磷光OLED和用于磷光OLED的空穴传输材料
技术领域
本发明涉及磷光有机发光器件,并且涉及可以在这种器件中,尤其是在其空穴传输和/或电子阻挡层中使用的化合物。
背景技术
在OLED中,使用某些有机材料的电致发光(EL)特性。在EL器件中,施加电压产生合适的载流子,该载流子如果复合则形成激发态,该激发态通过发射光返回到基态。为了改进效率,有机发光二极管除了发光层外还经常具有电荷传输层,所述电荷传输层用于将负载流子和正载流子传输到所述发光层中。根据传输的载流子将这些电荷传输层分为空穴导体和电子导体。非常相似的层组对于光伏器件诸如有机太阳能电池是已知的。通过例如在真空下蒸发或从溶液中沉积的已知方法能够制造具有若干层的有机半导体器件。
换而言之,在有机发光二极管的情况下,通过如下方式产生和发射光:作为外部施加的电压的结果,载流子从触点注入到相邻的有机层中,电子从一侧注入,空穴从另一侧注入;随后在有源区中形成激子(电子-空穴对);以及这些激子的辐射复合。
在图1中示意性示出最常见的OLED结构,其具有与基底相邻的正电极(阳极),其中数字1~9代表以下层:
1.基底
2.基电极,空穴注入(正极),通常透明
3.空穴注入层
4.空穴传输层(HTL)
5.发光层(EL)
6.电子传输层(ETL)
7.电子注入层
8.覆盖电极(通常为具有低逸出功的金属,电子注入(负极))
9.封装,排除环境影响
尽管上述代表最典型的情况,但常常可以省去若干层,或者一个层可以组合若干性能。
有机半导体材料的重要性质为其导电性。薄层样品的导电性能够通过例如所谓的两点法进行测量。在此,将电压施加到所述薄层上并且对流经该层的电流进行测量。通过考虑触点的几何结构和样品层的厚度得出测量的电阻,相应的导电性。
在OLED中,工作电压(或更确切地,整体电阻)不仅由特定层的电阻和厚度给定,而且由载流子从特定层注入相邻层中的能量屏障而给定。器件的功率效率(电功率到在给定波长下或在给定颜色范围内的光通量的转化)取决于由整体电阻给定的焦耳损失以及取决于载流子到光子的转换效率,该转换效率取决于载流子(电子-空穴)平衡以及取决于在器件中形成的电子-空穴对(激子)的辐射复合的量子效率。
存在不懈的努力来开发使焦耳损失最小化、确保载流子平衡和使量子效率最大化的材料和OLED设计。在使焦耳损失最小化中,显著的改进产生了特别电荷注入层的设计和电掺杂的电荷传输层的引入。特定的电荷注入和阻挡层也能够改进载流子平衡。量子效率的最重要的改进产生了磷光发光体的引入,这使得不仅允许利用单线态激子而且还利用三线态激子,在正常情况下,所述三线态激子在激子群中占统计学优势。
在现有技术中,用于制备空穴传输层和/或电子/激子阻挡层的许多 材料是已知的。
然而,尽管由于先前的材料和设计开发而在OLED性能方面实现了令人瞩目的结果,但OLED效率仍然显著低于其理论极限且许多其它OLED性能参数如发光度和寿命还能够进一步改进。
发明内容
因此本发明的目的为提供改进的磷光OLED,其具有比使用现有技术的空穴传输和电子阻挡基质的器件更低的工作电压和/或更高的效率。本发明的另一个目的为提供新化合物,其能够用作克服现有技术的缺点的空穴传输层和/或电子/激子阻挡层用基质材料,和尤其能够用在磷光OLED中。
这个目的通过如下OLED实现,其包含在阳极和阴极之间至少一个发光层和至少一个空穴传输层,所述发光层包含磷光发光体,所述空穴传输层包含由通式(I)表示的化合物
其中,R1~R20能够独立地选自氢、C1~C20烷基或C3~C20环烷基、C1~C20烷氧基或C3~C20环烷氧基、C7~C20芳基烷基、C6~C20芳基和C2~C20杂芳基。
i)R1~R5中的至少一个和R11~R15中的至少一个为C6~C20芳基或C2~C20杂芳基,或者
ii)R1与R2以及R11与R12形成芳香环,或者
iii)R2与R3以及R12与R13形成芳香环;
R6~R10中的至少两个和R16~R20中的至少两个为甲基,或R6~R10中的至少一个和R16~R20中的至少一个选自C2~C20烷基、C3~C20环烷基、C1~C20烷氧基、C3~C20环烷氧基、C7~C20芳基烷基、C6~C20芳基和C2~C20杂芳基,
且
x为选自0和1的整数,其中对于x=0,R22具有与R1~R20相同的含义,而对于x=1,R21和R22独立地选自氢、C1~C10烷基、C3~C10环烷基、C1~C10烷氧基和C3~C10环烷氧基。所述烷基或烷氧基取代基可以为饱和的或不饱和的、直链的或支链的。所述环烷基或环烷氧基取代基可以为饱和的或不饱和的、单环的或多环的。取代基中的全部碳原子数包括在所述取代基内的可能的烷基取代、支化和/或存在的环状结构。有利的是所述杂芳基取代基通过碳环或通过含有多达三个杂原子的五元杂环进行连接,所述杂原子独立地选自O、N和S。优选地,化合物(I)中的全部碳原子数不超过150个。更优选地,选自R1~R5、R6~R10、R11~R15、R16~R20中的任一组取代基中的全部碳原子数不超过20个,所述任一组取代基指的是连接至在结构(I)中连接至氮原子的苯环中的一个的全部取代基。最优选地,选自R1~R5、R6~R10、R11~R15、R16~R20中的任一组取代基中的全部碳原子数不超过12个。
在优选的实施方式中,R1~R5中的至少一个和R11~R15中的至少一个为C6~C20芳基或C2~C20杂芳基,而其它的R1~R5和R11~R15为氢。在更优选的实施方式中,R1~R5中的至少一个和R11~R15中的至少一个为苯基,而其它的R1~R5和R11~R15为氢。在另一个优选的实施方式中,R6~R10中的至少两个和R16~R20中的至少两个为甲基,或R6~R10中的至少一个和R16~R20中的至少一个选自C2~C20烷基、C3~C20环烷基、C1~C20烷氧基、C3~C20环烷氧基、C7~C20芳基烷基、C6~C20芳基和C2~C20杂芳基。在更优选的实施方式中,R6~R10中的至少两个和R16~R20中的至少两个为甲基,或R6~R10中的至少一个和R16~R20中的至少一个选自C2~C20烷基、C3~C20环 烷基、C1~C20烷氧基、C3~C20环烷氧基、C7~C20芳基烷基、C6~C20芳基和C2~C20杂芳基,而其它的R6~R10和R16~R20为氢。在更加优选的实施方式中,R3和R13为苯基且在带有R3和R13的苯环上的其它取代基为氢原子。在另一个优选的实施方式中,R1~R5与R11~R15相同且R6~R10与R16~R20相同。在又一个优选的实施方式中,R6~R10中的至少两个和R16~R20中的至少两个为甲基,或R6~R10中的至少一个和R16~R20中的至少一个选自C2~C12烷基、C3~C12环烷基。更优选地,R8和R18为叔丁基,或R7、R9、R17和R19为甲基。对于x=1,R21和R22优选独立地选自甲基或甲氧基。更优选地,R21和R22相同。上述优选的实施方式的全部可能组合也是优选的。
更优选的为包含由通式(II)或(III)表示的通用结构(I)的实施方式的器件
其中Ar和Ar1选自4-叔丁基苯基、3,5-二甲基苯基和2,4,6-三甲基苯基,R23具有与以上定义的R22相同的含义且R24为氢、C1~C10烷基、C3~C10环烷基、C1~C10烷氧基和C3~C10环烷氧基。
优选地,R23选自C2~C20烷基、C3~C20环烷基、C1~C20烷氧基、C3~C20环烷氧基、C7~C20芳基烷基、C6~C20芳基和C2~C20杂芳基。更优选地,R23选自甲基、苯基、3,5-二甲基苯基和1,1’-联苯-4-基。优选地,R24为C1~C4烷基或C1~C4烷氧基。更优选地,R24选自甲基和甲氧基。
通过如下限定的上述定义的通式(I)的新化合物实现另一个目的,其中
i)R1~R5中的至少一个和R11~R15中的至少一个为C6~C20芳基或C2~C20杂芳基,或者
ii)R1与R2以及R11与R12形成芳香环,或者
iii)R2与R3以及R12与R13形成芳香环;
R6~R10中的至少两个和R16~R20中的至少两个为甲基,或R6~R10中的至少一个和R16~R20中的至少一个选自C2~C20烷基、C3~C20环烷基、C1~C20烷氧基、C3~C20环烷氧基、C7~C20芳基烷基、C6~C20芳基和C2~C20杂芳基,
且
x为选自0和1的整数,其中对于x=0,R22具有与R1~R20相同的含义,而对于x=1,R21和R22独立地选自氢、C1~C10烷基、C3~C10环烷基、C1~C10烷氧基和C3~C10环烷氧基。
所述烷基或烷氧基取代基可以为饱和的或不饱和的、直链的或支链的。所述环烷基或环烷氧基取代基可以为饱和的或不饱和的、单环的或多环的。取代基中的全部碳原子数包括在取代基内的可能的烷基取代、支化和/或存在的环状结构。有利的是所述杂芳基取代基通过碳环或通过含有多达三个杂原子的五元杂环进行连接,所述杂原子独立地选自O、N和S。优选地,化合物(I)中的全部碳原子数不超过150个。更优选地,选自R1~R5、R6~R10、R11~R15、R16~R20中的任一组取代基中的全部碳原子数不超过20个,所述任一组取代基指的是连接至在结构(I)中连接至氮原子的苯环中的一个的全部取代基。最优选地,选自R1~R5、R6~R10、R11~R15、R16~R20中的任一组取代基中的全部碳原子数不超过12个。
更优选地,通过如下限定的通式(I)的新化合物实现这个目的,其中
i)R1~R5中的至少一个和R11~R15中的至少一个为C6~C20芳基 或C2~C20杂芳基,或者
ii)R1与R2以及R11与R12形成芳香环,或者
iii)R2与R3以及R12与R13形成芳香环;
且
R6~R10中的至少两个和R16~R20中的至少两个为甲基,或R6~R10中的至少一个和R16~R20中的至少一个选自C2~C20烷基、C3~C20环烷基、C1~C20烷氧基、C3~C20环烷氧基、C7~C20芳基烷基、C6~C20芳基和C2~C20杂芳基,而其它的R6~R10和R16~R20为氢。
更加优选地,通过如下限定的通式(I)的新化合物实现这个目的,其中
R1~R5中的至少一个和R11~R15中的至少一个为C6~C20芳基或C2~C20杂芳基;
R6~R10中的至少两个和R16~R20中的至少两个为甲基,或
R6~R10中的至少一个和R16~R20中的至少一个选自C2~C20烷基、C3~C20环烷基、C1~C20烷氧基、C3~C20环烷氧基、C7~C20芳基烷基、C6~C20芳基和C2~C20杂芳基,
而其它的R1~R5、R6~R10、R11~R15和R16~R20为氢。
还更优选地,通过如下限定的通式(I)的新化合物实现这个目的,其中
R1~R5中的至少一个和R11~R15中的至少一个为苯基;
R6~R10中的至少两个和R16~R20中的至少两个为甲基,或
R6~R10中的至少一个和R16~R20中的至少一个选自C2~C20烷基、C3~C20环烷基、C1~C20烷氧基、C3~C20环烷氧基、C7~C20芳基烷基、C6~C20芳基和C2~C20杂芳基,
而其它的R1~R5、R6~R10、R11~R15和R16~R20为氢。
还更优选地,通过如上定义的通式(II)或(III)的新化合物,最 优选地以它们上面优选的实施方式实现这个目的。
优选对含有式(I)的化合物的至少一层进行电掺杂。
更优选地,含有式(I)的化合物的层具有至少一个掺杂部分和至少一个比所述掺杂部分更少掺杂的或未掺杂的部分。在本实施方式中,所述层的掺杂更少的或未掺杂的部分充当电子阻挡层。
在还优选的一个实施方式中,所述层的未掺杂部分充当电子阻挡层和三线态激子阻挡层。
发明详述
在努力发现实现更好OLED的新方法的研究中,本发明的发明人惊奇地发现,当在包含磷光发光体的OLED中使用时,长久已知的某些空穴传输材料如
表现的出乎意料的好,而它们在常规荧光OLED中的性能仅为中等且无法实现由已经确定的空穴传输基质材料提供的水平,所述已经确定的空穴传输基质材料如
进一步的研究帮助澄清与测试化合物的结构的关系,并且确认改进是相当普遍的。表1显示通过以下实施例中详细说明的过程获得的实验结果。在测试的实验OLED中,用p掺杂剂对空穴传输层进行掺杂,所述p掺杂剂在基底/HTL/EBL列中用p符号表示。在所述表中,对于显示比参照低的电压的化合物,在电压列中被赋予负值。相反地,所述电压列中的正值显示在包含本发明的化合物的器件组中观察到的与在相同条件下制备的参照器件组上测量的平均电压相比不利的、更高的平均电压。在效率列中,比对比器件的平均效率高的包含发明化合物的器件的平均效率为正,而与参照相比,不利的较低效率具有负号。所述表中的最后一列显示效率列中的值与电压列中的值之间的算术差。将得到的值用作评价整体性能的基准。其来自三行中的至少一行中的正值显示,在将化合物用作EBL、用作HTL或用在这两个层中的至少一种应用中,显示在这种特别的情况下,电压改进百分率超过了效率降低百分率,或者相反地,效率改进百分率超过了不期望的电压增加,或者在两种性质上都存在提高。在荧光蓝色OLED中,全部测试的化合物一致地根本不存在特别(在效率或电压值的至少一个中)的改进。因此,全部整体性能值均是极其负的。令人惊奇的是,在磷光OLED中,明确失败的(在所有应用中均提供负的整体性能)测试的取代基结构特征的唯一组合为如下R23取代基,其被限定为带有至少一个强吸电子基团的苯基。将获得的知识用于提供新的空穴传输和电子阻挡基质材料,其特别用于包含三线态发光体的OLED中。
表1
此外,已经发现,当在蓝色荧光OLED中被用作空穴传输和/或电子阻挡基质时,本发明的化合物也是有利的。
发光层、电子传输层、空穴阻挡层、电极
除本发明的空穴传输和/或电子阻挡层外的本发明磷光发光器件的其它部件能够以科学和专利文献中说明的各种设计进行制备并且由科学和专利文献中说明的各种材料进行制备。
在实施例中,使用了以下支持材料:
作为p型掺杂剂,
E2作为电子传输基质,作为n掺杂剂,
作为三线态发光体,
作为已知的电子阻挡基质。
附图说明
图1:实验的底部发光磷光OLED示意图。
图2:a)沉积的层1的俯视图(p掺杂的本发明材料(条纹),p掺杂的参照(点),左;b)在基底旋转90°后层2的俯视图,其中本发明的材料在顶列中(A、C区域)且参照材料在底列中(B、D区域)。
图3a~3g:在500.13MHz下,在CD2Cl2溶液中参照5.31ppm测定的具有式(II)的实施例化合物的1H-NMR波谱;3a-MDAB-1,3b-MDAB-2,3c-MDAB-3,3d-MDAB-4,3e-MDAB-5,3f-MDAB-6,3g-MDAB-7。
图4a~4o:在相同条件下测定的具有式(III)的实施例化合物的1H-NMR波谱;4a-MPD-1,4b-MPD-2,4c-MPD-3,4d-MPD-4,4e-MPD-5,4f-MPD-6,4g-MPD-7,4h-MPD-8,4i-MPD-9,4j-MPD-10,4k-MPD-11,4l-MPD-12,4m-MPD-13,4n-MPD-14,4o-MPD-15。
具体实施方式
实施例
3,5-二溴苯撑类的一般过程
将1,3,5-三溴苯、硼酸和Pd(PPh3)4溶解在甲苯与乙醇的混合物中。添加脱气的2M Na2CO3水溶液。将混合物回流18小时。在冷却到室温后将有机相从水相中分离。用甲苯对水相萃取三次。将合并的有机相蒸发至干且使用二氯甲烷(DCM)作为洗脱剂在硅胶垫上对残余物进行过滤。在对溶剂进行蒸发后,通过柱色谱法,使用己烷:DCM混合物作为洗脱剂在硅胶上对粗产物进行纯化。在薄层色谱法(TLC)中,上面的主要点被鉴定为期望的产物,且下面的点被鉴定为3,5-二取代的溴苯副产物。
3,5-二溴-1,1'-联苯
1,3,5-三溴苯:10.20g(1.2当量,32.4mmol)
苯基硼酸:3.30g(1.0当量,27.1mmol)
Pd(PPh3)4:625mg(2mol%,0.54mmol)
甲苯:160mL
乙醇:54mL
2M Na2CO3:27mL
产量:5.53g(65%)
GC-MS:m/z=310/312/314
3,5-二溴-3',5'-二甲基-1,1'-联苯
1,3,5-三溴苯:13.00g(1.2当量,41.3mmol)
3,5-二甲基苯基硼酸:5.16g(1.0当量,34.4mmol)
Pd(PPh3)4:795mg(2mol%,0.69mmol)
甲苯:160mL
乙醇:68mL
2M Na2CO3:34mL
产量:7.13g(61%)
GC-MS:m/z=338/340/342
3,5-二溴-1,1':4',1”-三联苯
1,3,5-三溴苯:10.00g(1.2当量,31.77mmol)
4-联苯基硼酸:5.24g(1.0当量,26.47mmol)
Pd(PPh3)4:612mg(2mol%,0.53mmol)
甲苯:160mL
乙醇:52mL
2M Na2CO3:26mL
产量:4.95g(48%)
GC-MS:m/z=386/388/390
3,5-二溴-3'-(三氟甲基)-1,1'-联苯
1,3,5-三溴苯:10.00g(1.2当量,31.77mmol)
3-(三氟甲基)苯基硼酸:5.03g(1.0当量,26.47mmol)
Pd(PPh3)4:611mg(2mol%,0.53mmol)
甲苯:160mL
乙醇:52mL
2M Na2CO3:26mL
产量:5.57g(56%)
GC-MS:m/z=378/380/382
3-(3,5-二溴苯基)吡啶
1,3,5-三溴苯:10.00g(1.2当量,31.77mmol)
3-(4,4,5,5-四甲基-1,3,2-二氧杂戊硼烷-2-基)吡啶:5.43g(1.0当量,26.47mmol)
Pd(PPh3)4:612mg(2mol%,0.53mmol)
甲苯:160mL
乙醇:52mL
2M Na2CO3:26mL
产量:4.00g(48%)
GC-MS:m/z=311/313/315
基于联苯的核的一般过程
将二溴化合物溶解在醚中且通过铝箔对烧瓶进行遮光。将溶液冷却至-80℃且在30分钟内添加丁基锂。在添加丁基锂后,将溶液保持在-80℃下90分钟。在强烈搅拌下,一次性地添加氯化铜(II)。使溶液升温至室温且搅拌过夜。TLC表明了起始物质的消耗和在混合物中作为唯一成分的新产物的形成。将混合物用10%的NH4OH水溶液洗涤三次、用盐水洗涤一次且用水洗涤一次。有机相用MgSO4进行干燥且用1:1的DCM/烷经硅胶垫进行过滤。在对溶剂进行蒸发后,将粗产物在沸腾的甲醇中洗涤15分钟且然后过滤并干燥。
3,3'-二溴-1,1'-联苯
3,5-二溴苯:58.98g(1.0当量,250mmol)
正丁基锂,在己烷中为2.5M:100mL(1.0当量,250mmol)
氯化铜(II):36.97g(1.1当量,275mmol)
乙醚:800mL
产量:22.06g(56%)
GC-MS:m/z=310/312/314
3,3'-二溴-5,5'-二甲基-1,1'-联苯
3,5-二溴甲苯:62.48g(1.0当量,250mmol)
正丁基锂,在正己烷中为2.5M:100mL(1.0当量,250mmol)
氯化铜(II):36.97g(1.1当量,275mmol)
乙醚:800mL
产量:22.1g(52%)
GC-MS:m/z=338/340/342
3,3'-二溴-5,5'-二甲氧基-1,1'-联苯
3,5-二溴苯甲醚:16.40g(1.0当量,61.7mmol)
正丁基锂,在正己烷中为2.5M:27mL(1.0当量,67.8mmol)
氯化铜(II):9.12g(1.1当量,67.8mmol)
乙醚:200mL
产量:9.7g(85%)
GC-MS:m/z=370/372/374
仲胺类的一般过程
在惰性气氛下将溴代芳基成分、乙酸钯(II)、碳酸铯和2,2'-双(二苯基膦基)-1,1'-联萘(BINAP)在烧瓶中进行合并且溶解在1,4-二氧六环中。添加一级芳香胺成分,随后将混合物加热至回流且搅拌18~48小时。根据TLC,反应完成。将反应物冷却至室温且经硅胶垫过滤。在用DCM进行洗涤且对溶剂进行蒸发后,通过柱色谱法(SiO2,己烷:DCM混合物)将粗产物进行纯化。将合并的部分蒸发至干且将所得固体从己烷中重结晶从而得出期望的产物。
N-(对甲苯基)萘-2-胺
2-溴代萘:15g(1.0当量,72.44mmol)
对甲苯胺:11.6g(1.5当量,108.6mmol)
乙酸钯(II):488mg(3.0mol.%,2.17mmol)
BINAP:2.0g(4.5mol.%,3.26mmol)
碳酸铯:47.20g(2.0当量,144.9mmol)
二氧六环:150mL
产量:11.4g(67%)
GC-MS:m/z=233
N-(4-(甲基)苯基)-[1,1'-联苯]-4-胺
4-溴联苯:20.0g(1.0当量,85.8mmol)
4-甲苯胺:9.65g(1.05当量,90.1mmol)
乙酸钯(II):578mg(3.0mol%,2.6mmol)
BINAP:2.40g(4.5mol%,3.9mmol)
碳酸铯:39.14g(1.4当量,120.1mmol)
二氧六环:200mL
产量:19.20g(86%)
EI-MS:m/z=259
N-(4-(叔丁基)苯基)-[1,1'-联苯]-4-胺
4-溴联苯:20g(1.0当量,85.8mmol)
4-(叔丁基)苯胺:15.36g(1.2当量,102.9mmol)
乙酸钯(II):578mg(3.0mol.%,2.57mmol)
BINAP:2.4g(4.5mol.%,3.86mmol)
碳酸铯:55.90g(2.0当量,171.6mmol)
二氧六环:220mL
产量:13.9g(54%)
GC-MS:m/z=301
N-(3,5-二甲基苯基)-[1,1'-联苯]-4-胺
4-溴联苯:30.00g(1.0当量,128.70mmol)
3,5-二甲基苯胺:16.38g(1.05当量,135.10mmol)
乙酸钯(II):867mg(3.0mol.%,3.86mmol)
BINAP:3.60g(4.5mol.%,5.79mmol)
碳酸铯:58.70g(1.4当量,180.00mmol)
二氧六环:300mL
产量:21.34g(60%)
GC-MS:m/z=273
N-基-[1,1'-联苯]-4-胺
4-溴联苯:20.00g(1.0当量,85.8mmol)
基胺:12.18g(1.05当量,90.1mmol)
乙酸钯(II):578mg(3.0mol.%,2.57mmol)
BINAP:2.40g(4.5mol.%,3.86mmol)
碳酸铯:39.13g(1.4当量,120.1mmol)
二氧六环:200mL
产量:12.53g(51%)
GC-MS:m/z=287
3,5-二胺基苯撑类的叔胺的一般过程
在惰性气氛下,将仲胺、二溴化合物、双(二苄叉丙酮)钯、三叔丁基膦和叔丁醇钾在烧瓶中合并并且溶解在甲苯中。将混合物在80℃下搅拌80分钟,然后冷却至室温。TLC表明了起始物质的完全消耗。将混合物经硅胶垫过滤、用1:2的DCM/己烷的混合物洗涤且蒸发至干。在沸腾的甲醇中对粗产物进行搅拌。在冷却至室温后,将混合物过滤从 而得出产物。在TLC表明仍有一些杂质的情况下,使用柱色谱法。最后,在高度真空条件下(10-6巴)通过梯度升华对全部叔胺进行纯化。
N1,N3-二([1,1'-联苯]-4-基)-N1,N3-双(4-(叔丁基)苯基)-5-甲基苯-1,3-二胺(MPD-1)
3,5-二溴甲苯:2.8g(1.0当量,11.2mmol)
N-(4-(叔丁基)苯基)-[1,1'-联苯]-4-胺:7.1g(2.1当量,23.6mmol)
双(二苄叉丙酮)钯:129mg(2mol.%,0.22mmol)
三叔丁基膦:68mg(3mol.%,0.34mmol)
叔丁醇钾:3.77g(3.0当量,33.6mmol)
甲苯:220mL
产量:7.03g(91%)
HPLC-MS:m/z=691[M+H+]
5-甲基-N1,N3-二(萘-2-基)-N1,N3-二对甲苯基苯-1,3-二胺(MPD-2)(比较例)
3,5-二溴甲苯:2.0g(1.0当量,8.0mmol)
N-(对甲苯基)萘-2-胺:3.92g(2.1当量,16.8mmol)
双(二苄叉丙酮)钯:92mg(2.0mol.%,0.16mmol)
三叔丁基膦:49mg(3mol.%,0.24mmol)
叔丁醇钾:2.69g(3.0当量,24mmol)
甲苯:130mL
产量:3.95g(70%)
HPLC-MS:m/z=555[M+H+]
5-甲基-N1,N3-二(萘-1-基)-N1,N3-二苯基苯-1,3-二胺(MPD-3)(比较例)
3,5-二溴甲苯:5.0g(1.0当量,20.0mmol)
N-苯基萘-1-胺:9.21g(2.1当量,42.0mmol)
双(二苄叉丙酮)钯:230mg(2mol%,0.40mmol)
三叔丁基膦:121mg(3mol.%,0.60mmol)
叔丁醇钾:6.73g(3.0当量,60.0mmol)
甲苯:150mL
产量:9.31g(88%)
HPLC-MS:m/z=527[M+H+]
N1,N3-二([1,1'-联苯]-4-基)-N1,N3-双(4-(叔丁基)苯基)-5-甲氧基苯-1,3-二胺(MPD-4)
3,5-二溴苯甲醚:2.00g(1.0当量,7.50mmol)
N-(4-(叔丁基)苯基)-[1,1'-联苯]-4-胺:4.76g(2.1当量,15.8mmol)
双(二苄叉丙酮)钯:86mg(2.0mol%,0.15mmol)
三叔丁基膦:46mg(3mol.%,0.23mmol)
叔丁醇钾:2.52g(3.0当量,22.5mmol)
甲苯:130mL
产量:5.08g(96%)
HPLC-MS:m/z=707[M+H+]
N3,N5-二([1,1'-联苯]-4-基)-N3,N5-双(3,5-二甲基苯基)-[1,1'-联苯]-3,5-二胺(MPD-5)
3,5-二溴-1,1'-联苯:1.9g(1.0当量,6.1mmol)
N-(3,5-二甲基苯基)-[1,1'-联苯]-4-胺:3.5g(2.1当量,12.8mmol)
双(二苄叉丙酮)钯:70mg(2mol.%,0.12mmol)
三叔丁基膦:37mg(3mol.%,0.18mmol)
叔丁醇钾:2.05g(3.0当量,18.3mmol)
甲苯:150mL
产量:2.94g(69%)
HPLC-MS:m/z=719[M+Na+]
N3,N5-二([1,1'-联苯]-4-基)-N3,N5-双(4-(叔丁基)苯基)-[1,1'-联苯]-3,5-二胺(MPD-6)
3,5-二溴-1,1'-联苯:1.80g(1.0当量,5.8mmol)
N-(4-(叔丁基)苯基)-[1,1'-联苯]-4-胺:3.65g(2.1当量,12.1mmol)
双(二苄叉丙酮)钯:66mg(2mol%,0.12mmol)
三叔丁基膦:35mg(3mol%,0.17mmol)
叔丁醇钾:1.94g(3.0当量,17.3mmol)
甲苯:150mL
产量:4.17g(96%)
HPLC-MS:m/z=775[M+Na+]
N1,N3-二([1,1'-联苯]-4-基)-N1,N3-双(3,5-二甲基苯基)-5-甲基苯-1,3-二胺(MPD-7)
3,5-二溴甲苯:1.52g(1.0当量,6.1mmol)
N-(3,5-二甲基苯基)-[1,1'-联苯]-4-胺:3.50g(2.1当量,12.8mmol)
双(二苄叉丙酮)钯:70mg(2mol%,0.12mmol)
三叔丁基膦:37mg(3mol%,0.18mmol)
叔丁醇钾:2.05g(3.0当量,18.3mmol)
甲苯:150mL
产量:3.42g(78%)
HPLC-MS:m/z=657[M+Na+]
N3,N5-二([1,1'-联苯]-4-基)-N3,N5-双(3,5-二甲基苯基)-3',5'-二甲基 -[1,1'-联苯]-3,5-二胺(MPD-8)
3,5-二溴-3',5'-二甲基-1,1'-联苯:2.00g(1.0当量,5.88mmol)
N N-(3,5-二甲基苯基)-[1,1'-联苯]-4-胺:3.38g(2.1当量,12.4mmol)
双(二苄叉丙酮)钯:68mg(2mol%,0.12mmol)
三叔丁基膦:36mg(3mol%,0.18mmol)
叔丁醇钾:1.98g(3.0当量,17.6mmol)
甲苯:120mL
产量:4.02g(94%)
HPLC-MS:m/z=747[M+Na+]
N3,N5-二([1,1'-联苯]-4-基)-N3,N5-双(4-(叔丁基)苯基)-3',5'-二甲基-[1,1'-联苯]-3,5-二胺(MPD-9)
3,5-二溴-3',5'-二甲基-1,1'-联苯:2.00g(1.0当量,5.88mmol)
N-(4-(叔丁基)苯基)-[1,1'-联苯]-4-胺:3.72g(2.1当量,12.4mmol)
双(二苄叉丙酮)钯:68mg(2mol.%,0.12mmol)
三叔丁基膦:36mg(3mol%,0.18mmol)
叔丁醇钾:1.98g(3.0当量,17.6mmol)
甲苯:120mL
产量:4.43g(97%)
HPLC-MS:m/z=803[M+Na+]
N1,N3-二([1,1'-联苯]-4-基)-N1,N3-双(4-(叔丁基)苯基)-5-(吡啶-3-基)苯-1,3-二胺(MPD-10)
3-(3,5-二溴苯基)吡啶:1.50g(1.0当量,4.8mmol)
N-(4-(叔丁基)苯基)-[1,1'-联苯]-4-胺:3.0g(2.1当量,10.1mmol)
双(二苄叉丙酮)钯:55mg(2mol%,0.10mmol)
三叔丁基膦:29mg(3mol%,0.14mmol)
叔丁醇钾:1.62g(3.0当量,14.4mmol)
甲苯:120mL
产量:2.40g(66%)
HPLC-MS:m/z=754[M+H+]
N3,N5-二([1,1'-联苯]-4-基)-N3,N5-双(4-(叔丁基)苯基)-3'-(三氟甲基)-[1,1'-联苯]-3,5-二胺(MPD-11)
3,5-二溴-3'-(三氟甲基)-1,1'-联苯:1.82g(1.0当量,4.8mmol)
N-(4-(叔丁基)苯基)-[1,1'-联苯]-4-胺:3.0g(2.1当量,10.1mmol)
双(二苄叉丙酮)钯:55mg(2mol%,0.10mmol)
三叔丁基膦:29mg(3mol%,0.14mmol)
叔丁醇钾:1.62g(3.0当量,14.4mmol)
甲苯:120mL
产量:3.29g(84%)
HPLC-MS:m/z=843[M+Na+]
N3,N5-二([1,1'-联苯]-4-基)-N3,N5-双(4-(叔丁基)苯基)-[1,1':4',1”-三联苯]-3,5-二胺(MPD-12)
3,5-二溴-1,1':4',1”-三联苯:1.86g(1.0当量,4.8mmol)
N-(4-(叔丁基)苯基)-[1,1'-联苯]-4-胺:3.03g(2.1当量,10.1mmol)
双(二苄叉丙酮)钯:55mg(2mol.%,0.10mmol)
三叔丁基膦:29mg(3mol.%,0.14mmol)
叔丁醇钾:1.62g(3.0当量,14.4mmol)
甲苯:120mL
产量:3.20g(80%)
HPLC-MS:m/z=851[M+Na+]
N1,N3-二([1,1'-联苯]-4-基)-N1,N3-双(4-(叔丁基)苯基)苯-1,3-二胺(MPD-13)
3,5-二溴苯:2.5g(1.0当量,10.6mmol)
N-(4-(叔丁基)苯基)-[1,1'-联苯]-4-胺:6.70g(2.1当量,22.26mmol)
双(二苄叉丙酮)钯:121mg(2mol.%,0.21mmol)
三叔丁基膦:64mg(3mol.%,0.32mmol)
叔丁醇钾:3.57g(3.0当量,31.8mmol)
甲苯:180mL
产量:6.70g(94%)
ESI-MS:m/z=677[M+H+]
N1,N3-二([1,1'-联苯]-4-基)-N1,N3-双(3,5-二甲基苯基)苯-1,3-二胺(MPD-14)
3,5-二溴苯:2.5g(1.0当量,10.6mmol)
N-(3,5-二甲基苯基)-[1,1'-联苯]-4-胺:6.08g(2.1当量,22.26mmol)
双(二苄叉丙酮)钯:122mg(2mol%,0.21mmol)
三叔丁基膦:64mg(3mol%,0.32mmol)
叔丁醇钾:3.57g(3.0当量,31.8mmol)
甲苯:180mL
产量:5.42g(82%)
ESI-MS:m/z=621[M+H+]
N1,N3-二([1,1'-联苯]-4-基)-5-甲基-N1,N3-二对甲苯基苯-1,3-二胺(MPD-15)
3,5-二溴甲苯:2.5g(1.0当量,10.0mmol)
N-(4-(甲基)苯基)-[1,1'-联苯]-4-胺:5.45g(2.1当量,21.00mmol)
双(二苄叉丙酮)钯:115mg(2mol.%,0.20mmol)
三叔丁基膦:61mg(3mol.%,0.30mmol)
叔丁醇钾:3.37g(3.0当量,30.0mmol)
甲苯:180mL
产量:4.95g(81%)
ESI-MS:m/z=607[M+H+]
N1,N3-二([1,1'-联苯]-4-基)-N1,N3-二基-5-甲基苯-1,3-二胺(MPD-16)
3,5-二溴甲苯:16.60g(1.0当量,66.4mmol)
N-基-[1,1'-联苯]-4-胺:40.1g(2.1当量,139.5mmol)
双(二苄叉丙酮)钯:764mg(2mol.%,1.3mmol)
三叔丁基膦:404mg(3mol%,2.00mmol)
叔丁醇钾:22.36g(3.0当量,199.3mmol)
甲苯:400mL
产量:22.3g(51%)
HPLC-MS:m/z=663[M+H+]
3,3′-二胺基联苯撑类的叔胺的一般过程
将二溴化合物、仲胺、双(二苄叉丙酮)钯、三叔丁基膦、叔丁醇钾在烧瓶中合并且溶解在甲苯中。将混合物在80℃下进行搅拌直至TLC表明起始物质完全消耗。混合物经硅胶垫过滤、用DCM洗涤并且蒸发至干。在沸腾的甲醇中对粗固体进行洗涤且之后进行过滤。用热的己烷和热的丙酮重复这一顺序从而最终得出期望的产物。
N3,N3'-二([1,1'-联苯]-4-基)-N3,N3'-双(4-(叔丁基)苯基)-5,5'-二甲基-[1,1'-联苯]-3,3'-二胺(MDAB-1)
3,3'-二溴-5,5'-二甲基-1,1'-联苯:2.00g(1.0当量,5.88mmol)
N-(4-(叔丁基)苯基)-[1,1'-联苯]-4-胺:3.90g(2.1当量,12.9mmol)
双(二苄叉丙酮)钯:68mg(2.0mol.%,0.12mmol)
三叔丁基膦:36mg(3.0mol.%,0.18mmol)
叔丁醇钾:1.98g(3.0当量,17.6mmol)
甲苯:150mL
产量:2.27g(49%)
HPLC-MS:m/z=781[M+H+]
N3,N3'-二([1,1'-联苯]-4-基)-N3,N3'-双(4-(叔丁基)苯基)-5,5'-二甲氧基-[1,1'-联苯]-3,3'-二胺(MDAB-2)
3,3'-二溴-5,5'-二甲氧基-1,1'-联苯:2.00g(1.0当量,5.88mmol)
N-(4-(叔丁基)苯基)-[1,1'-联苯]-4-胺:3.56g(2.2当量,11.8mmol)
双(二苄叉丙酮)钯:62mg(2.0mol.%,0.11mmol)
三叔丁基膦:33mg(3.0mol.%,0.16mmol)
叔丁醇钾:1.81g(3.0当量,16.1mmol)
甲苯:130mL
产量:3.33g(76%)
HPLC-MS:m/z=835[M+Na+]
N3,N3'-二([1,1'-联苯]-4-基)-N3,N3'-双(3,5-二甲基苯基)-5,5'-二甲基-[1,1'-联苯]-3,3'-二胺(MDAB-3)
3,3'-二溴-5,5'-二甲基-1,1'-联苯:5.43g(1.0当量,15.96mmol)
N-(3,5-二甲基苯基)-[1,1'-联苯]-4-胺:9.61g(2.1当量,33.51mmol)
双(二苄叉丙酮)钯:184mg(2.0mol.%,0.32mmol)
三叔丁基膦:202mg(3.0mol.%,0.48mmol)
叔丁醇钾:5.37g(3.0当量,47.88mmol)
甲苯:250mL
产量:10.56g(91%)
HPLC-MS:m/z=747[M+Na+]
N3,N3'-二([1,1'-联苯]-4-基)-N3,N3'-二苯基-[1,1'-联苯]-3,3'-二胺(MDAB-4)
3,3'-二溴-1,1'-联苯:3.39g(1.0当量,10.88mmol)
N-(3,5-二甲基苯基)-[1,1'-联苯]-4-胺:5.60g(2.1当量,22.84mmol)
双(二苄叉丙酮)钯:125mg(2.0mol.%,0.22mmol)
三叔丁基膦:66mg(3.0mol.%,0.33mmol)
叔丁醇钾:3.66g(3.0当量,32.6mmol)
甲苯:190mL
产量:6.8g(97%)
EI-MS:m/z=640
5,5'-二甲基-N3,N3,N3',N3'-四间甲苯基-[1,1'-联苯]-3,3'-二胺(MDAB-5)
3,3'-二溴-5,5'-二甲基-1,1'-联苯:2.50g(1.0当量,7.35mmol)
-3,3′-二甲基二苯基胺:3.05g(2.1当量,15.44mmol)
双(二苄叉丙酮)钯:85mg(2.0mol%,0.15mmol)
三叔丁基膦:45mg(3.0mol%,0.22mmol)
叔丁醇钾:2.50g(3.0当量,22.05mmol)
甲苯:180mL
产量:2.8g(66%)
EI-MS:m/z=572
N3,N3'-二([1,1'-联苯]-4-基)-N3,N3'-二基-5,5'-二甲基-[1,1'-联苯]-3,3'-二胺(MDAB-6)
3,5-二溴-3',5'-二甲基-1,1'-联苯:20.00g(1.0当量,58.8mmol)
N-基-[1,1'-联苯]-4-胺:35.50g(2.1当量,123.5mmol)
双(二苄叉丙酮)钯:676mg(2mol.%,1.20mmol)
三叔丁基膦:364mg(3mol%,1.80mmol)
叔丁醇钾:19.80g(3.0当量,176.4mmol)
甲苯:700mL
产量:27.1g(61%)
HPLC-MS:m/z=753[M+H+]
N3,N3'-二([1,1'-联苯]-4-基)-N3,N3'-二基-[1,1'-联苯]-3,3'-二胺(MDAB-7)
3,5-二溴-1,1'-联苯:5.17g(1.0当量,16.59mmol)
N-基-[1,1'-联苯]-4-胺:10.00g(2.1当量,34.79mmol)
双(二苄叉丙酮)钯:190mg(2mol%,0.33mmol)
三叔丁基膦:100mg(3mol%,0.50mmol)
叔丁醇钾:5.58g(3.0当量,49.77mmol)
甲苯:230mL
产量:8.7g(72%)
EI-MS:m/z=724
OLED制备和测试
在底部发光磷光有机发光二极管(OLED)中对新材料进行性能测试。在真空中通过有机材料(有源层)和金属(电极)的热蒸发沉积对二极管进行处理。使用荫罩技术构造所述器件(有源基质、电极)。在一个基底上制备四个各自具有6.70mm2的有源面积的OLED。在放在可绕其垂直轴旋转的台子上的4×4阵列中,对16个完全相同的氧化铟锡(ITO)基底一起进行处理。使用遮板能够使这16个基底各自由不同组的有机层覆盖。
对ITO基底进行清洁并且放入在4×4阵列中的热蒸发沉积单元中。将参照p掺杂层(例如用D1掺杂的H-1;摩尔比(97:3))以30nm的最终膜厚度沉积在这些基底中的一半上。在另外的一半板上,将研究的本发明材料与相同的p型掺杂剂以相同的97:3的摩尔比和厚度进行共沉积。在将板旋转90°后,将第二(电子阻挡)层沉积在第一层的顶部上。在此,一半的板用10nm的参照化合物(例如,TCTA)进行覆盖,且另一半用如在第一层中使用的相同的本发明材料进行覆盖(见图1)。
因此参照器件(图1,区域D)总是与包含本发明材料的器件一起进行处理。这种方法允许与所述参照相比较来评价新材料的性能,而不受沉积速率、真空质量或其它的工具性能参数的可能的日常变化影响。由于各区域含有16个相同制备的OLED且对这16个OLED各自的性能参数进行评价,获得的实验结果的统计学评价明确地显示了表1中报道的观察到的平均值的统计显著性。
将随后的磷光绿色发光层(Merck_TMM004:Irrpy,以9:1的摩尔比)在20nm厚度下沉积,之后沉积作为空穴阻挡层的10nm Merck_TMM004和用D2掺杂的50nm E-1层(基质对掺杂剂的摩尔比为9:1)。通过真空沉积100nm铝层制备阴极。
在ITO基底上制备底部发光蓝色荧光OLED并且类似地进行测 试,不同之处在于将Sun Fine Chem(SFC,韩国)主体ABH113和蓝色发光体NUBD370以97:3的重量比共沉积为20nm厚的发光层,之后沉积由60重量%的E2和40重量%的8-羟基喹啉锂盐(LiQ)组成的36nm厚的电子传输层。将100nm的铝阴极沉积在电子传输层的顶部上。
在如表1中定义的整体性能得分Q方面,与在相同的空穴传输和/或电子阻挡层中包含H-2的器件相比,包含本发明的化合物的器件显示在3-22%范围内的改进。
在前述说明书和在权利要求书中公开的特征在单独地或以任意组合两种情况下,可以为用于以其各种形式实现本发明的材料。