鞋类的增强材料 本发明涉及到一种增强材料,特别是,涉及鞋类后跟或脚趾处适用的为了增强和保型的增强材料。
本领域的熟练人员会知道,鞋的外观和形状保持性非常重要。然而,特别是当其经受日常使用中的内在应力和应变时,尤其对于鞋帮,因所用的材料十分松软,以致对保型没有提供必要的帮助。在这类情况下,通常在鞋跟处有一反作用件并且在鞋头处有趾盒(boxed-toe)或趾隆(toe-puff)。这些组件由可造形的材料制成,它们在这种造形操作后,回弹地保持其形状。有这类反作用件和趾隆位于各自囊中(pockets)或与鞋帮粘合,全部组件经这样组装应会基本保持所成的形状。因此,这些反作用和趾隆组件,在该鞋为出售而展示时确保了鞋的良好轮廓,并在鞋经受碾压(crushing)变形的特殊使用中保型。
如大多数消费品的制造商,鞋类制造商必须有高度的成本意识,因此要求以最低的成本换取足够的性能。从而,已用不同的方式制造了这些反作用和趾隆部件。例如,这些部件可被预制成模制塑料件,然而应当知道这些预模制件需各自的尺寸。为了避免此问题,鞋用增强材料的最普遍形式包括从材料片材上切下的组件,然后在制造过程中被模制成所需要的形状。该模制过程通常包括加热并接着冷却,所以该增强材料是可热造形的,且通常是热塑性的。
典型的,鞋类增强材料是基于用低软化点粘合剂浸渍的织物、或是可包括简单挤塑的热塑材料、或是加筋或填入填料地材料。由于热塑性材料是最贵的成分,所以加筋或填入填料的材料通常更便宜。这些加筋或填入填料的材料可通过不同的技术制造,包括粉末沉积,这里,正象从此名称知道的那样,混合不同组件的组件粉末并沉积在转移(release)纸上,这里随后加热这些组件使该热塑性材料熔化,目的是使这些成分固结在一起,从而形成所需要的鞋类增强用的片材。
浸渍不轻易使用自粘型粘合剂,并且挤塑或散布粉末不轻易混合短纤维的长度长的纤维增强材料。
本发明的目的是在自粘型、热塑性片材中混入短纤维,例如长度为20-100毫米,作为增强剂。
按照本发明,提供适于鞋类硬衬用的增强材料,该材料含与散纤维混合的、固化的热熔粘合剂熔纺纤维,粘合剂纤维与散纤维间的重量混合比为20∶80到80∶20之间,所述纤维在压力和加热下固化前已经被缠结。
根据本发明,优选材料中的粘合剂纤维具有双重功能,即它们在固化材料中可以作为粘合剂帮助将散纤维粘合在一起并对该材料的硬挺度作出实质性的贡献,而且在制鞋中使用增强材料的时候,提供热熔粘合剂将增强材料与其它的鞋组件粘合。
该纤维粘合剂可以是任何合适的粘合剂,例如聚己内酯,但优选热熔性聚酯基的粘合剂。
虽然优选的增强材料是自粘性的,即该材料在热和压力的作用下会与其它的鞋帮组件牢固地粘合在一起,但如果需要,也可涂覆热熔性或其它类型粘合剂的附加粘合剂涂层(或多层)。
用来形成熔纺纤维的粘合剂优选为聚酯基的,例如,Esterpow1112AF或Esterpow 1108AF,据信它们含有聚己二酸丁二酯,并且其由英国的Bostik Limited,Leicester LE4 6BW提供。
优选地,散纤维为合成聚合物纺织纤维,聚酯或聚丙烯(熔点约165℃)是合适的,但通常在材料意义上不受用于固化增强材料的热和压力的影响。通常,散纤维熔点至少为100℃,优选大于105℃。合适的散纤维长度为20毫米~100毫米,优选超过25毫米。
通过在材料的不同区域、对穿(through)、交叉(across)和/或沿着其长度方向掺混不同比例的熔纺纤维,该增强材料可有可变的性能。
熔纺短纤维的适合纤度为0.8~17分特,更优选为1~10分特,并且散纤维可具有相似的规格,但优选1~7分特。
此外,根据本发明所提供的适于鞋类硬衬用的增强材料的制造方法至少包括以下步骤:
(a)熔纺热熔粘合剂,以形成熔纺纤维;
(b)混合并针刺使这些熔纺纤维与散纤维缠结,以形成非织造毡布;
(c)加热该非织造毡布并挤压所述毡布以使所述粘合剂熔纺纤维完全熔融而形成其中嵌有散纤维的粘合剂基体;并且
(d)冷却所述的粘合剂与散纤维基体,以形成所需的增强材料。
其中步骤(b)下的混合阶段包括在增强材料的不同区域内铺置不同比例的熔纺纤维网。
本发明的优选材料中,在60℃左右会熔化变粘,但冷却到50℃以下就变硬的粘合剂聚合物被用于形成粘合剂纤维。这类粘合性聚合物以前已经在鞋硬衬材料中作自粘粘合剂使用。这些粘合剂聚合物可被熔纺制成短纤维。熔纺形成短纤维的技术是众所周知的,且这些纤维的分特数由所用的喷丝板决定。通常,该熔纺纤维的长度为50毫米,但其长度范围可介于20和100毫米之间。
该熔纺纤维与例如聚酯,聚丙烯或者其它合成或人造纤维制成的常规散纤维混合。这些散纤维在如此低的温度下不会熔化。用公知的非织造织物制造技术将这些熔纺短纤维和散纤维混合在一起并缠结。
加热并挤压该非织造织物以便该熔纺粘合剂聚合物短纤维完全熔融,并因此使该散纤维和熔纺纤维固结一起,以便形成粘合剂聚合物的连续薄膜,其中混合了散纤维形成的、包埋的、纤维缠结的增强结构。
因粘合剂聚合物熔融时发粘的本性,其后果是,用如向毡布上沉积粉末或向毡布上挤出薄膜等其它技术,非常难于获得这类粘合剂聚合物与散纤维的均质混合物。如上所示,人们会理解为了降低增强材料的成本,有必要将散纤维与其它填料成分混合。
用作鞋类硬衬适用的增强材料时,本发明的纤维增强、自粘性聚合物薄膜具有非常理想的性能。本领域的熟练人员会知道,所得的增强材料和以前粉末沉积烧结类的增强材料相比,既坚韧又有回弹性。而且,按照本发明制得的增强材料和以前挤出的充填的,即纤维状或粒状填料填充的,增强材料相比,通常更轻、密度更低并更经济。
适合本发明的粘合剂聚合物的例子有Esterpow 1112AF,Esterpow1108AF,其由英国的Bostik Limited,Leicester提供。这些粘合剂聚合物都是聚酯基的热熔粘结剂/粘合剂,并且以自由流动的粉末形式提供。这些举例聚合物的明显区别特征是它们相对低的熔化温度,并且当加热到高于其软化点后,能在约4-7分钟内定型变成又硬又韧的薄膜。它们都是基于线性饱和聚酯,即聚己二酸丁二酯,并且一般以粒度分布尺寸为100-800微米提供。然而将会知道,将此粘合剂聚合物加热直到熔融,然后纺丝以便形成本发明所需短纤维。这些纤维的长度通常为50毫米。
这些纤维,无论是熔纺纤维还是散纤维,纤度可为0.8~17分特,但优选为1~7分特。通常,散纤维越粗,增强材料达到增强效果越好。
短纤型粘合剂聚合物纤维和散纤维混合和缠结的最方便技术是通过梳理或针刺缠结。在该缠结步骤中,将先已梳理并铺置的纤维层(batt)或网置于往复运行的针板上,再使倒刺针穿刺该纤维层(batt)或网。因此,通过倒刺针的针刺,纤维变得相互缠住(intermeshed)和缠结,使非织造毡布固结。本领域的熟练人员会知道,为了达到适当的缠结,纤维必须为合适的长度。纤维太短或太长就不能有效梳理,但如果纤维可以梳理,为了得到最强的材料,优选长纤维。
按照本发明,散纤维可以是在加热达到上述聚合物粘合剂纤维熔融所需的相对低温的过程中,不会熔化或实质性改变其性能的任何纤维类型纤维。因此,可以使用聚酯和聚丙烯纺织纤维。这些纤维与熔纺短粘合剂聚合物纤维相比较粗。散纤维的本质特征是在粘合剂聚合物薄膜中提供增强作用。在此情况下,粗散纤维会产生更大的空隙并增大增强效果,虽然细散纤维的空隙可能小,但增强效果也降低。
本领域的熟练人员可以知道,与非织造织物和毡布制造有关的混合和梳理工艺,会导致在经加热/压延固结形成的整个增强材料中的良好纤维分散和如此特别的分散平衡。典型的,该非织造织物通过交错铺置(cross-laying)或重叠梳理纤维的几层网以形成纤维层(batt)而制造。一般该交错铺置为连续过程,但是包括熔喷纤维的“嵌入”网可被导入整个散纤维的纤维层(batt),或可得到,整个散纤维网嵌入混合的短纤维熔纺纤维/散纤维纤维层(batt)中。因此,通过这种网嵌入可以向增强网中导入所选择的性能。在交叉(侧面)和/或沿着(纵向)制造增强材料的方向上,该嵌入可以是栈式的或非连续的。对穿(through)、交叉(across)和/或沿着增强材料,熔纺纤维量的此选择性改变可以向增强材料引入方向性或者降低材料中贵纤维的比例而保持适当的性能。
以下描述制造体现本发明的增强材料的一种方法,以便用实施例的形式举例说明本发明。用到的纤维处理技术是本领域熟练人员公知的。
在进行该举例方法中,熔纺粘合剂网与散纤维网如下进行均质混合:
(1)所选择的散纤维通过一次梳理机来开松。
(2)然后该预开松的散纤维第二次通过梳理机形成均匀的散纤维网,然后收集在道夫后的棉卷罗拉上。
(3)当散纤维网卷到棉卷罗拉上的同时,将聚己二酸丁二酯(PTMA)的熔喷纤维网也喂到该棉卷罗拉上,从而形成散纤维网和熔喷纤维网的交替叠层。
(4)然后该熔喷纤维网和散纤维网叠层用40行距(gauge)的针进行针刺,首先是
粗缝针刺(tacked)以45 NPD 12 PEN↓
针刺(needled) 100 NPD 12 PEN↓
(NPD是每平方厘米的针孔数。
12 PEN意为针刺机上针刺穿透底板12毫米)
每网中8叠层的每层用每次置于散纤维下面的熔纺纤维网累积而成,结果针刺能有效的将顶层的散纤维针刺入该材料的结构中并且穿出底表面而在该材料的各表面留下散纤维表层。
(5)该针刺材料然后放在板压机上使各表面加热到140℃进行加热熔融,并在为5psi左右的面压力挤压10秒钟。该处理将熔纺纤维网熔化并挤压整个结构形成平坦片材,当冷却时其形成密度介于0.7和1.0g/cc之间的刚性塑料片材。
制造条件和性能列于表1中的两个举例的增强材料是用上述的方法制造的,每个例子用聚酯纺织纤维作为散纤维并用轻质量的聚己二酸丁二酯熔纺纤维网作为粘合剂,其可按数个等级从英国Leicester,Ulverscroft路的Bostik Limited公司以Estergran的商品名得到。在这两个例子中,所用Estergran网的等级可等同于PE 65-50,并且软化点为55℃左右。
在实施例Ⅰ中,该散纤维网是Hoechest T 290聚酯纤维,其为1.7分特×38毫米的常规短纤维,密度为25gsm(每平方米的克数)。在实施例Ⅱ中,该散纤维网为Hoechest T 290聚酯纤维,其为6.7分特×60毫米的常规短纤维,密度为35gsm。
在表1中的‘NPD’的意思同上。DLC意为固定载荷渍陷(‘dead loadcollapse’)-这是鞋类趾隆和反作用件(counters)增强材料的可塑性和硬挺度的典型测试方法。‘Frank硬挺度’是指公知的柔性模量测试方法“Karl Frank硬挺度测试”。AL是指沿着材料长度方向进行的测量,AX是指材料横断面方向(transverse)进行的测量。
另一方法是如同商品热塑性纤维那样,将粘合剂聚合物熔纺而制出短纤维。然后可将这两种(或更多种)类型的短纤维混合,并用标准的梳理技术形成网。和铺置分层的网相比,这样获得纤维的更均质混合。当用到其余的所述方法时,需要加热和挤压过程以便将该材料固结成用于硬衬的片材。
表1实施例Ⅰ实施例Ⅱ纤维1.7分特6.7分特熔纺纤维网重量散纤维网重量每网的叠层数N°NPD挤压条件总重量总针距(Total gauge)密度g/cc50gsm25gsm8145140℃,5psi/10秒600gsm0.60毫米1.0050gsm35gsm8145140℃,5psi/10秒618gsm0.80毫米0.773对Aquiline的粘合14.518.2DLC 1st(1bs)10th回弹性%2.982.83953.983.2481Frank硬挺度AL AX645515090弯曲模量 AX(Mpa) AL52810721072760拉伸强度 AL(Mpa) AX24.417.924.614.0%伸长 AL AX24.833.029.540.7对熔纺纤维重量的混合比67/33 59/415%拉伸下的模量(MPa)AL AX278250277194面积Shp 1面积Shp 291909493
‘Aquiline’是从申请人公司获得的有所有权的鞋衬里材料。
由实施例Ⅰ和Ⅱ得到的材料显示了优良的模制性和保形性,非常高的粘合强度和回弹性。弯曲模量是令人满意的,仅不如公知的上述类型的挤出云母填充材料高,但是密度更低。
因为较低的重量和针距(gauge),实际的硬挺度不是很高,仅适合做轻便鞋。男士鞋中为了有理想的性能需要更厚的材料。
该举例材料可用于提供自粘合反作用件材料,该材料在制鞋过程中的典型背部(backpart)模制温度下会软化和变粘(以粘合其它鞋邦组件),但尽管如此,仍维持一定水平的强度和最小熔摊(squabbing)(squabbing是片状材料当受压和/或受热时,该材料面积扩散和增加的倾向)。为了给某些鞋类提供充足反作用的硬衬材料,故该举例增强材料在处于环境温度下有足够的硬挺度和强度。
虽然该举例材料是通过在板压机中压制形成,但根据本发明的类似材料可用热轧光机辊辊压得到。此外,熔纺和散纤维的叠层可在针刺前,通过用交叠(cross-lapping)技术组装,以供常规连续生产。
另一种制备本发明实施材料的方法是,可将熔纺网,如其制造时那样,直接浇铸在梳理好(或者其它重量轻)的散纤维网上,以致在使用交叠或其它纤维层(batt)成形技术之前,它粘合(轻轻地)在其上。然后该组装件,也就是轻重量散纤维网承载着熔纺纤维网,通过交叠(或其它合适的技术)制造成散纤维和熔纺纤维网交替叠层组成的纤维层(batt),并且如此形成的纤维层(batt)经针刺及加热以及挤压而被固结,并形成本发明实施的另外的增强材料。