的LiMn2O4的情况下,也可以得到同样的效果。
喷雾热分解的实际温度范围最佳为约500-900℃。如温度低于约400℃,不能得到单相的Li-Mn复合氧化物。上限被限定至低于某一个温度,在该温度时Li-Mn复合氧化物会再分解。
热处理的实际温度范围最好是约600-900℃。在该温度范围热处理时,可以得到其粒度以及比面积均生长至适合于锂二次电池的正极活性材料的颗粒,并且可以获得其初始容量和充电-放电循环特性均非常优良的锂二次电池。
实施例2
首先制备甲酸锂,硝酸锂,甲酸钴和硝酸钴作为构成锂-钴复合氧化物的金属元素的化合物,该锂-钴复合氧化物被用作锂二次电池的正极活性材料。然后精确称量1.0摩尔的甲酸锂(或硝酸锂)和1.0摩尔的甲酸钴(或硝酸钴),并将表3所示的各种组合置于容器内。向容器内加入4,950ml水和50ml浓度为60%、比重为1.38的硝酸,或4,900ml水和100ml的H2O2,或仅仅5,000ml的水,搅拌混合物至盐溶解。在喷雾热分解中,硝酸和过氧化氢是产生氧气的物质。
然后,使每种混合溶液从一个喷嘴喷雾到热分解炉子中进行喷雾热分解,以得到各种复合氧化物粉末,所述的热分解炉的温度调节为400-900℃,喷雾速度为1,200毫升/小时。再把所得到的各种复合氧化物置于氧化铝制造的烧箱内,并在500-950℃热处理2小时,得到如表3所示样品21-38的各种锂-锰复合氧化物。表3中附有*的样品是本发明范围以外的对比例的样品,其它的样品是本发明范围的样品。
表3样品号 原材料产生氧的物质喷雾热分解温度 (℃)热处理温度 (℃) 锂 钴 21甲酸锂甲酸钴 硝酸 400 800 22甲酸锂甲酸钴 H2O2 400 800 23甲酸锂甲酸钴 硝酸 500 800 24甲酸锂甲酸钴 H2O2 500 800 25甲酸锂甲酸钴 硝酸 800 800 26甲酸锂甲酸钴 H2O2 800 800 27甲酸锂甲酸钴 硝酸 900 800 28甲酸锂甲酸钴 H2O2 900 800 29甲酸锂甲酸钴 硝酸 800 500 30甲酸锂甲酸钴 H2O2 800 500 31甲酸锂甲酸钴 硝酸 800 600 32甲酸锂甲酸钴 H2O2 800 600 33甲酸锂甲酸钴 硝酸 800 850 34甲酸锂甲酸钴 H2O2 800 850 35甲酸锂甲酸钴 硝酸 800 950 36甲酸锂甲酸钴 H2O2 800 950 37*硝酸锂硝酸钴 无 800 800 38*甲酸锂甲酸钴 无 800 800
用扫描电子显微镜(SEM)对上述所得到的各种复合氧化物粉末照相,并由照片测得颗粒直径。通过氮吸附法得到各种复合氧化物的比面积。通过X-射线衍射(XRD)分析方法鉴定该复合氧化物。结果如表4所示。
表4样品号平均粒度(微米)比表面积(米2/克) XRD 分析相放电容量(毫安小时/克) 初始 100次循环后 21 1.7 6.9LiCoO2,Co2O3 99 73 22 1.8 6.5LiCoO2,Co2O3 97 73 23 1.8 3.8LiCoO2, 131 127 24 1.8 3.9LiCoO2, 128 124 25 2.1 3.5LiCoO2, 139 134 26 2.3 3.4LiCoO2, 137 133 27 2.4 2.7LiCoO2, 131 126 28 2.5 2.6LiCoO2, 130 126 29 1.3 29.9LiCoO2, 130 108 30 1.3 30.1LiCoO2, 129 105 31 1.7 8.8LiCoO2, 130 124 32 1.8 9.0LiCoO2, 130 123 33 2.3 2.1LiCoO2, 136 133 34 2.3 2.0LiCoO2, 135 130 35 3.1 1.2LiCoO2, 120 111 36 3.0 1.0LiCoO2, 118 110 *37 2.5 3.7LiCoO2, 140 135 *38 2.1 3.0LiCoO2 125 117
通过与实施例1相同的程序,使用所得到的各种复合氧化物作为正极活性材料来制备各种二次电池。
在充电-放电电流密度为0.5毫安培/厘米2、充电中止电压为4.3伏特和放电中止电压为3.0伏特的条件下,通过与实施例1相同的方式对所得到的各个锂二次电池进行充电-放电试验。其结果见上表4所示。
从表3和表4的结果可以清楚地看到:通过把硝酸或者过氧化氢之类在喷雾热分解中产生氧的物质加入到诸如甲酸盐(它含有构成锂-钴复合氧化物的金属元素)之类的有机酸盐溶液中,并对该溶液进行喷雾热解热处理,所得到的锂-钴复合氧化物制成的锂二次电池,其初始容量与使用硝酸盐作为原材料制得的锂二次电池相同,且具有优秀的充电-放电循环特性(通过实施例25和26以及实施例37和38之间的比较)。
在上述的实施例中,已经说明了锂-钴复合氧化物为LiCoO2的情况,但是本发明并不限于这种情况,在使用其中部分的Co被Cr,Fe,Ni,Mn,Mg,Al等取代的LiCoO2的情况下,也可以得到同样的效果。
喷雾热分解的实际温度范围最佳为约500-900℃,如果温度低于约400℃,则不能得到单相的Li-Co复合氧化物。上限被限定至低于某一个温度,在该温度所形成的Li-Co复合氧化物会受热分解。
热处理温度的实际温度范围最好是约600-900℃。在该温度范围热处理时,可以得到一种Li-Co复合氧化物,其颗粒大小以及比面积均生长至适合于锂二次电池的正极活性材料,并且可以获得其初始容量和充电-放电循环特性均十分优良的锂二次电池。
实施例3
首先制备甲酸锂,硝酸锂,甲酸镍和硝酸镍作为构成锂-镍复合氧化物的金属元素化合物,该锂-镍复合氧化物被用作锂二次电池的正极活性材料。然后精确称量1.0摩尔的甲酸锂(或硝酸锂)和1.0摩尔的甲酸镍(或硝酸镍)置于容器内。加入4,950ml水和50ml浓度为60%、比重为1.38的硝酸,或4,900ml水和100ml的H2O2,或仅仅5,000ml的水,搅拌混合物至盐溶解。在喷雾热分解中,硝酸和过氧化氢是产生氧气的物质。
然后,使混合溶液从一个喷嘴喷雾到热分解炉子中进行喷雾热分解,以得到各种复合氧化物粉末,所述的热分解炉的温度调节为400-900℃,喷雾速度为1,200毫升/小时。再把所得到的各种复合氧化物置于氧化铝烧箱内,并在500-950℃热处理2小时,得到如表5所示样品41-58的各种锂-镍复合氧化物。表5中附有*的样品是本发明范围以外的对比例的样品,其它的样品是本发明范围的样品。
表5样品号 原材料产生氧的物质喷雾热分解温度 (℃)热处理温度 (℃) 锂 镍 41甲酸锂甲酸镍 硝酸 400 750 42甲酸锂甲酸镍 H2O2 400 750 43甲酸锂甲酸镍 硝酸 500 750 44甲酸锂甲酸镍 H2O2 500 750 45甲酸锂甲酸镍 硝酸 800 750 46甲酸锂甲酸镍 H2O2 800 750 47甲酸锂甲酸镍 硝酸 900 750 48甲酸锂甲酸镍 H2O2 900 750 49甲酸锂甲酸镍 硝酸 800 500 50甲酸锂甲酸镍 H2O2 800 500 51甲酸锂甲酸镍 硝酸 800 600 52甲酸锂甲酸镍 H2O2 800 600 53甲酸锂甲酸镍 硝酸 800 850 54甲酸锂甲酸镍 H2O2 800 850 55甲酸锂甲酸镍 硝酸 800 900 56甲酸锂甲酸镍 H2O2 800 900 *57硝酸锂硝酸镍 无 800 750 *58甲酸锂甲酸镍 无 800 750
用扫描电子显微镜(SEM)对上述所得到的各种复合氧化物粉末照相,并由照片测得颗粒直径。通过氮吸附法测得到各个复合氧化物的比面积。通过X-射线衍射(XRD)分析方法鉴定该复合氧化物。结果如表6所示。
表6样品号 平均粒度 (微米)比表面积(米2/克) XRD 分析相放电容量(毫安小时/克) 初始 100次循环后 41 1.7 5.8LiNiO2,Ni2O3 108 68 42 1.6 5.9LiNiO2,Ni2O3 102 59 43 1.7 4.9LiNiO2 164 152 44 1.7 5.1LiNiO2 161 151 45 2.0 4.0LiNiO2 176 171 46 1.9 4.2LiNiO2 176 170 47 2.4 2.6LiNiO2 170 165 48 2.4 2.5LiNiO2 168 161 49 1.9 27.3LiNiO2 167 121 50 1.8 28.5LiNiO2 167 119 51 2.0 9.8LiNiO2 172 164 52 2.1 9.6LiNiO2 170 161 53 3.1 0.9LiNiO2 141 127 54 3.0 0.9LiNiO2 137 120 55 3.2 0.8LiNiO2 138 123 56 3.1 0.8LiNiO2 134 120 *57 2.2 4.1LiNiO2 177 172 *58 1.9 3.6LiNiO2 154 143
通过和实施例1相同的方式,使用所得到的各种复合氧化物作为正极活性材料来制备各个二次电池。
在充电-放电电流密度为0.5毫安培/厘米2、充电中止电压为4.3伏特和放电中止电压为3.0伏特的条件下,以实施例1相同的方式对所得到的锂二次电池进行充电-放电试验。其结果见表6所示。
从表5和表6的结果可见:通过把硝酸或者过氧化氢之类在喷雾热分解中产生氧的物质加入到诸如甲酸盐(它含有构成锂-镍复合氧化物的金属元素)之类的有机酸盐溶液中,并对该溶液进行喷雾热解热处理,所得到的锂-镍复合氧化物制成的锂二次电池,其初始容量和使用硝酸盐作为原材料制得的锂二次电池相同,且充电-放电循环特性是优秀的,(通过实施例45和46与实施例57和58之间的比较)。
在上述的实施例中,已经说明了锂-镍复合氧化物为LiNiO2的情况,但是本发明并不限于这种情况,在LiNiO2中的部分的Ni被Cr,Fe,Co,Mn,Mg,Al等取代的Li-Ni复合氧化物的情况下,也可以得到同样的效果。
喷雾热分解的实际温度范围最佳为约500-900℃,如果温度低于约400℃,则不能得到单相的Li-Ni复合氧化物。上限被限定至较低于某一个温度,在该温度下所形成的Li-Ni复合氧化物受热会分解。
热处理温度的实际温度范围最好是约600-900℃。在该温度范围热处理时,可以得到一种Li-Ni复合氧化物,其颗粒大小以及比面积均生长至适合于锂二次电池的正极活性材料,并且可以获得其初始容量和充电-放电循环特性均十分优良的锂二次电池。
虽然本发明的最佳实施例已被公开,但是实施本发明的原理的各种不同的模式也被设想为在下述权利要求范围以内。因此应该理解本发明的范围仅由权利要求所限定。