书签 分享 收藏 举报 版权申诉 / 253

使用甲酰-甘氨酸生成酶(FGE)对多种硫酸酯酶缺乏症和其它病症进行诊断和治疗.pdf

  • 上传人:七月
  • 文档编号:8637361
  • 上传时间:2020-10-14
  • 格式:PDF
  • 页数:253
  • 大小:10.62MB
  • 摘要
    申请专利号:

    CN200480006490.0

    申请日:

    20040210

    公开号:

    CN1759176B

    公开日:

    20121003

    当前法律状态:

    有效性:

    有效

    法律详情:

    IPC分类号:

    C12N9/02,C12N15/52,C12Q1/68,A61K38/36,A61K38/44,A61K31/7088,G01N33/68

    主分类号:

    C12N9/02,C12N15/52,C12Q1/68,A61K38/36,A61K38/44,A61K31/7088,G01N33/68

    申请人:

    夏尔人类遗传性治疗公司

    发明人:

    K·冯菲古拉,B·施密特,T·蒂尔克斯,M·W·希尔特莱恩,A·巴拉比奥,M·P·考斯玛

    地址:

    美国马萨诸塞州

    优先权:

    60/447,747

    专利代理机构:

    中国国际贸易促进委员会专利商标事务所

    代理人:

    程泳

    PDF完整版下载: PDF下载
    内容摘要

    本发明涉及诊断和治疗多种硫酸酯酶缺乏症(MSD)及其它硫酸酯酶缺乏症的方法和组合物。更特异地,本发明涉及被分离的调节硫酸酯酶翻译后修饰的分子。这类修饰为硫酸酯酶的正确功能所必需。

    权利要求书

    1.鉴定可用于调节Cα-甲酰甘氨酸生成活性的物质的方法,包括:(a)将具有Cα-甲酰甘氨酸生成活性的分子与候选物质接触,(b)测量所述分子的Cα-甲酰甘氨酸生成活性,和(c)将测得的所述分子的Cα-甲酰甘氨酸生成活性与对照比较以确定候选物质是否调节所述分子的Cα-甲酰甘氨酸生成活性,其中所述分子是SEQ ID NO:1所示的核苷酸序列的核酸分子或其表达产物。 2.与分子选择性结合的试剂在制备用于在受试者中诊断多种硫酸酯酶缺乏症的药物中的用途,所述分子是:(i)SEQ ID NO:1所示核苷酸序列的核酸分子,或(ii)(i)的核酸分子的表达产物。 3.选择性结合SEQ ID NO:1所示的核苷酸序列的核酸分子、或其表达产物的试剂在制备用于诊断以所述核酸分子或其表达产物的异常表达为特征的病症的药物中的用途,其中所述病症是多种硫酸酯酶缺乏症。 4.包含包装的试剂盒,所述包装包含:(i)选择性结合选自下列的核酸分子的试剂:(a)核酸分子,其选自SEQ ID NO:1和3的序列,或(b)核酸分子,其由于遗传密码的简并性而在密码子序列中不同于(a)的核酸分子;和(ii)第二试剂,其选择性结合选自下列的多肽:艾杜糖醛酸2-硫酸酯酶,硫酸胺酶,N-乙酰半乳糖胺6-硫酸酯酶,N-乙酰葡萄糖胺6-硫酸酯酶,芳基硫酸酯酶A,芳基硫酸酯酶B,芳基硫酸酯酶C,芳基硫酸酯酶D,芳基硫酸酯酶E,芳基硫酸酯酶F,芳基硫酸酯酶G,HSulf-1,HSulf-2,HSulf-3,HSulf-4,HSulf-5,和HSulf-6,或其肽,以及用于与所述第二试剂和所述多肽或其肽结合的测量值进行比较的对照。 5.调节Cα-甲酰甘氨酸生成活性的试剂在制备用于治疗受试者中多种硫酸酯酶缺乏症的药物中的用途,其中调节Cα-甲酰甘氨酸生成活性的试剂是选自下列的核酸分子:(a)核酸分子,其选自SEQ ID NO:1和3的序列,或(b)核酸分子,其由于遗传密码的简并性而在密码子序列中不同于(a)的核酸分子。 6.调节Cα-甲酰甘氨酸生成活性的试剂在制备用于治疗受试者中多种硫酸酯酶缺乏症的药物中的用途,其中调节Cα-甲酰甘氨酸生成活性的试剂是:由选自下列的核酸分子编码的多肽:(a)核酸分子,其是选自SEQ ID NO:1和3的序列,或(b)核酸分子,其由于遗传密码的简并性而在密码子序列中不同于(a)的核酸分子;或是SEQ ID NO:2的序列的多肽。 7.调节Cα-甲酰甘氨酸生成活性的试剂在制备用于治疗受试者中多种硫酸酯酶缺乏症的药物中的用途,其中调节Cα-甲酰甘氨酸生成活性的试剂是由表达选自下列的FGE核酸分子的细胞生产的:(a)核酸分子,其选自SEQ ID NO:1和3的序列,或(b)核酸分子,其由于遗传密码的简并性而在密码子序列中不同于(a)的核酸分子。 8.权利要求5、6或7的用途,其中所述药物进一步包括第二试剂,其中所述第二试剂是编码选自下列的硫酸酯酶的核酸分子:艾杜糖醛酸2-硫酸酯酶,硫酸胺酶,N-乙酰半乳糖胺6-硫酸酯酶,N-乙酰葡萄糖胺6-硫酸酯酶,芳基硫酸酯酶A,芳基硫酸酯酶B,芳基硫酸酯酶C,芳基硫酸酯酶D,芳基硫酸酯酶E,芳基硫酸酯酶F,芳基硫酸酯酶G,HSulf-1,HSulf-2,HSulf-3,HSulf-4,HSulf-5,或HSulf-6,和所述核酸分子的表达产物。 9.权利要求7的用途,其中表达FGE核酸分子的细胞表达外源FGE核酸分子。 10.权利要求7的用途,其中表达FGE核酸分子的细胞表达内源FGE核酸分子。 11.分离的FGE核酸分子或其表达产物在制备药物中的应用,其中所述药物用于在受试者中增加Cα-甲酰甘氨酸生成活性,所述核酸分子选自:(a)核酸分子,其选自SEQ ID NO:1和3的序列,或(b)核酸分子,其由于遗传密码的简并性而在密码子序列中不同于(a)的核酸分子。 12.有效量的调节Cα-甲酰甘氨酸生成活性的试剂在制备用于在受试者中治疗多种硫酸酯酶缺乏症的药物中的用途,其中所述有效量足以使受试者中的Cα-甲酰甘氨酸生成活性增加,其中调节Cα-甲酰甘氨酸生成活性的试剂是选自下列的有义核酸分子:(a)核酸分子,其选自SEQ ID NO:1和3的序列,或(b)核酸分子,其由于遗传密码的简并性而在密码子序列中不同于(a)的核酸分子。 13.有效量的调节Cα-甲酰甘氨酸生成活性的试剂在制备用于在受试者中治疗多种硫酸酯酶缺乏症的药物中的用途,其中所述有效量足以使受试者中的Cα-甲酰甘氨酸生成活性增加,其中调节Cα-甲酰甘氨酸生成活性的试剂是:由选自下列的核酸分子编码的分离的多肽:(a)核酸分子,其选自SEQ ID NO:1和3的序列,或(b)核酸分子,其由于遗传密码的简并性而在密码子序列中不同于(a)的核酸分子;或者SEQ ID NO.2的序列的多肽。 14.选自下列的核酸分子或其表达产物在制备药物中的用途,所述药物用于在细胞中增加Cα-甲酰甘氨酸生成活性:(a)核酸分子,其选自SEQ ID NO:1和3的序列,或(b)核酸分子,其由于遗传密码的简并性而在密码子序列中不同于(a)的核酸分子。 15.药物组合物,包含:治疗多种硫酸酯酶缺乏症的药学有效量的试剂,所述试剂包含选自下列的分离的核酸分子或其表达产物:(a)核酸分子,其选自SEQ ID NO:1和3的序列,或(b)核酸分子,其由于遗传密码的简并性而在密码子序列中不同于(a)的核酸分子,和药学上可接受的载体。 16.鉴定可用于治疗多种硫酸酯酶缺乏症的候选物质的方法,包括:测定一套核酸分子在细胞或组织中的表达,条件为在候选物质缺乏时允许该套核酸分子的最初量表达,其中该套核酸分子包含至少一种选自下面的核酸分子:(a)核酸分子,其选自SEQ ID NO:1和3的序列,或(b)由于遗传密码的简并性,密码子序列与(a)或(b)的核酸分子不同的核酸分子,将细胞或组织与候选物质体外接触,并检测该套核酸分子表达的测试量,其中在候选物质存在的条件下表达的测试量相对于表达最初量的增加表明候选物质可用于治疗多种硫酸酯酶缺乏症。 17.固相核酸分子阵列,其由固定于固体基质的一套核酸分子组成,每一核酸分子编码选自下面的多肽:SEQ ID NO.2,5,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76和78,艾杜糖醛酸2-硫酸酯酶,硫酸胺酶,N-乙酰半乳糖胺6-硫酸酯酶,N-乙酰葡萄糖胺6-硫酸酯酶,芳基硫酸酯酶A,芳基硫酸酯酶B,芳基硫酸酯酶C,芳基硫酸酯酶D,芳基硫酸酯酶E,芳基硫酸酯酶F,芳基硫酸酯酶G,HSulf-1,HSulf-2,HSulf-3,HSulf-4,HSulf-5和HSulf-6,其中该套核酸分子编码下列多肽的至少一种:SEQ ID NO:2。 18.权利要求17的固相核酸分子阵列,进一步包含至少一种对照核酸分子。 19.权利要求17的固相核酸分子阵列,其中该套核酸分子包含至少两种核酸分子,每一核酸分子编码选自下列的多肽:SEQ ID NO.2,5,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76和78,艾杜糖醛酸2-硫酸酯酶,硫酸胺酶,N-乙酰半乳糖胺6-硫酸酯酶,N-乙酰葡萄糖胺6-硫酸酯酶,芳基硫酸酯酶A,芳基硫酸酯酶B,芳基硫酸酯酶C,芳基硫酸酯酶D,芳基硫酸酯酶E,芳基硫酸酯酶F,芳基硫酸酯酶G,HSulf-1,HSulf-2,HSulf-3,HSulf-4,HSulf-5和HSulf-6。 20.选自下列的分离的核酸分子或其表达产物在制备药物中的用途,所述药物用于在细胞中增加硫酸酯酶活性:(a)核酸分子,其选自SEQ ID NO:1和3的序列,或(b)由于遗传密码的简并性,密码子序列与(a)或(b)的核酸分子不同的核酸分子。 21.权利要求20的用途,其中细胞表达内源硫酸酯酶。 22.权利要求20的用途,其中细胞表达外源硫酸酯酶。 23.权利要求20的用途,其中内源硫酸酯酶是被激活的。 24.根据权利要求21-23中任一项的用途,其中硫酸酯酶选自艾杜糖醛酸2-硫酸酯酶,硫酸胺酶,N-乙酰半乳糖胺6-硫酸酯酶,N-乙酰葡萄糖胺6-硫酸酯酶,芳基硫酸酯酶A,芳基硫酸酯酶B,芳基硫酸酯酶C,芳基硫酸酯酶D,芳基硫酸酯酶E,芳基硫酸酯酶F,芳基硫酸酯酶G,HSulf-1,HSulf-2,HSulf-3,HSulf-4,HSulf-5和HSulf-6。 25.权利要求20的用途,其中细胞是哺乳动物细胞。 26.药物组合物,包含:治疗硫酸酯酶缺乏症的由细胞产生的硫酸酯酶,和药学上可接受的载体,其中所述细胞已与试剂接触过,所述试剂包含选自下列的分离的核酸分子或其表达产物:(a)核酸分子,其选自SEQ ID NO:1和3的序列,或(b)核酸分子,其由于遗传密码的简并性而在密码子序列中不同于(a)的核酸分子。 27.人FGE基因的分离的变体等位基因,其编码变体FGE多肽,包含:在SEQ ID NO:2中含有至少一种变异的氨基酸序列,其中所述至少一种变异包括:Met1Arg;Met1Val;Ser155Pro;Cys218Tyr;Ala279Val;Arg327Stop;Cys336Arg;Arg345Cys;Arg349Trp;Arg349Gln;Ser359Stop;或其组合。 28.分离的变体人FGE多肽,包含:在SEQ ID NO:2中包含至少一种变异的氨基酸序列,其中所述至少一种变异包含:Met1Arg;Met1Val;Ser155Pro;Cys218Tyr;Ala279Val;Arg327Stop;Cys336Arg;Arg345Cys;Arg349Trp;Arg349Gln;Ser359Stop;或其组合。 29.抗体,其以权利要求28的变体人FGE多肽作为免疫原。 30.权利要求29的抗体,其是多克隆抗体。 31.权利要求29的抗体,其是单克隆抗体。 32.权利要求29的抗体,其是嵌合抗体。 33.权利要求29的抗体,其所述抗体被可检测标记所标记。 34.权利要求33的抗体,其中所述可探测性的标记包含放射性元素,荧光化学物或酶。

    说明书

    发明领域

    此发明涉及诊断和治疗多种硫酸酯酶缺乏症(MSD)以及其它硫酸 酯酶缺乏症的方法和组合物。更特异地,本发明涉及被分离的调节硫 酸酯酶翻译后修饰的分子。这类修饰为硫酸酯酶的正确功能所必需。

    发明背景

    硫酸酯酶是高度保守的基因家族的成员,共享广泛的序列同源性 (Franco,B.等,Cell,1995,81:15-25;Parenti,G.等,Curr.Opin. Gen.Dev.,1997,7:386-391),高度的结构类似性(Bond,C.S.等, Structure,1997,5:277-289;Lukatela,G.等,Biochemistry,1998, 37:3654-64),和独特的为硫酸酯断裂所必需的翻译后修饰(Schmidt, B.等,Cell,1995,82:271-278;Selmer,T.等,Eur.J.Biochem., 1996,238:341-345)。翻译后修饰包括对保守的半胱氨酸(在真核细 胞中)或丝氨酸(在某些原核细胞中)残基在Cβ处的氧化,得到L-Cα- 甲酰甘氨酸(也叫做FGly,2-氨基-3-氧代丙酸),其中醛基代替了侧 链的硫代甲基基团。醛基是硫酸酯酶催化位点的必需部分,很可能作 为醛水合物起作用。成对的羟基之一在硫酸酯断裂时接受硫酸基团, 导致共价硫酸化的酶中间物的形成。其它羟基是随后的硫酸基团消去 和醛基再生所需要的。此修饰在初生硫酸酯酶多肽输入期间或间隔很 短时间之后发生于内质网,并被围绕着将被修饰的半胱氨酸(或丝氨 酸)残基的短线性序列所调控。此高度保守序列是六肽 L/V-C(S)-X-P-S-R(SEQ ID NO:32),出现在所有真核细胞硫酸酯酶 的N末端区域,并最频繁地在残基X上携带羟基或硫羟基(Dierks,T. 等,Proc.Natl.Acad.Sci.U.S.A.,1997,94:11963-11968)。

    迄今为止,已在人体中鉴别出13个硫酸酯酶基因。它们编码具有 不同底物专一性和亚细胞定位如溶酶体、高尔基体和内质网定位的酶。 这些基因中的四种ARSC,ARSD,ARSE,和ARSF(分别编码芳基硫酸 酯酶C,D,E和F),位于相同的染色体区域(Xp22.3)内。它们共享 显著的序列类似性和几乎相同的基因组组织方式,说明它们来源于在 进化中近来才发生的复制事件(Franco B等,Cell,1995,81:15-25; Meroni G等,Hum Mol Genet,1996,5:423-31)。

    由单独硫酸酯酶活性的缺乏所引起的至少八种人单基因疾病的鉴 定,强调了硫酸酯酶在人体代谢中的重要性。这些病症中的大部分是 溶酶体存贮病,其中,表型结果源于被储存物质的类型和组织分布。 在它们中,有五种不同类型的因硫酸酯酶对粘多糖分解代谢作用的缺 乏而引起的粘多糖病(MPS类型II,IIIA,IIID,IVA和VI)(Neufeld 和Muenzer,2001,The mucopolysaccharidoses,In The Metabolic and Molecular Bases of Inherited Disease,C.R.Scriver,A.L. Beaudet,W.S.Sly,D.Valle,B.Childs,K.W.Kinzler和B. Vogelstein编,New York:Mc Graw-Hill,pp.3421-3452),和以脑 硫脂在中枢和外周神经系统中储存并引起严重和渐进性神经退化为特 征的异常染性脑白质营养不良(MLD)。两种另外的人类疾病由非溶酶体 硫酸酯酶缺乏引起。这些包括X-连锁的鱼鳞病,因类固醇硫酸酯酶 (STS/ARSC)缺乏而引起的皮肤病;和点状软骨发育不全,由芳基硫酸 酯酶E(ARSE)缺乏引起的影响骨和软骨的疾病。硫酸酯酶也牵涉到 药物诱导的人畸形综合症,例如Warfarin胚胎病,由怀孕期间在宫内 暴露于杀鼠灵而抑制ARSE活性所引起。

    在引起人兴趣的人类单基因疾病中,多种硫酸酯酶缺乏症(MSD) 是所有硫酸酯酶活性同时有缺陷。因此,此严重的多系统性疾病的表 型结合了在单独硫酸酯酶缺乏中所观察到的特征。来自多种硫酸酯酶 缺乏症患者的细胞即使以编码人硫酸酯酶的cDNAs转染之后也缺乏硫 酸酯酶活性,暗示所有硫酸酯酶活性所需要的普遍机制的存在 (Rommerskirch和von Figura,Proc.Natl.Acad.Sci.,USA,1992, 89:2561-2565)。硫酸酯酶的翻译后修饰被发现在多种硫酸酯酶缺乏症 患者中有缺陷,暗示此疾病由基因的突变所引起,该基因牵涉到半胱 氨酸至甲酰甘氨酸的转化机制(Schmidt,B.等,Cell,1995, 82:271-278)。尽管存在强烈的生物学和医学兴趣,以鉴别此基因为目 标的努力却被多种硫酸酯酶缺乏症患者的稀有性和随之带来的缺乏合 适的家族病例而无法完成遗传图谱绘制所妨碍。

    发明概述

    本发明提供诊断和治疗多种硫酸酯酶缺乏症(MIM 272200)及治疗 其它硫酸酯酶缺乏症的方法和组合物。更特异地,已鉴别出编码甲酰 甘氨酸生成酶(FGE)的基因,此酶负责发生于硫酸酯酶的独特的翻译 后修饰(形成L-Cα-甲酰甘氨酸;也叫做FGly和/或2-氨基-3-氧代丙 酸),该翻译后修饰为硫酸酯酶功能所必需。已发现,出乎意料的是 FGE基因中的突变导致受试者中的多种硫酸酯酶缺乏症(MSD)的发展。 也发现,出乎意料的是FGE增强了硫酸酯酶的活性,包括但不限于, 艾杜糖醛酸2-硫酸酯酶,硫酸胺酶,N-乙酰半乳糖胺6-硫酸酯酶,N- 乙酰葡萄糖胺6-硫酸酯酶,芳基硫酸酯酶A,芳基硫酸酯酶B,芳 基硫酸酯酶C,芳基硫酸酯酶D,芳基硫酸酯酶E,芳基硫酸酯酶 F,芳基硫酸酯酶G,HSulf-1,HSulf-2,HSulf-3,HSulf-4,HSulf-5, 和HSulf-6。考虑到这些发现,本发明的分子可用于诊断和治疗多种 硫酸酯酶缺乏症以及其它硫酸酯酶缺乏症。

    在多种硫酸酯酶缺乏症的诊断中应用本发明的分子的方法被提 供。

    另外,为调节硫酸酯酶上FGly形成的目的而在体内或体外应用这 些分子的方法,治疗与这种修饰相关的病症的方法,和对制备治疗多 种硫酸酯酶缺乏症及其它硫酸酯酶缺乏症的药学制剂有用的组合物, 也被提供。

    本发明因此在几个方面包括调节硫酸酯酶上FGly形成的多肽,分 离的编码那些多肽的核酸,它们的功能修饰物和变体,它们的有用的 片段,以及与其相关的治疗、诊断和研究的方法、组合物与工具。

    根据本发明的一个方面,选自下列的分离的核酸分子被提供:(a) 与SEQ ID NO:1所示的核苷酸序列所组成的分子在严格条件下杂交的 核酸分子,该核酸分子编码具有Cα-甲酰甘氨酸生成活性的甲酰甘氨 酸生成酶(FGE);(b)与(a)的核酸分子在密码子序列上因遗传密码简 并性而有所区别的核酸分子;和(c)(a)或(b)的互补链。在一定的 实施方案中,分离的核酸分子包括SEQ ID NO:1所示的核苷酸序列。 在某些实施方案中,分离的核酸分子由SEQ ID NO:3所示的核苷酸序 列或其片段组成。

    本发明的另一方面提供分离的选自下列的核酸分子:(a)SEQ ID NO:1所示的核苷酸序列的独特(unique)片段,和(b)(a)的互补链, 条件是(a)中的独特片段包括了不与某些序列相同的连续核苷酸序列, 所述某些序列选自(1)与SEQ ID NO.4和/或SEQ ID NO.4的核苷酸 20-1141相同的序列,和(2)(1)中核酸分子的互补链。在任何前述的 实施方案中,互补链指全长互补链。

    在一个实施方案中,连续核苷酸序列选自(1)至少两个不与序列 组完全相同的连续核苷酸,(2)至少三个不与序列组完全相同的连续 核苷酸,(3)至少四个不与序列组完全相同的连续核苷酸,(4)至少 五个不与序列组完全相同的连续核苷酸,(5)至少六个不与序列组完 全相同的连续核苷酸,和(6)至少七个不与序列组完全相同的连续核 苷酸。

    在另一实施方案中,片段大小选自至少:8个核苷酸,10个核苷 酸,12个核苷酸,14个核苷酸,16个核苷酸,18个核苷酸,20个核 苷酸,22个核苷酸,24个核苷酸,26个核苷酸,28个核苷酸,30个 核苷酸,40个核苷酸,50个核苷酸,75个核苷酸,100个核苷酸,200 个核苷酸,1000个核苷酸和其间的每一整数长度。

    根据又一方面,本发明提供包含上述核酸分子的表达载体和以该 表达载体转化或转染的宿主细胞。

    根据又一方面,本发明提供表达内源FGE基因的活化形式的细胞。 在一个实施方案中,内源FGE基因的活化通过同源重组发生。

    根据本发明又一方面,分离的多肽被提供。分离的多肽被前述的 本发明核酸分子所编码。在某些实施方案中,分离的多肽被SEQ ID NO:1的核酸编码,产生出具有SEQ ID NO:2序列和Cα-甲酰甘氨酸生 成活性的多肽。在其它的实施方案中,分离的多肽也许是前述的片段 或变体,其长度足以代表人基因组中独特序列并且是具有Cα-甲酰甘 氨酸生成活性的多肽,条件是该片段包括不与任何被具有SEQ ID NO. 4的核酸序列所编码的序列相同的连续氨基酸的序列。在另一实施方 案中,上述多肽分子的免疫源性片段被提供。免疫源性片段也许具有 也许不具有Cα-甲酰甘氨酸生成活性。

    根据本发明又一方面,分离的结合多肽被提供,其选择性地与前 述的本发明核酸分子所编码的多肽结合。优选分离的结合多肽选择性 地结合包含SEQ ID NO:2序列的多肽、其片段或属于分离的具有Cα- 甲酰甘氨酸生成活性的多肽家族而在本文其它部分所述的多肽。在优 选的实施方案中,分离的结合多肽包括抗体和抗体片段(如Fab, F(ab)2,Fd和包括了与FGE多肽选择性结合的CDR3区域的抗体片段)。 在一定的实施方案中,抗体是人抗体。在某些实施方案中,抗体是单 克隆抗体。在某一实施方案中,抗体是多克隆抗血清。在进一步的实 施方案中,抗体是人源化的。在更进一步的实施方案中,抗体是嵌合 的。

    根据本发明又一方面,具有Cα-甲酰甘氨酸生成活性的分离的多 肽的家族被提供。每一所述多肽从氨基端到羧基端包含:(a)氨基端 亚结构域1;亚结构域2;包含35到45个氨基酸的羧基端亚结构域3, 而其中亚结构域3与选自SEQ ID NO.2,5,46,48,50,52,54,56, 58,60,62,64,66,68,70,72,74,76,和78的多肽的亚结构 域3具有至少约75%的同源性和大致相同的长度。在重要的实施方案 中,亚结构域2含有120到140个氨基酸。在进一步的重要实施方案 中,亚结构域2中至少5%的氨基酸是色氨酸。在某些实施方案中, 亚结构域2与选自SEQ ID NO.2,5,46,48,50,52,54,56,58, 60,62,64,66,68,70,72,74,76,和78的多肽的结构域2之 间具有至少50%的同源性。在一定的实施方案中,每一多肽的亚结构 域3与选自SEQ ID NO.2,5,46,48,50,52,54,56,58,60,62, 64,66,68,70,72,74,76,和78的多肽的亚结构域3具有介于 约80%和约100%之间的同源性。

    根据本发明进一步的方面,用于测定某一受试者中的FGE表达水 平的方法被提供。方法包括测量来自某一受试者的测试样本中的FGE 表达以确定FGE在受试者中的表达水平。在一定的实施方案中,测得 的测试样本中的FGE表达与对照样本(含有已知FGE表达水平)中的 FGE表达进行比较。表达被定义成FGE mRNA表达,FGE多肽表达,或 如本文其它部分所定义的FGE的Cα-甲酰甘氨酸生成活性。多种方法 能用于测量表达。本发明优选的实施方案包括用于测量mRNA表达的 PCR和RNA印迹,作为测量FGE多肽表达的试剂的FGE单克隆抗体或 FGE多克隆抗血清,以及测量FGE Cα-甲酰甘氨酸生成活性的方法。

    在一定的实施方案中,测试样本例如活检样本和生物液体如血液 被用作测试样本。FGE在某一受试者的测试样本中的表达与对照样本 中的FGE表达比较。

    根据本发明另一方面,用于鉴别在调节分子的Cα-甲酰甘氨酸生 成活性中有用的物质的方法被提供。方法包括(a)将具有Cα-甲酰甘氨 酸生成活性的分子与候选物质接触,(b)测量该分子的Cα-甲酰甘氨酸 生成活性,和(c)将测得的该分子Cα-甲酰甘氨酸生成活性与对照进 行比较以确定候选物质是否调节分子的Cα-甲酰甘氨酸生成活性,其 中该分子是具有选自SEQ ID NO:1,3,4,45,47,49,51,53,55, 57,59,61,63,65,67,69,71,73,75,77,和80-87的核苷酸 序列的核酸分子,或其表达产物(例如,具有选自SEQ ID NO.2,5, 46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76, 和78的序列的肽)。在一定的实施方案中,对照是在缺乏候选物质的 条件下测得的该分子的Cα-甲酰甘氨酸生成活性。

    根据本发明又一方面,在受试者中诊断多种硫酸酯酶缺乏症的 方法被提供。方法包括将生物样本与试剂接触,所述生物样本来自被 怀疑具有多种硫酸酯酶缺乏症的受试者,所述试剂特异结合选自下面 的分子:(i)具有SEQ ID NO:1,3,或4核苷酸序列的FGE核酸分子, (ii)核酸分子(i)的表达产物,或(iii)(ii)的表达产物的片段;以及 测量结合的试剂数量并由此确定所述核酸分子或其表达产物的表达是 否异常,异常表达表明受试者患有多种硫酸酯酶缺乏症。

    根据本发明又一方面,用于对特征为核酸分子或其表达产物的异 常表达的病症进行诊断的方法被提供。方法包括将来自受试者的生物 样本与试剂接触,其中所述试剂特异结合所述核酸分子、其表达产物 或其表达产物的片段;并测量结合的试剂数量并由此确定所述核酸分 子或其表达产物的表达是否异常,异常表达表明具有所述病症,其中 所述核酸分子具有SEQ ID NO:1核苷酸序列而所述病症是多种硫酸酯 酶缺乏症。

    根据本发明又一方面,用于在受试者中测量特征为核酸分子或其 表达产物的异常表达的多种硫酸酯酶缺乏症的方法被提供。方法包括 对来自患者的样本监测选自下面的参数:(i)具有SEQ ID NO:1,3,4 的核苷酸序列的核酸分子或具有来源于FEG基因组位点的序列的核酸 分子,(ii)所述核酸分子编码的多肽,(iii)来源于所述多肽的肽,和 (iv)选择性结合所述多肽或肽的抗体,将它们作为对受试者中的多种 硫酸酯酶缺乏症的测定。在某些实施方案中,样本是如前述实施方案 任一项所描述的生物液体或组织。在一定的实施方案中,监测步骤包 括将样本与选自下面的可检测的试剂接触:(a)在严格条件下与(i)中 的核酸分子选择性杂交的分离的核酸分子,(b)选择性结合(ii)中的 多肽或(iii)中的肽的抗体,和(c)与(iv)中的抗体结合的多肽或 肽。抗体、多肽、肽或核酸能用放射性标记或酶进行标记。在进一步 的实施方案中,方法进一步包含检验样品中的肽。

    根据本发明又一方面,试剂盒被提供。试剂盒包含包装,包装包 含选择性结合前述FGE的分离的核酸或其表达产物的任一种的试剂, 和用于与测量值比较的对照,此测量值为所述试剂与前述FGE的分离 的核酸或其表达产物的任一种结合的测量值。在某些实施方案中,对 照是用于与测量值比较的预定值。在一定的实施方案中,对照包含前 述FGE的分离的核酸的任一种的表达产物的表位。在一种实施方案中, 试剂盒进一步包含选择性结合选自下面的多肽的第二试剂:艾杜糖醛 酸2-硫酸酯酶,硫酸胺酶(sulfamidase),N-乙酰半乳糖胺6-硫酸 酯酶,N-乙酰葡萄糖胺6-硫酸酯酶,芳基硫酸酯酶A,芳基硫酸酯酶 B,芳基硫酸酯酶C,芳基硫酸酯酶D,芳基硫酸酯酶E,芳基硫酸 酯酶F,芳基硫酸酯酶G,HSulf-1,HSulf-2,HSulf-3,HSulf-4, HSulf-5,和HSulf-6,或其肽段,和用于与所述第二试剂结合到所述 多肽或其肽段的测量值进行比较的对照。

    根据本发明进一步的方面,治疗多种硫酸酯酶缺乏症的方法被提 供。方法包括对需要这种治疗的受试者施用调节Cα-甲酰甘氨酸生成 活性的试剂,用量为治疗受试者的多种硫酸酯酶缺乏症的有效量。在 某些实施方案中,方法进一步包含某一试剂的共施用,所述试剂选自 编码艾杜糖醛酸-2-硫酸酯酶,硫酸胺酶,N-乙酰半乳糖胺-6-硫酸酯 酶,N-乙酰葡萄糖胺-6-硫酸酯酶,芳基硫酸酯酶A,芳基硫酸酯酶 B,芳基硫酸酯酶C,芳基硫酸酯酶D,芳基硫酸酯酶E,芳基硫酸 酯酶F,芳基硫酸酯酶G,HSulf-1,HSulf-2,HSulf-3,HSulf-4, HSulf-5,或HSulf-6的核酸分子,该核酸分子的表达产物,和该核酸 分子的表达产物的片段。在一定的实施方案中,调节Cα-甲酰甘氨酸 生成活性的试剂是本发明的分离的核酸分子(例如如权利要求1-8所 要求的核酸分子或具有选自SEQ ID NO:1,3,4,45,47,49,51,53, 55,57,59,61,63,65,67,69,71,73,75,77,和80-87的序 列的核酸)。在重要的实施方案中,调节Cα-甲酰甘氨酸生成活性的试 剂是本发明的肽(例如,如权利要求11-15,19,20所要求的肽,或具 有选自SEQ ID NO.2,5,46,48,50,52,54,56,58,60,62,64, 66,68,70,72,74,76,和78的序列的肽)。调节Cα-甲酰甘氨酸 生成活性的试剂可通过表达内源和/或外源FGE核酸分子的细胞产生。 在重要的实施方案中,内源FGE核酸分子可被活化。

    根据本发明的一个方面,用于在受试者中增加Cα-甲酰甘氨酸生 成活性的方法被提供。方法包括施用本发明的分离的FGE核酸分子 (例如,权利要求1-8的核酸分子,或具有选自SEQ ID NO:1,3,4, 45,47,49,51,53,55,57,59,61,63,65,67,69,71,73,75, 77,和80-87的序列的核酸),和/或其表达产物到受试者中,用量为 在受试者中增加Cα-甲酰甘氨酸生成活性的有效量。

    根据本发明的一个方面,用于治疗患多种硫酸酯酶缺乏症的受试 者的方法被提供。方法包括对需要这种治疗的受试者施用调节Cα-甲 酰甘氨酸生成活性的试剂,用量为在受试者中增加Cα-甲酰甘氨酸生 成活性的有效量。在某些实施方案中,调节Cα-甲酰甘氨酸生成活性 的试剂是本发明的有义核酸(例如,权利要求1-8的核酸分子,或具有 选自SEQ ID NO:1,3,4,45,47,49,51,53,55,57,59,61,63, 65,67,69,71,73,75,77,和80-87的序列的核酸)。在一定的 实施方案中,调节Cα-甲酰甘氨酸生成活性的试剂是本发明的分离的 多肽(例如,权利要求11-15,19,20的多肽或具有选自SEQ ID NO. 2,5,46,48,50,52,54,56,58,60,62,64,66,68,70,72, 74,76,和78的序列的肽)。

    根据本发明又一方面,用于在细胞中增加Cα-甲酰甘氨酸生成活 性的方法被提供。方法包括将细胞与本发明的分离的核酸分子接触 (例如,权利要求1-8的核酸分子,或具有选自SEQ ID NO:1,3,4, 45,47,49,51,53,55,57,59,61,63,65,67,69,71,73,75, 77,和80-87的序列的核酸),或其表达产物,用量为在细胞中增加 Cα-甲酰甘氨酸生成活性的有效量。在重要的实施方案中,方法包括活 化内源FGE基因以在细胞中增加Cα-甲酰甘氨酸生成活性。

    根据本发明进一步的方面,药物组合物被提供。组合物包含治疗 多种硫酸酯酶缺乏症的药学有效量的某种试剂,该试剂含有本发明的 分离的核酸分子(例如,权利要求1-8中任一项的分离的核酸分子,具 有选自SEQ ID NO:1,3,4,45,47,49,51,53,55,57,59,61, 63,65,67,69,71,73,75,77,和80-87序列的FGE核酸分子), 或其表达产物,以及药学上可接受的载体。

    根据本发明的一个方面,用于鉴别在治疗多种硫酸酯酶缺乏症中 有用的候选物质的方法被提供。方法包括测定一套核酸分子在细胞或 组织中的表达,条件是缺乏候选物质时,允许该套核酸分子的最初量 的表达,其中该套核酸分子包含至少一种选自下面的核酸分子:(a) 严格条件下与由SEQ ID NO:1所示核苷酸序列组成的分子杂交并编码 具有Cα-甲酰甘氨酸生成活性(FGE)的多肽的核酸分子,(b)遗传密码 简并性引起的在密码子序列中与(a)或(b)中核酸分子不同的核酸分 子,(c)具有选自SEQ ID NO:1,3,4,45,47,49,51,53,55,57, 59,61,63,65,67,69,71,73,75,77,和80-87的序列的核酸 分子,和(d)(a)或(b)或(c)的互补链,将细胞或组织与候选物质接 触并探测该套核酸分子表达的测试量,其中在候选物质存在的条件下 表达的测试量相对于表达最初量的增加表明候选物质在治疗多种硫酸 酯酶缺乏症中有用。

    根据本发明进一步的方面,制备在治疗多种硫酸酯酶缺乏症和/ 或其它硫酸酯酶缺乏症中有用的药剂的方法被提供。

    根据本发明又一方面,固相核酸分子阵列被提供。阵列基本上由 固定于固相基质的一套核酸分子、其表达产物或其片段(或是核酸的 或是多肽分子的)组成,每一核酸分子编码选自下面的多肽:SEQ ID NO. 2,5,46,48,50,52,54,56,58,60,62,64,66,68,70,72, 74,76,和78,艾杜糖醛酸-2-硫酸酯酶,硫酸胺酶,N-乙酰半乳糖 胺-6-硫酸酯酶,N-乙酰葡萄糖胺-6-硫酸酯酶,芳基硫酸酯酶A,芳 基硫酸酯酶B,芳基硫酸酯酶C,芳基硫酸酯酶D,芳基硫酸酯酶 E,芳基硫酸酯酶F,芳基硫酸酯酶G,HSulf-1,HSulf-2,HSulf-3, HSulf-4,HSulf-5,和HSulf-6。在某些实施方案中,固相阵列进一 步包含至少一种对照核酸分子。在一定的实施方案中,该套核酸分子 包含至少一种、至少两种、至少三种、至少四种或甚至至少五种核酸 分子,每一种选自SEQ ID NO.2,5,46,48,50,52,54,56,58, 60,62,64,66,68,70,72,74,76,和78,艾杜糖醛酸-2-硫酸 酯酶,硫酸胺酶,N-乙酰半乳糖胺-6-硫酸酯酶,N-乙酰葡萄糖胺-6- 硫酸酯酶,芳基硫酸酯酶A,芳基硫酸酯酶B,芳基硫酸酯酶C, 芳基硫酸酯酶D,芳基硫酸酯酶E,芳基硫酸酯酶F,芳基硫酸酯 酶G,HSulf-1,HSulf-2,HSulf-3,HSulf-4,HSulf-5,和HSulf-6。

    根据本发明进一步的方面,用于在受试者中治疗硫酸酯酶缺乏症 的方法被提供。方法包括对需要这种治疗的受试者施用已根据本发明 生产出的硫酸酯酶,用量为在受试者中治疗硫酸酯酶缺乏症的有效量, 而此硫酸酯酶缺乏症不是多种硫酸酯酶缺乏症。在重要的实施方案中, 通过已与调节Cα-甲酰甘氨酸生成活性的试剂接触的细胞产生硫酸酯 酶。在一定的实施方案中,硫酸酯酶缺乏症包括但不限于粘多糖病 II(MPS II;Hunter综合症),粘多糖病IIIA(MPS IIIA;Sanfilippo 综合症A),粘多糖病VIII(MPS VIII),粘多糖病IVA(MPS IVA; Morquio综合症A),粘多糖病VI(MPS VI;Maroteaux-Lamy综合症), 异常染性脑白质营养不良(MLD),X-连锁的隐性点状软骨发育不全1, 或X-连锁的鱼鳞病(类固醇硫酸酯酶缺乏症)。在一定的实施方案中, 调节Cα-甲酰甘氨酸生成活性的试剂可以是本发明的核酸分子或肽。 在一种实施方案中,硫酸酯酶和调节Cα-甲酰甘氨酸生成活性的试剂 在同一细胞中共表达。硫酸酯酶和/或调节Cα-甲酰甘氨酸生成活性的 试剂可以是内源性或外源性的来源。如果是内源性来源,它可被活化 (例如,通过在本领域中已知的合适的位置插入强启动子和/或其它元 件)。如果是外源性的,其表达可被表达载体上的元件所驱动,或它可 靶向于细胞基因组中合适的位置以允许其被增强的表达(例如,强启 动子下游)。

    根据本发明又一方面,药物组合物被提供。组合物包含治疗硫酸 酯酶缺乏症的药学有效量的某种试剂,该试剂含有本发明的分离的核 酸分子或其表达产物,及药学上可接受的载体。

    根据本发明更进一步的方面,用于在细胞中增加硫酸酯酶活性的 方法被提供。方法包括将表达硫酸酯酶的细胞与本发明的分离的核酸 分子(例如,权利要求1-8中任一项的分离的核酸分子,具有选自SEQ ID NO:1,3,4,45,47,49,51,53,55,57,59,61,63,65,67, 69,71,73,75,77,和80-87的序列的FGE核酸分子)或其表达产 物(例如,权利要求11-15,19,20的多肽,或具有选自SEQ ID NO. 2,5,46,48,50,52,54,56,58,60,62,64,66,68,70,72, 74,76,和78的序列的肽)接触,用量为在细胞中增加硫酸酯酶活 性的有效量。细胞可表达内源性和/或外源性的硫酸酯酶。在重要的实 施方案中,内源性的硫酸酯酶被活化。在一定的实施方案中,硫酸酯 酶是艾杜糖醛酸-2-硫酸酯酶,硫酸胺酶,N-乙酰半乳糖胺-6-硫酸酯 酶,N-乙酰葡萄糖胺-6-硫酸酯酶,芳基硫酸酯酶A,芳基硫酸酯酶 B,芳基硫酸酯酶C,芳基硫酸酯酶D,芳基硫酸酯酶E,芳基硫酸 酯酶F,芳基硫酸酯酶G,HSulf-1,HSulf-2,HSulf-3,HSulf-4, HSulf-5,和/或HSulf-6。在一定的实施方案中,细胞是哺乳动物细 胞。

    根据本发明又一方面,药物组合物被提供。组合物包含治疗硫酸 酯酶缺乏症的药学有效量的被细胞产生的硫酸酯酶,和药学上可接受 的载体,其中所述细胞已与包含本发明的分离的核酸分子(例如,权利 要求1-8中的,或具有选自SEQ ID NO:1,3,4,45,47,49,51,53, 55,57,59,61,63,65,67,69,71,73,75,77,和80-87的序 列的核酸分子),或其表达产物(例如,选自SEQ ID NO.2,5,46,48, 50,52,54,56,58,60,62,64,66,68,70,72,74,76,和78 的肽)的试剂接触。

    根据本发明又一方面,分离的人FGE基因的变体等位基因(其编 码变体FGE多肽)被提供。分离的变体等位基因包含某一氨基酸序列, 该氨基酸序列在SEQ ID NO:2中至少包含一个变异,其中这至少一个 变异包含:Met1Arg;Met1Val;Leu20Phe;Ser155Pro;Ala177Pro; Cys218Tyr;Arg224Trp;Asn259Ile;Pro266Leu;Ala279Val; Arg327Stop;Cys336Arg;Arg345Cys;Ala348Pro;Arg349Gln; Arg349Trp;Arg349Trp;Ser359Stop;或其组合。

    根据本发明又一方面,分离的人类变体FGE多肽被提供。分离的 人类变体FGE多肽包含某一氨基酸序列,该氨基酸序列在SEQ ID NO:2 中至少含有一个变异,其中这至少一个变异包含:Met1Arg;Met1Val; Leu20Phe;Ser155Pro;Ala177Pro;Cys218Tyr;Arg224Trp; Asn259Ile;Pro266Leu;Ala279Val;Arg327Stop;Cys336Arg; Arg345Cys;Ala348Pro;Arg349Gln;Arg349Trp;Arg349Trp; Ser359Stop;或其组合。

    以前述任何人类变体FGE多肽为免疫原的抗体也被提供。这类抗 体包括多克隆抗体、单克隆、嵌合的抗体,也可被进行可探测性的标 记。可探测性的标记也许包含放射性元素,荧光化学物或酶。

    根据本发明又一方面,产生硫酸酯酶的细胞被提供,其中被细胞 产生的活性硫酸酯酶对总硫酸酯酶的比率得到增加。细胞包含:(i) 表达增强的硫酸酯酶,和(ii)表达增强的甲酰甘氨酸生成酶,其中被 细胞产生的活性硫酸酯酶对总硫酸酯酶的比率(即,硫酸酯酶的比活 性)相对于由缺乏甲酰甘氨酸生成酶的细胞产生的活性硫酸酯酶对总 硫酸酯酶的比率至少增加5%。在一定的实施方案中,被细胞产生的 活性硫酸酯酶对总硫酸酯酶的比率相对于由缺乏甲酰甘氨酸生成酶的 细胞产生的活性硫酸酯酶对总硫酸酯酶的比率,增加了至少10%,15%, 20%,50%,100%,200%,500%,1000%。

    根据本发明进一步的方面,在受试者中治疗硫酸酯酶缺乏症的改 进方法被提供。方法包括以在受试者中治疗硫酸酯酶缺乏症的有效量 对需要这种治疗的受试者施用硫酸酯酶,其中硫酸酯酶与有效增加硫 酸酯酶比活性的量的甲酰甘氨酸生成酶接触。在重要的实施方案中, 硫酸酯酶选自艾杜糖醛酸-2-硫酸酯酶,硫酸胺酶,N-乙酰半乳糖胺 -6-硫酸酯酶,N-乙酰葡萄糖胺-6-硫酸酯酶,芳基硫酸酯酶A,芳基 硫酸酯酶B,芳基硫酸酯酶C,芳基硫酸酯酶D,芳基硫酸酯酶E, 芳基硫酸酯酶F,芳基硫酸酯酶G,HSulf-1,HSulf-2,HSulf-3, HSulf-4,HSulf-5,和HSulf-6。在一定的实施方案中,甲酰甘氨酸 生成酶被权利要求1-8的核酸分子或具有选自SEQ ID NO:1,3,4,45, 47,49,51,53,55,57,59,61,63,65,67,69,71,73,75,77, 和80-87的序列的核酸所编码。在某些实施方案中,甲酰甘氨酸生成 酶是权利要求11-15,19,20的肽,或是具有选自SEQ ID NO.2,5, 46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76, 和78的序列的肽。

    本发明的这些和其它目标将被进一步结合本发明详细描述进行详 述。

    序列简述

    SEQ ID NO:1是人FGE cDNA的核苷酸序列。

    SEQ ID NO:2是人FGE cDNA(SEQ ID NO:1)的翻译产物的预期氨 基酸序列。

    SEQ ID NO:3是编码SEQ ID NO:2的多肽的人FGE cDNA的核苷酸 序列(即,SEQ ID NO:1的核苷酸20-1141)。

    SEQ ID NO:4是GenBank Acc.No.AK075459的核苷酸序列。

    SEQ ID NO:5是SEQ ID NO:4翻译产物的预期氨基酸序列,一未 命名的具有GenBank Acc.No.BAC11634的蛋白产物。

    SEQ ID NO:6是人艾杜糖醛酸-2-硫酸酯酶cDNA(GenBank Acc.No. M58342)的核苷酸序列。

    SEQ ID NO:7是人艾杜糖醛酸-2-硫酸酯酶cDNA(SEQ ID NO:6) 的翻译产物的预期氨基酸序列。

    SEQ ID NO:8是人硫酸胺酶cDNA(GenBank Acc.No.U30894) 的核苷酸序列。

    SEQ ID NO:9是人硫酸胺酶cDNA(SEQ ID NO:8)的翻译产物的 预期氨基酸序列。

    SEQ ID NO:10是人N-乙酰半乳糖胺-6-硫酸酯酶cDNA(GenBank Acc.No.U06088)的核苷酸序列。

    SEQ ID NO:11是人N-乙酰半乳糖胺-6-硫酸酯酶cDNA(SEQ ID NO:10)的翻译产物的预期氨基酸序列。

    SEQ ID NO:12是人N-乙酰葡萄糖胺-6-硫酸酯酶cDNA(GenBank Acc.No.Z12173)的核苷酸序列。

    SEQ ID NO:13是人N-乙酰葡萄糖胺-6-硫酸酯酶cDNA(SEQ ID NO:12)的翻译产物的预期氨基酸序列。

    SEQ ID NO:14是人芳基硫酸酯酶A cDNA(GenBank Acc.No. X52151)的核苷酸序列。

    SEQ ID NO:15是人芳基硫酸酯酶A cDNA(SEQ ID NO:14)的翻 译产物的预期氨基酸序列。

    SEQ ID NO:16是人芳基硫酸酯酶B cDNA(GenBank Acc.No. J05225)的核苷酸序列。

    SEQ ID NO:17是人芳基硫酸酯酶B cDNA(SEQ ID NO:16)的翻 译产物的预期氨基酸序列。

    SEQ ID NO:18是人芳基硫酸酯酶C cDNA(GenBank Acc.No. J04964)的核苷酸序列。

    SEQ ID NO:19是人芳基硫酸酯酶C cDNA(SEQ ID NO:18)的翻 译产物的预期氨基酸序列。

    SEQ ID NO:20是人芳基硫酸酯酶D cDNA(GenBank Acc.No. X83572)的核苷酸序列。

    SEQ ID NO:21是人芳基硫酸酯酶D cDNA(SEQ ID NO:20)的翻 译产物的预期氨基酸序列。

    SEQ ID NO:22是人芳基硫酸酯酶E cDNA(GenBank Acc.No. X83573)的核苷酸序列。

    SEQ ID NO:23是人芳基硫酸酯酶E cDNA(SEQ ID NO:22)的翻 译产物的预期氨基酸序列。

    SEQ ID NO:24是人芳基硫酸酯酶F cDNA(GenBank Acc.No. X97868)的核苷酸序列。

    SEQ ID NO:25是人芳基硫酸酯酶F cDNA(SEQ ID NO:24)的翻 译产物的预期氨基酸序列。

    SEQ ID NO:26是人芳基硫酸酯酶G cDNA(GenBank Acc.No. BC012375)的核苷酸序列。

    SEQ ID NO:27是人芳基硫酸酯酶G(SEQ ID NO:26)的翻译产 物的预期氨基酸序列。

    SEQ ID NO:28是HSulf-1cDNA(GenBank Acc.No.AY101175)的 核苷酸序列。

    SEQ ID NO:29是HSulf-1cDNA(SEQ ID NO:28)的翻译产物的 预期氨基酸序列。

    SEQ ID NO:30是HSulf-2cDNA(GenBank Acc.No.AY101176)的 核苷酸序列。

    SEQ ID NO:31是HSulf-2cDNA(SEQ ID NO:30)的翻译产物的 预期氨基酸序列。

    SEQ ID NO:32是出现于硫酸酯酶的高度保守的六肽 L/V-FGly-X-P-S-R。

    SEQ ID NO:33是合成的FGly形成底物;其一级序列是来源于人 芳基硫酸酯酶A。

    SEQ ID NO:34是混杂寡肽PVSLPTRSCAALLTGR。

    SEQ ID NO:35是Ser69寡肽PVSLSTPSRAALLTGR。

    SEQ ID NO:36是人FGE-特异性引物1199nc。

    SEQ ID NO:37是人FGE-特异性正向引物1c。

    SEQ ID NO:38是人FGE-特异性反向引物1182c。

    SEQ ID NO:39是包含EcoRI位点的人5’-FGE-特异性引物。

    SEQ ID NO:40是HA-特异性引物。

    SEQ ID NO:41是c-myc-特异性引物。

    SEQ ID NO:42是RGS-His6-特异性引物。

    SEQ ID NO:43是来自人FGE制备物的胰蛋白酶解寡肽 SQNTPDSSASNLGFR。

    SEQ ID NO:44是来自人FGE制备物的胰蛋白酶解寡肽 MVPIPAGVFTMGTDDPQIK。

    SEQ ID NO:45是人FGE2平行进化同源物(paralog)(GenBank GI: 24308053)的核苷酸序列。

    SEQ ID NO:46是人FGE2平行进化同源物(SEQ ID NO:45)的翻译 产物的预期氨基酸序列。

    SEQ ID NO:47是小鼠FGE平行进化同源物(GenBank GI: 26344956)的核苷酸序列。

    SEQ ID NO:48是小鼠FGE平行进化同源物(SEQ ID NO:47)的翻 译产物的预期氨基酸序列。

    SEQ ID NO:49是小鼠FGE定向进化同源物(ortholog)(GenBank GI:22122361)的核苷酸序列。

    SEQ ID NO:50是小鼠FGE定向进化同源物(SEQ ID NO:49)的翻 译产物的预期氨基酸序列。

    SEQ ID NO:51是果蝇FGE定向进化同源物(GenBank GI: 20130397)的核苷酸序列。

    SEQ ID NO:52是果蝇FGE定向进化同源物(SEQ ID NO:51)的翻 译产物的预期氨基酸序列。

    SEQ ID NO:53是蚊子FGE定向进化同源物(GenBank GI:2128931O) 的核苷酸序列。

    SEQ ID NO:54是蚊子FGE定向进化同源物(SEQ ID NO:53)的翻 译产物的预期氨基酸序列。

    SEQ ID NO:55是密切相关的S.coelicolor FGE定向进化同源 物(GenBank GI:21225812)的核苷酸序列。

    SEQ ID NO:56是S.coelicolor FGE定向进化同源物(SEQ ID NO:55)的翻译产物的预期氨基酸序列。

    SEQ ID NO:57是密切相关的C.efficiens FGE定向进化同源物 (GenBank GI:25028125)的核苷酸序列。

    SEQ ID NO:58是C.efficiens FGE定向进化同源物(SEQ ID NO:57) 的翻译产物的预期氨基酸序列。

    SEQ ID NO:59是N.aromaticivorans FGE定向进化同源物 (GenBank GI:23108562)的核苷酸序列。

    SEQ ID NO:60是N.aromaticivorans FGE定向进化同源物(SEQ ID NO:59)的翻译产物的预期氨基酸序列。

    SEQ ID NO:61是M.loti FGE定向进化同源物(GenBank GI: 13474559)的核苷酸序列。

    SEQ ID NO:62是M.loti FGE定向进化同源物(SEQ ID NO:61)的 翻译产物的预期氨基酸序列。

    SEQ ID NO:63是B.fungorum FGE定向进化同源物(GenBank GI: 22988809)的核苷酸序列。

    SEQ ID NO:64是B.fungorum FGE定向进化同源物(SEQ ID NO:63) 的翻译产物的预期氨基酸序列。

    SEQ ID NO:65是S.meliloti FGE定向进化同源物(GenBank GI: 16264068)的核苷酸序列。

    SEQ ID NO:66是S.meliloti FGE定向进化同源物(SEQ ID NO:65) 的翻译产物的预期氨基酸序列。

    SEQ ID NO:67是微颤菌属物种FGE定向进化同源物(GenBank GI: 14518334)的核苷酸序列。

    SEQ ID NO:68是微颤菌属物种FGE定向进化同源物(SEQ ID NO:67) 的翻译产物的预期氨基酸序列。

    SEQ ID NO:69是P.putida KT2440FGE定向进化同源物(GenBank GI:26990068)的核苷酸序列。

    SEQ ID NO:70是P.putida KT2440FGE定向进化同源物(SEQ ID NO:69)的翻译产物的预期氨基酸序列。

    SEQ ID NO:71是R.metallidurans FGE定向进化同源物(GenBank GI:22975289)的核苷酸序列。

    SEQ ID NO:72是R.metallidurans FGE定向进化同源物(SEQ ID NO:71)的翻译产物的预期氨基酸序列。

    SEQ ID NO:73是P.marinus FGE定向进化同源物(GenBank GI: 23132010)的核苷酸序列。

    SEQ ID NO:74是P.marinus FGE定向进化同源物(SEQ ID NO:73) 的翻译产物的预期氨基酸序列。

    SEQ ID NO:75是C.crescentus CB15 FGE定向进化同源物 (GenBank GI:16125425)的核苷酸序列。

    SEQ ID NO:76是C.crescentus CB15 FGE定向进化同源物(SEQ ID NO:75)的翻译产物的预期氨基酸序列。

    SEQ ID NO:77是M.tuberculosis Ht37Rv FGE定向进化同源物 (GenBank GI:15607852)的核苷酸序列。

    SEQ ID NO:78是M.tuberculosis Ht37Rv FGE定向进化同源物 (SEQ ID NO:77)的翻译产物的预期氨基酸序列。

    SEQ ID NO:79是出现在FGE定向进化同源物和平行进化同源物 的亚结构域3的高度保守六肽。

    SEQ ID NO:80是具有GenBank Acc.No.:CA379852的FGE定向 进化同源物EST片段的核苷酸序列。

    SEQ ID NO:81是具有GenBank Acc.No.:AI721440的FGE定向 进化同源物EST片段的核苷酸序列。

    SEQ ID NO:82是具有GenBank Acc.No.:BJ505402的FGE定向 进化同源物EST片段的核苷酸序列。

    SEQ ID NO:83是具有GenBank Acc.No.:BJ054666的FGE定向 进化同源物EST片段的核苷酸序列。

    SEQ ID NO:84是具有GenBank Acc.No.:AL892419的FGE定向 进化同源物EST片段的核苷酸序列。

    SEQ ID NO:85是具有GenBank Acc.No.:CA064079的FGE定向 进化同源物EST片段的核苷酸序列。

    SEQ ID NO:86是具有GenBank Acc.No.:BF189614的FGE定向 进化同源物EST片段的核苷酸序列。

    SEQ ID NO:87是具有GenBank Acc.No.:AV609121的FGE定向 进化同源物EST片段的核苷酸序列。

    SEQ ID NO:88是HSulf-3cDNA核苷酸序列.

    SEQ ID NO:89是HSulf-3cDNA(SEQ ID NO:88)的翻译产物的预 期氨基酸序列。

    SEQ ID NO:90是HSulf-4cDNA核苷酸序列.

    SEQ ID NO:91是HSulf-4cDNA(SEQ ID NO:90)的翻译产物的 预期氨基酸序列。

    SEQ ID NO:92是HSulf-5cDNA核苷酸序列.

    SEQ ID NO:93是HSulf-5cDNA(SEQ ID NO:92)的翻译产物的 预期氨基酸序列。

    SEQ ID NO:94是HSulf-6cDNA核苷酸序列.

    SEQ ID NO:95是HSulf-6cDNA(SEQ ID NO:94)的翻译产物的 预期氨基酸序列。

    附图简述

    图1:在缺乏(A)或存在(B)来自牛睾丸微粒体的可溶性抽提物的 条件下培育后的P23的MALDI-TOF质谱图示。

    图2:来源于人FGE和PFAM-DUF323种子的21种蛋白的排列的系 统发生树。

    图3:人和鼠FGE基因位点的组织。外显子显示为以盒子和亮盒子 (鼠的位点)表示。内含子线上的数字指出了以kb表示的内含子大小。

    图4:显示FGE表达质粒pXMG.1.3结构图的图表。

    图5:柱状图描述FGE表达质粒瞬时转染的36F细胞中的N-乙 酰半乳糖胺-6-硫酸酯酶活性。

    图6:柱状图描述FGE表达质粒瞬时转染的36F细胞中的N-乙 酰半乳糖胺-6-硫酸酯酶比活性。

    图7:柱状图描述FGE表达质粒瞬时转染的36F细胞中的N-乙 酰半乳糖胺-6-硫酸酯酶生产。

    图8:描述以FGE表达质粒瞬时转染的30C6细胞中的艾杜糖醛酸 -2-硫酸酯酶活性。

    图9:描述了囊括本发明的特征的试剂盒。

    发明详述

    本发明包括对编码甲酰甘氨酸生成酶(FGE)的基因的发现,此酶负 责发生在硫酸酯酶上的对硫酸酯酶功能必需的独特翻译后修饰:形成 L-Cα-甲酰甘氨酸(a.k.a.FGly和/或2-氨基-3-氧代丙酸)。已发现, 出人意料地,FGE基因中的突变引起受试者中的多种硫酸酯酶缺乏症 (MSD)的发展。也已发现,出人意料地,FGE增强硫酸酯酶的活性,包 括但不限于,艾杜糖醛酸-2-硫酸酯酶,硫酸胺酶,N-乙酰半乳糖胺 -6-硫酸酯酶,N-乙酰葡萄糖胺-6-硫酸酯酶,芳基硫酸酯酶A,芳基 硫酸酯酶B,芳基硫酸酯酶C,芳基硫酸酯酶D,芳基硫酸酯酶E, 芳基硫酸酯酶F,芳基硫酸酯酶G,HSulf-1,HSulf-2,HSulf-3, HSulf-4,HSulf-5,和HSulf-6,及在申请号为20030073118, 20030147875,20030148920,20030162279和20030166283的U.S.临 时申请中所述的硫酸酯酶(其内容被清楚地整合在本文中)。考虑到 这些发现,本发明的分子可用于诊断和/或治疗多种硫酸酯酶缺乏症, 以及其它硫酸酯酶缺乏症的治疗。

    在诊断多种硫酸酯酶缺乏症中应用本发明的分子的方法被提供。

    此外,为了对硫酸酯酶上FGly的形成进行调节的目的而在体内或 体外应用这些分子的方法,治疗与这种修饰相关的病症的方法,及在 制备用于治疗多种硫酸酯酶缺乏症及其它硫酸酯酶缺乏症的治疗性制 剂中有用的组合物也被提供。

    本发明因此在几个方面中包括调节硫酸酯酶上的FGly的形成的 多肽,编码这些多肽的分离的核酸,前述的功能性修饰物和变体,前 述的有用片段,以及治疗、诊断和研究的方法、组合物和与其相关的 工具。

    “Cα-甲酰甘氨酸生成活性”指分子在底物上形成FGly或增强 FGly形成的能力。底物也许是如本文其它部分所述的硫酸酯酶,或合 成的寡肽(参见,例如SEQ ID NO:33,和实施例)。底物优选包含SEQ ID NO:32的保守六肽[L/V-C(S)-X-P-S-R]。分析FGly形成的方法如本领 域中(参见,例如Dierks,T.等,Proc.Natl.Acad.Sci.U.S.A., 1997,94:11963-11968),和本文其它部分(参见,例如实施例)所描 述。在本文中所用的“分子”包含“核酸”和“多肽”。FGE分子能 在体内和体外形成FGly,或增强/增加FGly的形成。

    在本文中所用的“增强(或“增加”)”Cα-甲酰甘氨酸生成活性, 典型地指增加FGE和/或它编码的多肽表达。增加的表达指增加(即, 到可探测的程度)本发明任意核酸(如本文其它部分所描述的FGE核 酸)的复制、转录和/或翻译,既然上调任何这些过程将导致基因(核 酸)所编码多肽的浓度/数量的增加。增强(或增加)Cα-甲酰甘氨酸生 成活性也指防止或抑制FGE的降解(例如通过增加的泛素化作用)、下 调等,所述降解和下调导致例如相对于对照被增加的或稳定的FGE分 子t1/2(半衰期)。下调或减少的表达指基因和/或它编码的多肽减少的 表达。通过使用本领域已知的任何适合的方法例如核酸杂交或抗体探 测方法,分别探测基因(例如FGE)mRNA水平或基因所编码的多肽的蛋 白表达水平相对于对照的增加或是减少,可直接测定基因表达的上调 或下调。FGE基因表达的上调或下调也能通过探测Cα-甲酰甘氨酸生成 活性的变化而间接测定。

    在本文中所用的“表达”指核酸和/或多肽表达,以及多肽分子的 活性(例如分子的Cα-甲酰甘氨酸生成活性)。

    本发明的一个方面包括对编码FGE的cDNA的克隆。根据本发明的 FGE是包含SEQ ID NO:1的核酸分子的分离的核酸分子,并编码具有 Cα-甲酰甘氨酸生成活性的多肽。人FGE cDNA的序列以SEQ ID NO:1 而出现,此cDNA编码的蛋白产物的预期氨基酸序列以SEQ ID NO:2 出现。

    在本文中所用的受试者是哺乳动物或非人类的哺乳动物。在所有 实施方案中,人FGE和人受试者都是优选。

    本发明因此在一个方面包括分离的FGE多肽,编码此多肽的cDNA, 前述的功能性修饰物和变体,前述的有用片段,以及与其相关的诊断 和治疗。

    在本文中所用的关于核酸的术语“分离的”表示:(i)在体外通 过例如聚合酶链式反应(PCR)所扩增的;(ii)通过克隆所重组性地产 生的;(iii)如通过切断和凝胶分离所纯化的;或(iv)通过例如化 学合成所合成。分离的核酸是容易通过本领域众所周知的重组DNA技 术操作的类型。因此,包含在一定载体中的核苷酸序列被认为是分离 的,其中所述载体的5’和3’限制性位点已知或者其聚合酶链式反 应(PCR)引物序列已被公开,但在其天然宿主中以其天然状态存在的核 酸不是分离的。分离的核酸可被充分纯化,但不必这样。例如,在克 隆或表达载体内的分离的核酸不纯,这在于它在其寄生的细胞中也许 只包含很少百分比的物质。然而,这种核酸是分离的,如本文中所用 的术语一样,因为它容易通过本领域中一般技术人员所知道的标准技 术被操作。

    在本文中所用的关于多肽的术语“分离的”表示从其天然环境中 被以充分纯的形式分开以至于它可被操作于或用于本发明的任一目 的。因此,“分离的”表示纯度足以(i)用于生产和/或分离抗体,(ii) 用作分析中的试剂,(iii)用于测序,(iv)用作治疗等。

    根据本发明,编码具有Cα-甲酰甘氨酸生成活性的FGE多肽的分离 的核酸分子包括:(a)核酸分子,其在严格条件下与SEQ ID NO:1的核 酸所组成的分子杂交并编码具有Cα-甲酰甘氨酸生成活性的FGE多肽, (b)(a)的删除、添加和置换物,其编码各自的具有Cα-甲酰甘氨酸生 成活性的FGE多肽,(c)因为遗传密码简并性而与(a)或(b)的核酸分 子在密码子序列中不同的核酸分子,和(d)(a),(b)或(c)的互补 链。在本文中所用的“互补链”包括“(a),(b)或(c)的全长互补链或 100%的互补链”。

    也具有Cα-甲酰甘氨酸生成活性的本发明的FGE核酸的同源物和 等位基因也被本发明所包含。本文所述的同源物,包括本文其它部分 所鉴别的分子(参见例如SEQ ID NOs:4,5,45-78,和80-87)即定 向进化同源物和平行进化同源物。进一步的,同源物能依照本发明的 指导以及传统技术所鉴别。既然本文所述的FGE同源物全都具有Cα- 甲酰甘氨酸生成活性,它们能与人FGE分子在本发明的所有方面中互 换性使用。

    因此,本发明的一个方面是那些编码FGE多肽并在严格条件下与 SEQ ID NO:1的编码区所组成的核酸分子杂交的核酸序列。在重要的 实施方案中,如在此所用的术语“严格条件”指本领域所熟悉的参数。 对核酸,被称为严格的杂交条件典型的是在低离子强度和恰好低于 DNA杂交复合物熔点(Tm)(典型地,低于杂交物Tm约3℃)的温度下。 更高的严格性限定了探针序列和靶之间更专一的相关性。核酸杂交中 所用的严格条件在本领域中众所周知,可在汇编这类方法的参考文献 中找到,例如Molecular Cloning:A Laboratory Manual,J. Sambrook等编,Second Edition,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,New York,1989,或Current Protocols in Molecular Biology,F.M.Ausubel等编,John Wiley & Sons, Inc.,New York.“严格条件”的实例是在6xSSC中于65℃下杂 交。另一严格条件的实例是在杂交缓冲液中于65℃下杂交,杂交缓冲 液由3.5xSSC,0.02%Ficoll,0.02%聚乙烯吡咯烷酮,0.02%牛血 清白蛋白,2.5mM NaH2PO4[pH7],0.5%SDS,2mM EDTA组成(SSC是 0.15M氯化钠/0.15M柠檬酸钠,pH7;SDS是十二烷基硫酸钠;而 EDTA是乙二胺四乙酸)。杂交之后,转上DNA的膜在2xSSC中于室 温下清洗,然后在最高68℃的温度下于0.1xSSC/0.1xSDS中清洗。 在进一步的实施例中,杂交水溶液的使用的替代是杂交甲酰胺溶液的 使用。应用例如50%甲酰胺溶液和42℃,严格的杂交条件能因此被实 现。有其它能被应用的条件、试剂等,并将导致类似的严格程度。技 术人员将熟悉这类条件,因此它们不在这里给出。然而,需要被理解 的是,技术人员将能以允许清晰鉴别本发明FGE核酸的同源物和等位 基因的方式操控条件。技术人员也将熟悉对于细胞和之后将被常规分 离的这类分子的表达库进行筛选,然后再分离相关的核酸分子和序列 的方法。

    一般地,同源物和等位基因典型地将分别与SEQ ID NO:1和SEQ ID NO:2具有至少40%核苷酸同一性和/或至少50%氨基酸同一性,在某些 情况下将具有至少50%核苷酸同一性和/或至少65%氨基酸同一性,而 在其它情况下将具有至少60%核苷酸同一性和/或至少75%氨基酸同 一性。在进一步的情形中,同源物和等位基因典型地将分别与SEQ ID NO:1和SEQ ID NO:2具有至少90%,95%或甚至99%的核苷酸同一性 和/或至少95%,98%或甚至99%的氨基酸同一性。同一性可应用多种 由NCBI(Bethesda,Maryland)开发的公开可得的软件工具计算得到。 示例的工具包括Altschul SF等的启发式算法(J Mol Biol,1990, 215:403-410),也称为BLAST。Pairwise和ClustalW比对(BLOSUM30 矩阵设置)以及Kyte-Doolittle水疗分析可应用公开(EMBL, Heidelberg,Germany)和商业(例如来自Oxford Molecular Group/Genetics Computer Group,Madison,WI的MacVector序列分 析软件)的类型而获得。前述核酸的Watson-Crick互补链也被本发明 所包括。

    在对FGE相关基因如FGE的同源物和等位基因的筛选中,Southern 印迹可应用前述条件以放射性探针来完成。对DNA最终转移上去的膜 进行清洗之后,此膜可放置到X-射线胶片或磷成像平板 (phosphoimager plate)以探测放射性信号。

    在此给定关于全长人FGE cDNA克隆的指导,则对应于人FGE基因 的其它哺乳动物序列如小鼠cDNA克隆可应用标准菌落杂交技术从 cDNA库中分离。

    本发明也包括含有天然物质中出现的那些密码子的替代物的简并 核酸。例如,丝氨酸残基被密码子TCA,AGT,TCC,TCG,TCT和AGC 编码。因此,本领域一般技术人员将很明白,任何丝氨酸编码核苷酸 三联体可被用于在体内或体外指导蛋白质合成装置,以将丝氨酸残基 整合进入正在延伸的FGE多肽。类似地,编码其它氨基酸残基的核苷 酸序列三联体包括但不限于:CCA,CCC,CCG和CCT(脯氨酸密码子); CGA,CGC,CGG,CGT,AGA和AGG(精氨酸密码子);ACA,ACC,ACG和 ACT(苏氨酸密码子);AAC和AAT(天冬酰胺密码子);及ATA,ATC和 ATT(异亮氨酸密码子)。其它氨基酸残基可类似地被若干核苷酸序列 编码。因此,本发明包括与生物学上分离的核酸在密码子序列中因遗 传密码简并性而有所不同的简并核酸。

    本发明也提供分离的SEQ ID NO:1或SEQ ID NO:3或其互补链的 独特片段。独特片段是这样的类型,它是更大的核酸的“标志”。例 如,独特片段长度足以确保其精确序列无法在人基因组中位于上述 FGE核酸(及人的等位基因)之外的分子中找到。那些本领域中的一 般技术人员可不必应用常规之外的程序来测定片段是否在人基因组中 是独特的。然而,独特片段排除完全由选自SEQ ID NO:4和/或其它如 本申请的申请日以前发表过的序列的核苷酸序列所组成的片段。

    完全由前述GenBank保藏库描述的序列所组成的片段不包括任何 对于本发明序列而言独特的核苷酸。因此,根据本发明的独特片段必 须包含除那些GenBank保藏库中的确切序列或其片段之外的核苷酸序 列。区别可以是相对于GenBank序列的添加、删除或置换,或可以是 完全不同于GenBank序列的序列。

    独特片段能在Southern和Northern印迹分析中用作探针以鉴别 这类核酸,或能用于如那些采用PCR的扩增分析。如本领域技术人员 已知的,大探针如200,250,300或更多的核苷酸优选用于一定的应 用如Southern和Northern印迹,而更小的片段将优选用于例如PCR。 独特片段也能被用于产生融合蛋白,以产生抗体或测定如实施例中证 明的多肽片段的结合或产生免疫分析组分。同样地,独特片段可被用 于产生例如在抗体制备、免疫分析或治疗应用中有用的FGE多肽非融 合片段。独特片段进一步地可被用作反义分子以抑制FGE核酸和多肽 各自的表达。

    如将被本领域技术人员所认识到的一样,独特片段的大小将依赖 于其遗传密码中的保守性。因此,SEQ ID NO:1或SEQ ID NO:3的部 分区域和互补链将需要更长的节段来实现独特,而其它的只需要短节 段,典型的是长12和32个核苷酸之间(例如12,13,14,15,16,17, 18,19,20,21,22,23,24,25,26,27,28,29,30,31和32 碱基)或更长,长到公开序列的全长。如上述所提及的,此公开内容倾 向于包含每一序列的每一片段,起点在第一核苷酸、第二核苷酸等等, 直到离末端剩下8个核苷酸,而终点在从第8、9、10核苷酸等等开始 直到恰好最后一个核苷酸的任何位置(前提为序列是如上述的独特片 段)。事实上SEQ ID NO:1区域的以核苷酸1开始而在核苷酸1180 终止或SEQ ID NO:3区域的以核苷酸1开始而在核苷酸1122终止的 任何节段或其互补链,长度为20或更多核苷酸都将是独特的。本领域 技术人员对选择这类序列的方法(一般是基于独特片段选择性区分目 的序列与人类基因组中其它序列的能力)很精通,虽然可以进行体外 的证实性的杂交和序列分析。

    如上述所提及的,本发明包含选择性结合编码FGE多肽的核酸分 子以减少FGE活性的反义寡核苷酸。

    在本文中所用的术语“反义寡核苷酸”或“反义”描述一定的寡 核苷酸,该寡核苷酸是在生理条件下与包含特定基因的DNA或该基因 的mRNA转录产物杂交,而因此抑制该基因的转录和/或该mRNA的翻译 的寡核糖核苷酸,寡脱氧核糖核苷酸,修饰后的寡核糖核苷酸,或 修饰后的寡脱氧核糖核苷酸。反义分子被设计成与靶基因或转录物杂 交以干扰靶基因的转录或翻译。本领域技术人员将认识到反义寡核苷 酸的确切长度和它与其目标互补的程度将依赖于所选的特异靶,包括 靶的序列和构成那一序列的特定碱基。优选反义寡核苷酸被构建和安 排成在生理条件下选择性地与靶结合,即相对于靶细胞中的任何其它 序列在生理条件下更充分地与靶序列杂交。基于SEQ ID NO:1或基于 等位基因或同源基因组和/或cDNA序列,本领域中的技术人员能容易 地挑选和合成出大量合适的反义分子中的任何类型以根据本发明而应 用。为了具有充分的选择性和充分有能力进行抑制,这类反义寡核苷 酸应包含与靶互补的至少10个和更多连续碱基,优选至少15个,虽 然在某些情形中长度短至7个碱基的修饰后的寡核苷酸被成功用作反 义寡核苷酸(Wagner等,Nat.Med,1995,1(11):1116-1118;Nat. Biotech.,1996,14:840-844)。最优选的是,反义寡核苷酸包含20 -30个碱基的互补序列。虽然对基因或mRNA转录物任何区段反义的 寡核苷酸可被选出,在优选实施方案中,反义寡核苷酸对应于N端或 5’上游位点例如翻译起点、转录起点或启动子位点。此外,3’-非翻 译区可被反义寡核苷酸所靶向。对mRNA拼接位点的靶向也在本领域中 应用,但如果替代性的mRNA拼接发生,则可能不是那么被优选。此外, 反义物优选靶向于不希望出现mRNA二级结构(参见,例如Sainio等, Cell Mol.Neurobiol.14(5):439-457,1994)和不希望出现蛋白结 合的位点。最后,虽然SEQ ID No:1公开了cDNA序列,本领域中的一 般技术人员可容易地得到对应于此序列的基因组DNA。因此,本发明 也提供与对应于SEQ ID NO:1的基因组DNA互补的反义寡核苷酸。类 似地,等位基因或同源FGE cDNAs和基因组DNAs的反义物也能应用, 而不需要过度的实验。

    在一组实施方案中,本发明的反义寡核苷酸可由“天然”脱氧 核糖核苷酸,核糖核苷酸,或它们的任意组合所组成。也就是,一种 天然核苷酸的5’末端和另一天然核苷酸的3’末端可通过核苷间的磷 酸二酯键共价连接,如在天然系统中的一样。这些寡核苷酸可通过领 域内认可的方法制备,所述方法可人工或通过自动合成仪而实施。它 们也可通过载体被重组性地产生。

    然而,在优选的实施方案中,本发明的反义寡核苷酸也可包括“修 饰后的”寡核苷酸。也就是,寡核苷酸可通过许多不会阻止它们杂交 至其目标但增强它们的稳定性或靶向性或者增强它们的治疗效力的方 式被修饰。

    在本文中所用的术语“修饰后的寡核苷酸”描述这样的寡核苷酸, 其中(1)其核苷酸中的至少两个通过合成性的核苷间连接而共价连接 (即,一个核苷酸5’末端和另一核苷酸3’末端之间除磷酸二酯键之外 的连接)和/或(2)通常不与核酸连接的化学基团已被共价附着到 寡核苷酸。优选的合成性核苷间连接是硫代磷酸酯,烷基膦酸酯, 二硫代磷酸酯,磷酸酯,烷基硫代硫酸酯 (alkylphosphonothioates),氨基磷酸酯,氨基甲酸酯,碳酸酯, 磷酸三酯,acetamidates,羧甲基酯和肽。

    术语“修饰后的寡核苷酸”也包括具有被共价修饰的碱基和/ 或糖的寡核苷酸。例如,修饰后的寡核苷酸包括具有已在除3’位置 羟基和5’位置磷酸基之外的位置共价附着到低分子量有机基团的糖 骨架的寡核苷酸。因此修饰后的寡核苷酸可包括2’-O-烷基化核糖基 团。此外,修饰后的寡核苷酸可包括糖,例如代替核糖的阿拉伯糖。

    本发明因此涉及含有修饰后的反义分子与药学上可接受的载体的药物 制剂,所述反义分子与编码FGE多肽的核酸互补并在生理条件下杂交。 反义寡核苷酸可作为药物组合物的一部分被施用。这类药物组合物可 包括与任何本领域中已知的生理性和/或药学上可接受的标准载体组 合的反义寡核苷酸。组合物应是消毒过的,并以适合对患者施用的单 位重量或体积而含有药学有效量的反义寡核苷酸。术语“药学上可接 受的”表示不干扰活性成分的生物活性的效力的非毒性物质。术语 “生理上可接受的”指与生物系统如细胞、细胞培养物、组织或器官 相容的非毒性物质。载体的特征将依赖于施用途经。生理上和药学上 可接受的载体包括本领域众所周知的稀释剂、填充物、盐、缓冲剂、 稳定物、增溶剂和其它物质。

    本发明也包括在细胞中增加Cα-甲酰甘氨酸生成活性的方法。在 重要的实施方案中,这通过应用载体(“表达载体”和/或“靶向载 体”)而完成。

    在本文中所用的“载体”可以是多种某类核酸中的任何类型,所 需序列可通过限制和连接而插入所述核酸以在不同遗传环境间运输或 在宿主细胞中表达。载体典型地由DNA组成,虽然RNA载体也可用。 载体包括但不限于质粒、噬菌粒和病毒基因组。克隆载体是能在宿主 细胞中复制,并进一步以一个或更多核酸内切酶限制性位点为特征的 类型,载体能以可测方式在所述核酸内切酶限制性位点处被切断,所 需DNA序列可连接进入所述位点处而使得新重组载体保持其在宿主细 胞中复制的能力。在质粒的情形中,所需序列的复制可因为质粒在宿 主菌内增加拷贝数目而发生很多次,或在宿主通过有丝分裂而复制之 前在每一宿主中恰好单独一次。在噬菌体的情形中,复制可在裂解期 期间主动发生或在溶原期被动发生。“表达载体”是这样的类型,所 需DNA序列(例如SEQ ID NO:3的FGE cDNA)通过限制和连接插入其中 而使得所需DNA序列被可操作性地连接于调节序列并可表达为RNA转 录物。载体可进一步包含一个或更多适合用于鉴别细胞已被或未被载 体转化或转染的标记序列。标记包括,例如增加或减少对抗生素或其 它化合物的抗性或敏感性的蛋白的编码基因,其活性通过本领域中已 知的标准分析可测的酶(例如β-半乳糖苷酶或碱性磷酸酶)的编码基 因,及可视性地影响转化或转染细胞、宿主、菌落或菌斑的表型(如 绿色荧光蛋白)的基因。

    “靶向载体”是典型地含有一定靶向性结构/序列的类型,所述靶 向性结构/序列用于例如在内源性基因中(例如,在外显子和/或内含子 序列内),内源性基因启动子序列中,或内源性基因启动子序列上游 插入调节序列。在另一实施例中,靶向载体可包含目的基因(例如SEQ ID NO:1的cDNA所编码的)和对基因靶向于基因组中优选位置所需的 其它序列(例如,转录活跃位置如无关基因的内源启动子下游)。靶向 性构建体和载体的构建在U.S.Patents 5,641,670和6,270,989中 详细描述,其被清楚地整合在本文中作为参考。

    事实上,任何能被异源性DNA或RNA转化并能在培养基中生长或 保存的细胞(原核或真核),可被用在本发明的实践中。实施例包括 细菌细胞如大肠杆菌,昆虫细胞,和哺乳动物如人、小鼠、仓鼠、猪、 山羊、灵长类等的细胞。它们可以是原代或次级细胞株(其在培养中显 示有限数目的平均群体倍增而不是永久的)和永久的细胞系(其在培养 中显示明显的无限寿命)。原代和次级细胞包括,例如,成纤维细胞,角 质化细胞,上皮细胞(例如乳腺上皮细胞,肠上皮细胞),内皮细胞, 神经胶质细胞,神经细胞,血液的组成成分(例如淋巴细胞,骨髓细 胞),肌肉细胞和这些体细胞类型的前体包括胚胎干细胞。在细胞将被 在基因治疗中应用时,原代细胞优选从施予操作后的细胞的个体中获 得。然而,原代细胞能从相同物种的供体(而不是受体)获得。可与 本发明的DNA构建物和方法一起应用的永久的人细胞系实例包括但 不限于HT-1080细胞(ATCC CCL 121),HeLa细胞和HeLa细胞衍生 物(ATCC CCL 2,2.1和2.2),MCF-7乳腺癌细胞(ATCC BTH 22), K-562白血病细胞(ATCC CCL 243),KB癌细胞(ATCC CCL 17), 2780AD卵巢癌细胞(Van der Blick,A.M.等,Cancer Res, 48:5927-5932(1988),Raji细胞(ATCC CCL 86),WiDr结肠腺癌 细胞(ATCC CCL 218),SW620结肠腺癌细胞(ATCC CCL 227),Jurkat 细胞(ATCC TIB 152),Namalwa细胞(ATCC CRL1432),HL-60细胞 (ATCC CCL 240),Daudi细胞(ATCC CCL 213),RPMI 8226细胞(ATCC CCL 155),U-937细胞(ATCC CRL 1593),Bowes黑色素瘤细胞(ATCC CRL 9607),WI-38VA13亚系2R4细胞(ATCC CLL 75.1),和MOLT-4 细胞(ATCC CRL 1582),CHO细胞,和COS细胞,以及通过人细胞 和另一物种细胞融合而产生的异杂交瘤细胞。次级人成纤维细胞株, 如WI-38(ATCC CCL 75)和MRC-5(ATCC CCL 171)也可被应用。对 可在实践本发明的方法中应用的细胞类型的进一步讨论,在U.S. Patents 5,641,670和6,270,989中被描述。无细胞的转录系统也可 代替细胞。

    本发明的细胞被保存在本领域已知的条件下,这将引起FGE蛋白 或其功能性片段的表达。应用所述方法,表达的蛋白可从细胞裂解物 或细胞上清中纯化。根据此方法制得的蛋白质能被制成药学上有用的 配剂,并通过本领域中已知的传统药学途径而递送至人或非人的动物 (例如口服,静脉内,肌肉内,鼻内,气管内或皮下)。如本文其它部 分所描述的,重组细胞可以是永生化的、原代的或次级的细胞,优选 人的细胞。来自其它物种的细胞的应用可在一定的情形中是合意的, 所述情形为非人细胞有利于在所产生的非人FGE在药学上有用的情况 下的蛋白产生的目的。

    在本文中所用的编码序列和调控序列,当它们以将编码序列的表 达或转录置于调控序列的影响或控制之下的方式而共价连接时,被表 述成“可操作性地”连接。如果期望编码序列被翻译成功能性蛋白质, 而假如5’调控序列中的启动子的诱导导致编码序列的转录,并且两 个DNA序列间的连接(1)不会导致移码突变的引入,(2)不会干扰启 动子区域指导编码序列转录的能力,或(3)不会干扰相应的RNA转录 物被翻译成为蛋白的能力,则两个DNA序列被表述成“可操作性地” 连接。因此,如果启动子区域能影响那一DNA序列的转录从而所得的 转录物可被翻译成所期望的蛋白或多肽,则启动子区域将可操作性地 连接编码序列。

    基因表达所需的调控序列的精确本质可在物种或细胞类型间变 动,但将一般性地包括,如所必需的,于转录和翻译各自启动有关的 5’非转录和5’非翻译序列,如TATA盒,加帽序列,CAAT序列和 类似物。尤其是,这类5’非转录调控序列将包括包含对可操控性连 接的基因进行转录控制的启动子序列的启动子区域。调控序列也可包 括所期望的增强子序列或上游激动子序列。本发明的载体可随意包括 5’前导或信号序列。对合适载体的选择和设计是在本领域一般技术人 员的能力和指导之内。

    包含所有表达必需的元件的表达载体可商业性地获得,并为本领 域技术人员所知。参见,例如Sambrook等,Molecular Cloning:A Laboratory Manual,Second Edition,Cold Spring Harbor Laboratory Press,1989。细胞通过编码FGE多肽或其片段或变体的 异源性DNA(RNA)被引入而基因工程化。那一DNA(RNA)被置于转录元 件的可操作性控制之下,以允许异源DNA在宿主细胞中的表达。

    用于在哺乳动物细胞中表达mRNA的优选系统例如包含选择标记 如给予G418抗性的基因(其促进对稳定性转染的细胞系的选择)和人 细胞巨化病毒(CMV)增强子-启动子序列的pRc/CMV(可从 Invitrogen,Carlsbad,CA得到)。此外,适合在灵长类和犬类细胞 系中进行表达的类型有pCEP4载体(Invitrogen,Carlsbad,CA), 其包含促进质粒作为多拷贝的染色体外元件而保存的EB病毒(EBV) 复制起点。另一表达载体是包含多肽延伸因子1α的启动子的pEF-BOS 质粒,其有效刺激了体外的转录。质粒被Mishizuma和Nagata(Nuc. Acids Res.18:5322,1990)描述,而其在转染实验中的应用已得到公 开,例如,Demoulin(Mol.Cell.Biol.16:4710-4716,1996)。又 一优选的表达载体是Stratford-Perricaudet所述的腺病毒,其E1 和E3蛋白有缺陷(J.Clin.Invest.90:626-630,1992)。腺病毒 作为Adeno.P1A重组体的应用被Warnier等所公开,用于在小鼠皮内 注射以得到抗P1A的免疫化(Int.J.Cancer,67:303-310,1996)。

    本发明也包括所谓的表达试剂盒,其允许技术人员制备所期望的 表达载体或载体。这类表达试剂盒至少包括每一前面讨论的编码序列 的单独部分。其它成分可按需要添加,只要前面提到的所需的序列被 包括在内。

    也应认识到,本发明包含上述的包含表达FGE cDNA序列的载体转 染宿主细胞和细胞系的应用,这些细胞是原核(例如大肠杆菌)或真核 性(例如CHO细胞,COS细胞,酵母表达系统和在昆虫细胞中表达的 杆状病毒)的。尤其有用的是哺乳动物细胞如人,小鼠,仓鼠,猪, 山羊,灵长动物等的细胞。它们可以是多种组织类型,包括如本文其 它部分所描述的原代细胞和永生化的细胞系。具体实例包括HT-1080 细胞,CHO细胞,树状细胞,U293细胞,外周血白细胞,骨髓干细 胞,胚胎干细胞,和昆虫细胞。本发明也允许细胞和动物中的FGE基 因“敲除”的构建,为研究FGE活性的某些方面提供材料。

    本发明也提供被前述FGE核酸编码的分离的多肽(包括完整蛋白 和部分蛋白),也包括SEQ ID NO:2的多肽和其独特片段。这类多肽 可用于,例如,单独或作为融合蛋白的部分去产生作为免疫分析成分 的抗体。多肽可以是从生物样本包括组织或细胞匀浆中分离的,也可 是在多种原核或真核表达系统中重组性表达的,所述重组性表达通过 构建适合于表达系统的表达载体,将表达载体引入表达系统,及分离 重组性表达的蛋白而完成。短多肽,包括抗原性肽(如被MHC分子呈 递在细胞表面以进行免疫识别的)也能应用已良好建立的肽合成方法 化学合成。

    一般而言,FGE多肽的独特片段具有如上述讨论的与核酸相关的 独特片段的特征和特性。如本领域技术人员将认识到的,独特片段的 大小将依赖于一定的因素,例如片段是否组成了保守蛋白结构域的一 部分。因此,SEQ ID NO:2的部分区域将需要更长的片段以保证独特, 而其它的只需要短片段,典型的是在5和12个氨基酸之间(例如5,6, 7,8,9,10,11和12氨基酸长或者更多,包括每一整数直到全长, 287个氨基酸长)。

    多肽的独特片段优选保持明显的多肽功能能力的那些片段。可被 保持在多肽的独特片段中的功能能力包括与抗体的相互作用、与其它 多肽或其片段的相互作用,与其它分子的相互作用等。一种重要的活 性是作为鉴别多肽的标签而起作用的能力。本领域技术人员很精通于 选择独特氨基酸序列的方法,典型的是基于独特片段从非家族成员中 选择性识别出目的序列的能力。片段的序列与那些数据库中已知序列 进行比较即是所需的。

    本发明包括上述FGE多肽的变体。在本文中所用的FGE多肽的“变 体”是包含一种或更多对FGE多肽一级氨基酸序列的修饰的多肽。创 造FGE多肽变体的修饰,典型的是被施加给编码FGE多肽的核酸,可 包括删除、点突变、截断、氨基酸置换和氨基酸或非氨基酸部分的添 加,以:1)减少或消除FGE多肽的活性;2)增强FGE多肽的性质, 如表达系统中的蛋白稳定性或蛋白-配体结合的稳定性;3)对FGE多肽 提供新活性或性质,如抗原性表位的添加或可探测部分的添加;或4) 提供与FGE多肽受体或其它分子的相等或更好的结合。替代性地,修 饰可直接施加给多肽,如通过切断,连接分子的添加,可探测部分如 生物素的添加,脂肪酸的添加和类似的方式。修饰也包括包含全部或 部分FGE氨基酸序列的融合蛋白。本领域技术人员将会熟悉预测蛋白 序列变化对蛋白构象的影响的方法,并能因此根据已知方法而“设计” FGE多肽的变体。这种方法的一个实例被Dahiyat和Mayo在Science 278:82-87,1997中描述,其中蛋白质可被重新设计。此方法能被应用 于已知的蛋白,以仅改变多肽序列的一部分。通过应用Dahiyat和 Mayo的计算方法,具体的FGE多肽的变体可得到提议和被测试以测定 变体是否保持了所期望的构象。

    变体可包括被专一修饰的FGE多肽,所述修饰是为了改变多肽的 与其生理活性无关的特征。例如,半胱氨酸残基能被置换或删除以防 止不必要的二硫键连接。类似地,一定的氨基酸可被改变以通过消除 表达系统中由蛋白酶作用的蛋白水解而增强FGE多肽的表达(例如存 在KEX2蛋白酶活性的酵母表达系统中的双碱性氨基酸残基)。

    编码FGE多肽的核酸的突变优选保存编码序列的氨基酸阅读框, 并优选不在核酸中创造出很可能杂交以形成二级结构的区域,二级结 构例如发卡或环结构能对变体多肽的表达有害。

    突变可通过选择氨基酸置换或多肽编码核酸中选定位置的随机突 变而发生。变体多肽随后得到表达,并进行对一种或更多活性的检测, 以测定哪个突变为变体多肽提供了期望的性质。进一步的对多肽的氨 基酸序列而言沉默的突变可提供给变体(或非变体的FGE多肽),但 其提供在特定宿主中优选的翻译密码子,或改变mRNA的结构以,例如, 增强稳定性和/或表达。优选的在例如大肠杆菌、哺乳动物细胞等中的 核酸翻译密码子,对本领域中的一般技术人员而言众所周知。其它突 变也可提供给FGE基因或cDNA克隆的非编码序列以增强多肽的表达。

    技术人员将意识到保守氨基酸置换可发生在FGE多肽中以提供功 能等同的前述多肽的变体,即,变体保持FGE多肽的功能能力。在本 文中所用的“保守氨基酸置换”指不显著改变三级结构和/或多肽活 性的氨基酸置换。变体可根据本领域一般技术人员已知的改变多肽序 列的方法而制备,并包括那些在汇编这类方法的参考文献中找到的类 型,例如Molecular Cloning:A Laboratory Manual,J.Sambrook 等编,Second Edition,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,New York,1989,或Current Protocols in Molecular Biology,F.M.Ausubel等编,John Wiley & Sons,Inc.,New York。 示例性的FGE多肽的功能等同性变体包括对SEQ ID NO:2的保守氨基 酸置换。保守氨基酸置换包括发生在下列组群内部氨基酸中间的置换: (a)M,I,L,V;(b)F,Y,W;(c)K,R,H;(d)A,G;(e)S,T; (f)Q,N;和(g)E,D.

    因此FGE多肽的功能等同的变体,即,保持天然FGE多肽功能的 FGE多肽的变体被本发明所涉及。FGE多肽氨基酸序列中产生功能等同 性变体的保守氨基酸置换,典型地是通过编码FGE多肽的核酸(SEQ ID NOs:1,3)的改变所提供。这类置换可通过多种本领域一般技术人员已 知的方法而得到。例如,氨基酸置换可通过PCR导向突变,根据Kunkel 的方法(Kunkel,Proc.Nat.Acad.Sci.U.S.A.82:488-492,1985) 的定点突变,或编码FGE多肽的基因的化学合成而得到。FGE多肽的 功能等同片段的活性能通过:将编码改变后的FGE多肽的基因克隆进 细菌或哺乳动物表达载体,将载体引入合适的宿主细胞,表达改变后 的FGE多肽,和测试在本文中公开的FGE多肽的功能能力(例如Cα- 甲酰甘氨酸生成活性等),而得到测试。

    在本文中所述的发明具有许多应用,其中的一部分在本文其它部 分被描述。首先,本发明允许对FGE多肽的分离。技术从业人员众所 周知的多种方法能被用于得到分离的FGE分子。多肽可从天然产生多 肽的细胞中通过层析方式或免疫识别而纯化。替代性地,表达载体可 被引入细胞以引起多肽的产生。在另一方法中,mRNA转录物可被微注 射或另外地被引入细胞以引起被编码的多肽的产生。FGE mRNA在无细 胞抽提物如网织红细胞降解系统中的翻译也可被用于产生FGE多肽。 本领域技术人员也可容易地遵循已知的分离FGE多肽的方法。这些包 括但不限于免疫层析,HPLC,大小排阻层析,离子交换层析和免疫亲 和层析。

    在一定的实施方案中,本发明也提供来源于FGE多肽的“显性失 活”多肽。显性失活多肽是蛋白质的失活变体,其通过与细胞机制相 互作用而从活性蛋白与细胞机制的相互作用中取代了活性蛋白,或与 活性蛋白竞争,而减小了活性蛋白的效应。例如,与配体结合但不会 转导响应于配体结合的信号的显性失活受体能减小配体表达的生物学 效应。同样地,与靶蛋白正常相互作用但不磷酸化靶蛋白的显性失活 催化惰性激酶,能减少靶蛋白响应于细胞信号的磷酸化。类似地,结 合到基因调控区域的启动子位置但不增加基因转录的显性失活转录因 子能通过占据启动子结合位置而不增加转录来减小正常转录因子的效 应。

    显性失活多肽在细胞中表达的最终结果是活性蛋白质的功能的减 少。本领域一般技术人员能评估显性失活蛋白变体的潜力,并用标准 突变技术创造一种或更多显性失活变体蛋白。参见,例如U.S.Patent No.5,580,723和Sambrook等,Molecular Cloning:A Laboratory Manual,Second Edition,Cold Spring Harbor Laboratory Press, 1989。技术人员随后能测试经诱变的蛋白群体的选定活性的减少和/ 或对这种活性的保持力。其它类似的用于创造和测试蛋白的显性失活 变体的方法对本领域一般技术人员将是很显然的。

    FGE cDNA的分离也使技术人员可能诊断以FGE异常表达为特征的 疾病。这些方法包括测定FGE基因和/或源于其的FGE多肽的表达。在 前者的情形下,这类测定能通过任何标准的核酸测定分析而进行,包 括聚合酶链式反应,或如下面作为例子的采用标记性杂交探针的分析。 在后者的情形下,这类测定能通过任何标准的(应用例如结合到分泌 出的FGE蛋白的抗体的)免疫分析而进行。优选的可根据本发明诊断 的疾病是多种硫酸酯酶缺乏症。

    本发明也包括分离的肽结合试剂,所述试剂,例如,可以是具有 选择性结合到FGE多肽的能力的抗体或抗体片段(“结合性多肽”)。 抗体包括根据传统方法制备的多克隆和单克隆抗体。在一定的实施方 案中,本发明排除了与SEQ ID NO:4的核酸所编码的多肽结合的结合 性试剂(例如抗体)。

    值得注意的是,如本领域中众所周知的,只有抗体分子的一小部 分,即抗原互补位,涉及抗体与其表位的结合(参见,一般地,Clark, W.R.(1986)The Experimental Foundations of Modern ImmunologyWiley & Sons,Inc.,New York;Roitt,I.(1991)EssentialImmunology,7th Ed.,Blackwell Scientific Publications, Oxford)。例如,pFc’和Fc区域是补体级联的效应子但不涉及抗原 结合。pFc’区域已被酶切掉的抗体或产生时不含pFc’区域的抗体, 它们被称为F(ab’)2片段,保持了完整抗体的两个抗原结合位点。类 似地,Fc区域已被酶切掉的抗体或产生时不含Fc区域的抗体,它们 被称为Fab片段,保持了完整抗体分子的一个抗原结合位点。进一步 地,Fab片段由共价结合的抗体轻链和被表示为Fd的抗体重链的一部 分所组成。Fd片段是抗体专一性的主要决定因素(单一Fd片段可与 多达10条的不同轻链相连而不改变抗体专一性),并且Fd片段在分 离后保持表位-结合能力。

    如本领域中众所周知的,在抗体的抗原结合部分内部有直接与抗 原表位相互作用的互补性决定区域(CDRs),也有保持抗体结合部位三 级结构的构架区域(FRs)(参见,一般地,Clark,1986;Roitt, 1991)。在IgG免疫球蛋白重链Fd片段和轻链中,有通过三个互补决 定区域(CDR1到CDR3)分别分开的四个构架区域(FR1到FR4)。CDRs 尤其是CDR3区域,更尤其是重链CDR3,很大程度上对抗体专一性负 责。

    现在在本领域中已很好地认识到,哺乳动物抗体的非CDR区域可 被同种或异种特异性抗体的类似区域所替代,而保持原始抗体的表位 专一性。这在制备和应用“人源化”抗体中表现得最清晰,其中非- 人CDRs共价连接到人FR和/或Fc/pFc’区域以产生功能抗体。参 见,例如U.S.patents 4,816,567,5,225,539,5,585,089,5,693,762 和5,859,205。因此,例如,PCT国际公开号WO 92/04381教授了 人源化的鼠类RSV抗体的生产和应用,其中至少鼠FR区域的一部分 被人源性的FR区域所取代。这类抗体,包括具有抗原结合能力的完整 抗体的片段,经常被表示成“嵌合的”抗体。

    因此,正如对本领域一般技术人员而言是很明白的,本发明也提 供F(ab’)2,Fab,Fv和Fd片段;其中Fc和/或FR和/或CDR1和 /或CDR2和/或轻链CDR3区域已被同源的人或非-人序列所取代的 嵌合的抗体;其中FR和/或CDR1和/或CDR2和/或轻链CDR3区域已经 被同源的人或非序列所取代的嵌合F(ab’)2片段抗体;其中FR和/ 或CDR1和/或CDR2和/或轻链CDR3区域已被同源的人或非-人序 列所取代的嵌合的Fab片段抗体;以及其中FR和/或CDR1和/或 CDR2区域已被同源的人或非-人序列所取代的嵌合的Fd片段抗体。 本发明也包括所谓的单链抗体。

    因此,本发明包括与FGE多肽专一结合的多种大小和类型的多 肽,及FGE多肽与其结合伴侣的复合物。这些多肽也可由抗体技术之 外的其它来源得来。例如,这类多肽结合试剂能由简并肽库而提供, 所述简并肽库可很容易以溶液、以固定的形式作为细菌鞭毛肽展示库 或噬菌体展示库而制备。也可制备含有一个或更多氨基酸的肽组合文 库。文库能进一步由肽和非肽的合成部分合成。

    噬菌体展示能在鉴别根据本发明而有用的结合肽中特别有效。简 而言之,可应用传统程序制备显示4到约80个氨基酸残基插入物的 噬菌体库(应用例如m13,fd,或λ噬菌体)。插入物可代表,例如, 完全的降解物或有偏差的阵列。然后可挑选噬菌体承载性插入物,其 结合到FGE多肽或FGE和结合伴侣的复合物。此过程可通过复选结合 到FGE多肽或复合物的噬菌体的几个循环而重复。重复的循环导致承 载特定序列的噬菌体的富集。DNA序列分析可以进行,以鉴别所表达 多肽的序列。结合FGE多肽或复合物的序列的最小线性部分可被测 定。应用含有插入物的偏差性的库,可重复这些程序,所述插入物包 含最小线性部分的一部分或全部外加一个或更多附加的其上游或下游 的简并残基。酵母双杂交筛选方法也可用于鉴别结合到FGE多肽的多 肽。因此,本发明的FGE多肽或其片段或FGE与结合伴侣的复合物能 被用于筛选肽库,包括噬菌体展示库,以鉴别和选择本发明FGE多肽 的肽结合伴侣。这类分子能用于,如所述的,筛选分析,纯化方案, 对FGE功能的直接干扰,及其它对本领域一般技术人员而言很显然的 目的。

    FGE多肽或其片段也能用于分离它们的天然结合伴侣。对结合伴 侣的分离可根据众所周知的方法完成。例如,分离的FGE多肽能被 附着于某一基质,然后被怀疑含有FGE结合伴侣的溶液可应用到基质 上。如果FGE多肽的结合伴侣在溶液中存在,那么它将结合到基质固 着的FGE多肽。之后结合伴侣可被分离出。充当FGE结合伴侣的其它 蛋白质可通过类似方法分离出,而不需要过度的实验。优选的结合伴 侣是硫酸酯酶。

    本发明也提供测量FGE在受试者中表达水平的方法。这可通过首 先得到来自受试者的测试样本而完成。测试样本可以是组织或生物液 体。组织包括脑,心脏,血清,乳房,结肠,膀胱,子宫,前列腺, 胃,睾丸,卵巢,胰,垂体腺,肾上腺,甲状腺,唾液腺,乳腺, 肾,肝,肠,脾,胸腺,血管,骨髓,气管,和肺。在一定的实施方 案中,测试样本源自心脏和血管组织,生物液体包括血液,唾液和尿。 创伤性和非创伤性技术都能用于获得这类样本,并在本领域中被很好 地记载。在分子水平上,应用本发明在此所述的产物和可在汇编这类 方法的参考文献中找到的本领域众所周知的方案,PCR和Northern 印迹都能用于测定FGE mRNA的水平。在蛋白质水平上,应用多克隆 或单克隆抗FGE血清结合标准免疫分析,FGE表达可被测定。优选的 方法将会把测得的测试样本的FGE表达水平与对照进行比较。对照可 包括已知量的核酸探针、FGE表位(如FGE表达产物),或来自具有 对照或“正常”水平FGE表达的受试者的类似测试样本。

    FGE多肽优选重组性产生,虽然这类蛋白可从生物抽提物中分离 出。重组性产生的FGE多肽包括含有FGE蛋白与另一多肽的融合物的 嵌合的蛋白质,所述多肽例如能提供或增强蛋白-蛋白结合、序列专 一性核酸结合(如GAL4),增强FGE多肽在分析条件下的稳定性,或 提供可探测性的部分例如绿色荧光蛋白。融合到FGE多肽或片段的多 肽也可提供易于探测融合蛋白的手段,例如通过免疫识别或通过荧光 标记。

    本发明也在产生非人的转基因动物中有用。在本文中所用的“非 人的转基因动物”包括具有整合在生殖系细胞和/或体细胞中的一种 或更多的外生性核酸分子的非人的动物。因此转基因动物包括通过同 源重组而具有纯合或杂合基因断裂的“敲除的”动物,具有游离或染 色体整合的表达载体的动物等。敲除动物能通过应用本领域众所周知 的胚胎干细胞的同源重组而制得。重组可应用例如本领域一般技术人 员已知的cre/lox系统或其它重组酶系统而促进。在一定的实施方案 中,重组酶系统本身是条件性地表达,例如在一定组织或细胞类型中, 在一定胚胎或胚胎后发育阶段,因增加或减弱表达的化合物或类似物 质的加入而被诱导。一般地,在这类系统中应用的条件表达载体应用 多种可赋予所期望的基因表达模式(例如时间或空间性的)的启动子。 条件启动子也能可操纵性地连接到FGE核酸分子以受调节或条件性的 方式增加FGE的表达。FGE活性或表达的反式-作用负调节子也能可操 纵性地连接到上述的条件启动子。这类反式-作用调节子包括反义FGE 核酸分子,编码显性失活FGE分子的核酸分子,对FGE核酸专一的核 酶分子,和类似物。非人的转基因动物在用于对诊断或治疗方法的生 化或生理效应进行测试的实验中有用,所述诊断或治疗方法针对以增 加或减少FGE表达为特征的病症。其它应用对本领域一般技术人员而 言是很显然的。

    本发明也涉及基因治疗。完成离体基因治疗的程序在U.S.Patent 5,399,346中概述,也显示于该专利审查中所提交的文件,其所有内 容都是公开可得的文件。一般地,它包括在体外将基因的功能拷贝引 入到包含基因缺陷性拷贝的受试者的细胞中,将基因工程化的细胞回 置到受试者中。基因的功能拷贝是处于允许基因在基因工程化细胞中 表达的调控元件的可操作性控制下。许多转染和转导技术以及适当的 表达载体为本领域一般技术人员所熟知,其中的一部分在PCT申请 WO95/00654中被描述。应用例如腺病毒,逆转录病毒,疱疹病毒,和 靶向的脂质体之类载体的体内基因治疗也根据本发明而涉及。

    本发明进一步提供鉴别试剂或引导化合物以得到在FGE或FGE片 段依赖性细胞功能的水平上有活性的试剂的有效方法。这类功能尤其 包括与其它多肽或片段的相互作用。一般地,筛选方法包括对干扰FGE 活性(如Cα-甲酰甘氨酸生成活性)的化合物的分析,虽然增强FGE Cα- 甲酰甘氨酸生成活性的化合物也能应用该筛选方法而被分析。这类方 法能被适应于自动化的高产出的化合物筛选。靶指标包括被FGE调节 的细胞过程如Cα-甲酰甘氨酸生成活性。

    多种对备选(药理上的)试剂的分析被提供,包括标记的体外蛋 白质-配体结合分析,电泳迁移改变分析,免疫分析,基于细胞的分 析例如双杂交或三杂交筛选,表达分析等。转染的核酸能编码例如, 组合肽库或cDNA库。便于这类分析的试剂例如GAL4融合蛋白在本领 域中众所周知。可作为范例的基于细胞的分析包括,以编码融合到 GAL4DNA结合结构域的FGE多肽的核酸和编码可操作性地连接到基因 表达调节区(如一个或更多GAL4结合位点)的报告基因的核酸而转 染细胞。报告基因转录的活化发生在FGE和报告融合多肽结合以例如 激活报告基因的转录时。之后,调节FGE多肽介导的细胞功能的试剂 通过报告基因表达的变化而被探测。测定报告基因表达变化的方法在 本领域中众所周知。

    方法中所用的FGE片段当不是由转染的核酸所产生时,作为分离 的多肽加入到分析混合物中。FGE多肽优选重组产生,虽然此多肽可 从生物抽提物中分离。重组产生的FGE多肽包括包含FGE蛋白与另一 多肽的融合体的嵌合蛋白质,另一多肽例如能提供或增强蛋白质-蛋 白质结合、序列专一性核酸结合(如GAL4)、增强FGE多肽在分析条 件下的稳定性或提供可探测部分例如绿色荧光蛋白或Flag表位。

    分析混合物包含能与FGE相互作用的天然的细胞内FGE结合靶。 当天然FGE结合靶可用时,常常优选应用FGE结合靶的局部(例如肽 -参见例如SEQ ID NO:33的肽-或核酸片段)或类似物(即,为分析目 的而模拟天然结合靶的FGE结合性质的试剂),只要局部或类似物提 供分析中可测量的对FGE片段的结合亲合性和强烈结合倾向。

    分析混合物也包含候选物质。典型地,多个分析混合物以不同试 剂浓度平行进行,以得到对多种浓度的不同反应。典型地,这些浓度 中的某一个用作负对照,即,试剂的零浓度或在分析的探测极限之下 的试剂浓度。候选物质包括许多化学种类,虽然它们典型的是有机化 合物。优选地,候选物质是小分子有机化合物,即那些具有大于50 然而小于约2500的分子量的类型,优选小于约1000,而更优选小于 约500。候选物质包含与多肽和/或核酸的结构性相互作用所必需的功 能化学基团,并典型地包括至少一个氨基、羰基、羟基或羧基基团, 优选至少两个功能化学基团,而更优选至少三个功能化学基团。候选 物质可包含被一种或更多上述确定的功能基团所取代的环碳或杂环结 构和/或芳香或聚芳香结构。候选物质也可是生物分子例如肽,糖,脂 肪酸,固醇,类异戊二烯,嘌呤,嘧啶,上述物质的衍生物或结构 类似物,或者其组合,以及类似物质。试剂是核酸的情形中,试剂典 型地是DNA或RNA分子,虽然在此所定义的修饰后的核酸也被涉及。

    候选物质从多种来源包括合成或天然化合物的库得到。例如,对 于多种有机化合物和生物分子的随机和定向合成,有许多方式可用, 包括随机寡核苷酸的表达、合成性的有机组合库、随机肽段的噬菌体 展示库和类似方式。替代性地,细菌、真菌、植物和动物抽提物形式 的天然化合物的库唾手可得或易于产生。此外,天然和合成性产生的 库和化合物能通过传统化学、物理和生化方式被修饰。进一步地,已 知的(药理学上)试剂可进行定向或随机化学修饰例如酰化,烷基化, 酯化,amidification,等,以产生试剂的结构类似物。

    多种其它试剂也能被包括在混合物中。这些包括试剂例如盐,缓 冲剂,中性蛋白质(例如白蛋白),去污剂,等,其可被用于促进最 佳的蛋白质-蛋白质和/或蛋白质-核酸结合。这样的试剂也可减少反 应成分的非专一性的或背景性的相互作用。其它改善分析效率的试剂 如蛋白酶,抑制剂,核酸酶抑制剂,抗微生物剂和类似物也可被应用。

    前述分析材料的混合物在由此确定的条件下培育,但对于候选物 质存在的情形中,FGE多肽特异性地与细胞结合靶、其部分或其类似 物结合。组分加入的顺序,培育温度,培育时间和分析的其它参数可 容易地确定。这类实验只包括分析参数的最优化,而不涉及分析的基 本组成。培育温度典型地是在4℃和40℃之间。培育时间优选最小 化以促进快速、高产出的筛选,而典型的是在0.1和10小时之间。

    培育之后,FGE多肽与一种或更多结合靶的专一性结合的存在与 否通过使用者可用的任何方便的方法而探测。对于非细胞结合类型分 析,分离步骤常被用于从未结合的组分中分离结合的组分。分离步骤 可以多种方式完成。方便的是,组分中的至少一种在固相基质上被固 定,未结合组分可容易地从其中分离。固相基质可由多种材料制成多 种形式,例如微量滴定平板,微珠,计量棒(dipstick),树脂颗粒, 等。优选基质被选择成最大的信噪比,主要是最小化背景结合,以及 使分离程序和成本简化。

    分离可被多种因素影响,例如从库中除去珠子或计量棒,清空或 稀释库如微量滴定平板孔,以清洗溶液或溶剂清洗珠子,颗粒,层 析柱或过滤器。分离步骤优选包括多次漂洗或清洗。例如,当固相基 质是微量滴定平板时,孔可典型地被包括培育混合物的那些不参与特 异性结合的组分的清洗溶液清洗数次,所述组分如盐,缓冲剂,去污 剂,非专一性蛋白质等。在固相基质是磁珠的情形中,珠子可用清洗 溶液清洗一次或更多,并用磁体而分离出。

    探测可以任何方便的方式被影响,以进行基于细胞的分析例如双 杂交或三杂交筛选。与靶分子相互作用的FGE多肽的报告基因转录分 析所得到的转录物典型地编码直接或间接可测的产物,例如β-半乳糖 苷酶活性,荧光素酶活性,和类似物。对于非细胞结合分析,组分的 一种通常包含或被偶连到可探测的标记。多种标记都能用,例如那些 提供直接探测的类型(例如放射性,发光,视觉或电子密度等),或 提供间接探测的类型(例如,表位标签如FLAG表位、酶标签如辣根 过氧化物酶等)。标记可被固着于FGE结合伴侣,或整合进结合伴侣的 结构中。

    多种方法可被用于探测标记,这取决于标记的天性和其它的分析 组分。例如,当固着到固相基质时或从固相基质分离之后,标记可被 探测。标记可通过视觉或电子密度,放射性辐射,非放射性能量转移 等直接探测,或以抗体缀合物、链霉抗生物素-生物素缀合物等间接探 测。探测标记的方法在本领域中众所周知。

    本发明提供FGE专一结合试剂,鉴别和生产这类试剂的方法,及 它们在诊断、治疗和药物开发中的应用。例如,FGE专一性药理试剂 在多种诊断和治疗性应用中有用,尤其是在疾病或疾病预后与改变的 FGE结合特征相关的情形例如多种硫酸酯酶缺乏症中。新的FGE专一 结合试剂包括FGE专一抗体,细胞表面受体,被例如双杂交筛选的分 析法所鉴别的其它天然细胞内和细胞外结合试剂,及被对化学库的筛 选所鉴别的非天然细胞内和细胞外结合试剂,和类似物。

    一般而言,FGE结合到特异分子的专一性通过结合平衡常数被测 定。能选择性结合FGE多肽的靶优选具有至少约107M-1的结合常数, 更优选至少约108M-1,而最优选至少约109M-1。多种基于细胞的和非 细胞的分析可被用于证明FGE专一结合。基于细胞的分析包括单、双 和三杂交筛选,其中FGE介导的转录得到抑制或增加等的分析。非细 胞分析包括FGE蛋白结合分析、免疫分析等。其它对筛选结合FGE多 肽的试剂有用的分析包括荧光共振能量转移(FRET)和电泳迁移改变 分析(EMSA)。

    根据本方面的另一方面,鉴别在调节本发明的分子的Cα-甲酰甘 氨酸生成活性中有用的试剂的方法被提供。方法包括(a)将具有Cα- 甲酰甘氨酸生成活性的分子与候选物质相接触,(b)测量该分子的Cα- 甲酰甘氨酸生成活性,和(c)将测得的分子的Cα-甲酰甘氨酸生成活 性与对照比较以确定是否候选物质调节分子的Cα-甲酰甘氨酸生成活 性,其中分子是本发明的FGE核酸分子或其表达产物。“接触”指具 有Cα-甲酰甘氨酸生成活性的分子与候选物质的直接和间接的接触。 “间接”接触表示候选物质通过第三者试剂(例如信使分子,受体等) 对分子的Cα-甲酰甘氨酸生成活性施加了其影响。在一定实施方案中, 对照是在缺乏候选物质时测得的分子Cα-甲酰甘氨酸生成活性。分析 方法和候选物质如前述有关FGE的实施方案中所述。

    根据本发明的另一方面,诊断以核酸分子、其表达产物或其表达 产物片段的异常表达为特征的疾病的方法被提供。方法包括将从受试 者中分离的生物样本与专一结合到核酸分子、其表达产物或其表达产 物片段的试剂接触,并测定作为疾病判定依据的试剂和核酸分子或表 达产物之间的相互作用,其中核酸分子是根据本发明的FGE分子。疾 病是多种硫酸酯酶缺乏症。导致FGE分子异常表达的FGE基因中的突 变引起下面的SEQ ID NO:2上的氨基酸改变:Met1Arg;Met1Val; Leu20Phe;Ser155Pro;Ala177Pro;Cys218Tyr;Arg224Trp; Asn259Ile;Pro266Leu;Ala 279Val;Arg327Stop;Cys336Arg; Arg345Cys;Ala348Pro;Arg349Gln;Arg349Trp;Arg349Trp; Ser359Stop;或其组合。

    在分子是核酸分子的情形中,这类测定能通过任何标准的核酸测 定分析进行,包括聚合酶链式反应或在本文中作为例子的以标记性杂 交探针进行的分析。在分子是核酸分子表达产物或核酸分子表达产物 片段的情形中,这类测定能通过应用例如结合到任何多肽表达产物的 抗体的任何标准的免疫分析而进行。

    “异常表达”指FGE分子(核酸和/或多肽)相对于对照(即,相 同分子在健康或“正常”受试者中的表达)的减少的表达(表达不足) 或增加的表达(过表达)。在本文中所用的“健康受试者”,指根据 标准的医学标准没有出现多种硫酸酯酶缺乏症或具有发展多种硫酸酯 酶缺乏症的风险的受试者。健康受试者也没有另外显现出病症。换句 话说,如果被医学专业人员检查,这类受试者将被表征为健康和不带 多种硫酸酯酶缺乏症的症状。这些包括异常染性脑白质营养不良和粘 多糖病的特征,例如在几种组织中的酸性粘多糖的量增加,轻微‘脂 肪软骨营养不良’,快速神经性衰退,尿中的脑硫脂和粘多糖的过量 存在,增加的脑脊液蛋白和外周神经中的髓磷脂的异染性退化。

    本发明也提供新的试剂盒,其将被用于测量本发明的核酸和本发 明的表达产物的水平。

    在某一实施方案中,试剂盒包含包装,该包装包含下列物质:选 择性结合任何前述FGE的分离的核酸或其表达产物的试剂,及用于与 所述试剂和任何前述FGE的分离的核酸或其表达产物结合的测得值进 行比较的对照。在某些实施方案中,对照是用于与测得值比较的预先 测定值。在一定实施方案中,对照包含任何前述FGE的分离的核酸的 表达产物的表位。在某一实施方案中,试剂盒进一步包含选择性结合 选自下列的多肽的第二试剂:艾杜糖醛酸-2-硫酸酯酶,硫酸胺酶,N- 乙酰半乳糖胺-6-硫酸酯酶,N-乙酰葡萄糖胺-6-硫酸酯酶,芳基硫酸 酯酶A,芳基硫酸酯酶B,芳基硫酸酯酶C,芳基硫酸酯酶D,芳 基硫酸酯酶E,芳基硫酸酯酶F,芳基硫酸酯酶G,HSulf-1, HSulf-2,HSulf-3,HSulf-4,HSulf-5,和HSulf-6,或其肽段,和 用于与所述第二试剂和所述多肽或其肽段的结合的测得值进行比较的 对照。

    在核酸探测的情形中,用于扩增本发明的核酸分子的引物对可被 包括进去。优选的试剂盒将包括对照,例如已知量的核酸探针、表位 (例如艾杜糖醛酸-2-硫酸酯酶,硫酸胺酶,N-乙酰半乳糖胺-6-硫酸 酯酶,N-乙酰葡萄糖胺-6-硫酸酯酶,芳基硫酸酯酶A,芳基硫酸酯 酶B,芳基硫酸酯酶C,芳基硫酸酯酶D,芳基硫酸酯酶E,芳基 硫酸酯酶F,芳基硫酸酯酶G,HSulf-1,HSulf-2,HSulf-3, HSulf-4,HSulf-5,和HSulf-6,表达产物)或抗表位的抗体,以及 指南或其它复印材料。在一定的实施方案中,复印材料能基于分析结 果而表征发展硫酸酯酶缺乏状态的风险。试剂可按预先测定的量被包 在容器中和/或被涂在小孔上,而试剂盒可包括标准物质,例如标记好 的免疫试剂(如标记好的抗-IgG抗体)和类似物。一种试剂盒是包好 的用FGE蛋白涂层的聚苯乙烯微量滴定平板和含有标记好的抗人IgG 抗体的容器。平板的小孔与例如生物液体接触,清洗,然后与抗-IgG 抗体接触。之后探测标记。体现本发明特征的试剂盒,通常以数字11 指定,在图25中显示。试剂盒11包含下列主要元件:包装15,本 发明的试剂17,对照试剂19和指南21。包装15是用于盛含有本发 明的试剂17的一个小瓶(或多个小瓶),含有对照试剂19的一个小 瓶(或多个小瓶)和指南21的类似盒子的结构。本领域技术人员可易 于修饰包装15以适合个体的需要。

    本发明也包含在受试者中治疗多种硫酸酯酶缺乏症的方法。方法 包括对有这类治疗需要的受试者施用调节Cα-甲酰甘氨酸生成活性的 试剂,用量为在受试者中有效增加Cα-甲酰甘氨酸生成活性的量。在 某些实施方案中,方法进一步包含一定试剂的共施用,所述试剂选自 编码下列蛋白的核酸分子:艾杜糖醛酸-2-硫酸酯酶,硫酸胺酶,N- 乙酰半乳糖胺-6-硫酸酯酶,N-乙酰葡萄糖胺-6-硫酸酯酶,芳基硫酸 酯酶A,芳基硫酸酯酶B,芳基硫酸酯酶C,芳基硫酸酯酶D,芳 基硫酸酯酶E,芳基硫酸酯酶F,芳基硫酸酯酶G,HSulf-1, HSulf-2,HSulf-3,HSulf-4,HSulf-5,和HSulf-6;核酸分子的表 达产物,和/或核酸分子的表达产物的片段。

    在本文中所用的“调节核酸或多肽的表达的试剂”在本领域中已 知,指有义和反义核酸,显性失活核酸,多肽的抗体和类似物。调节 分子表达(和如本文中所述的,调节其活性)的任何试剂根据本发明 有用。在一定实施方案中,调节Cα-甲酰甘氨酸生成活性的试剂是本 发明的分离的核酸分子(例如SEQ ID NO.3的核酸)。在重要的实施 方案中,调节Cα-甲酰甘氨酸生成活性的试剂是本发明的肽(例如SEQ ID NO.2的肽)。在某些实施方案中,调节Cα-甲酰甘氨酸生成活性的 试剂是本发明的有义核酸。

    根据本发明的一个方面,在受试者中增加Cα-甲酰甘氨酸生成活 性的方法被提供。方法包括对受试者施用本发明的分离的核酸分子和/ 或其表达产物,用量为在受试者中增加Cα-甲酰甘氨酸生成活性的有 效量。

    根据本发明的另一方面,增加细胞中的Cα-甲酰甘氨酸生成活性 的方法被提供。方法包括将细胞与本发明的分离的核酸分子(例如SEQ ID NO.1的核酸),或其表达产物(例如SEQ ID NO.2的肽)接触,用 量为在细胞中有效增加Cα-甲酰甘氨酸生成活性的量。在重要的实施 方案中,方法包括激活内源性的FGE基因以增加细胞中的Cα-甲酰甘 氨酸生成活性。

    在任何的前述实施方案中,核酸可被操作性地偶联到指导真核细 胞例如HT-1080细胞内的核酸分子表达的基因表达序列。“基因表达 序列”是任何调节性的核苷酸序列,例如启动子序列或启动子-增强 子组合,其促进它所可操作性地连接的核酸的有效转录和翻译。基因 表达序列可以是,例如,哺乳动物或病毒的启动子如组成型或可诱导 型的启动子。组成型的哺乳动物启动子包括但不限于下列基因的启动 子:次黄嘌呤磷酸核糖基转移酶(HPTR),腺苷脱氨酶,丙酮酸激酶, α-肌动蛋白启动子和其它组成型启动子。可作为范例的在真核细胞中 组成性地发挥功能的病毒启动子包括,例如,来自猿猴病毒,乳头状 瘤病毒,腺病毒,人免疫缺陷病毒(HIV),劳斯肉瘤病毒,细胞巨化 病毒,莫洛尼氏白血病毒的长末端重复序列(LTR)和其它逆转录病毒 的启动子,和单纯疱疹病毒的胸苷激酶启动子。其它组成型启动子为 本领域一般技术人员所知。作为本发明的基因表达序列而有用的启动 子也包括可诱导的启动子。可诱导的启动子在诱导剂存在时被活化。 例如,金属硫蛋白启动子在一定的金属离子存在时被激活而增加转录 和翻译。其它可诱导的启动子为本领域一般技术人员所知。

    一般而言,基因表达序列将包括(如果必要)分别涉及转录和翻 译起始的5’非转录和5’非翻译序列,例如TATA盒,加帽序列,CAAT 序列和类似物。尤其是,这类5’非转录序列将包括启动子区域,所 述启动子区域包括用于对可操作性连接的核酸进行转录控制的启动子 序列。基因表达序列可选性地包括所期望的增强子序列或上游激活子 序列。

    优选任何本发明的FGE核酸分子连接到允许核酸分子在特定细胞 系的细胞如神经细胞中表达的基因表达序列。允许核酸分子在细胞如 神经细胞中表达的序列,是在这类细胞类型中选择性地有活性从而引 起核酸分子在这些细胞中表达的类型。例如,突触蛋白-1启动子能被 用于在神经细胞中表达任何前述的本发明的核酸分子;而例如von Willebrand因子基因启动子能被用于在血管内皮细胞中表达核酸分 子。本领域中一般技术人员将能易于鉴别能在本发明的任何优选细胞 中表达核酸分子的替代性的启动子。

    当它们以将核酸编码序列(例如,在FGE的情形中,SEQ ID NO.3) 的转录和/或翻译置于基因表达序列的影响或控制下这样的方式而被 共价连接时,核酸序列和基因表达序列被表述为“可操作性地连接”。 如果期望核酸序列被翻译成为功能性蛋白,并且如果在5’基因表达 序列中的启动子的诱导导致核酸序列的转录,且如果在两个DNA序列 之间的连接的本性不会(1)导致移码突变的引入,(2)干扰启动子 区域指导核酸序列转录的能力,和/或(3)干扰对应的RNA转录产物翻 译成为蛋白质的能力时,两个DNA序列被表述成可操作性地连接。因 此,如果基因表达序列能影响核酸序列的转录以至于得到的转录产物 可被翻译成为所期望的蛋白质或多肽,则基因表达序列将被认为可操 作性地连接到核酸序列。

    本发明的分子能单独的或与载体(也见对于载体的更早的讨论)一 起被运送到本发明优选细胞类型。按其最广泛的含义(且与本文中其 它部分对表达和靶向载体的描述一致),“载体”是能促进:(1)分 子到靶细胞的运送,和/或(2)分子被靶细胞的吸取,的任何载体。 优选运送载体以有所减少的降解运输分子到靶细胞中,所述有所减少 的降解相对于载体缺乏时所产生的降解的程度而言。可选地,“靶向 配体”能被附着于载体以选择性地将载体运送到其表面表达靶向配体 的相关受体的细胞。以这种方式,载体(含有核酸或蛋白质)能被选 择性地运送到神经细胞。靶向的方法包括缀合,例如那些在Priest 的U.S.Patent 5,391,723中所述的。另一众所周知的靶向载体的实 例是脂质体。脂质体从Gibco BRL可商业性地获得。生产靶向脂质体 的多种方法被发表。

    一般而言,在本发明中有用的载体包括但不限于质粒,噬菌粒, 病毒,源于病毒或细菌来源的其它载体,所述其它载体已通过本发明 核酸序列和能被附着到本发明的核酸序列的另外的核酸片段(例如增 强子、启动子)的插入或整合而被操作。病毒载体是载体的优选类型, 包括但不限于来自下列病毒的核酸序列:腺病毒;腺伴随病毒;逆转录 病毒,例如鼠莫洛尼白血病毒;鼠哈维肉瘤病毒;鼠乳腺肿瘤病毒; 劳斯肉瘤病毒;SV40-型病毒;多瘤病毒;EB病毒;乳头状瘤病毒; 疱疹病毒;牛痘病毒;脊髓灰质炎病毒;和RNA病毒例如逆转录病 毒。也能容易地采用没有指出但在本领域中已知的其它载体。

    对某些应用特别优选的病毒是腺伴随病毒,一种双链DNA病毒。 腺伴随病毒能感染广泛的细胞类型和物种,且能被工程化为复制缺陷 型。它进一步地具有优点例如热和脂溶剂稳定性、在多种株系细胞包 括造血细胞中的高转导频率,和缺乏超感染抑制因此而允许多重系列 的转导。经报道,腺伴随病毒能以位点特异的方式整合进人细胞DNA, 从而将插入性基因突变的可能性和插入基因的表达的可变性最小化。 此外,野生型腺伴随病毒感染已在组织培养物中于缺乏选择压力的条 件下存在超过100代,意味着腺伴随病毒基因组整合是相对稳定的事 件。腺伴随病毒也能以染色体外方式发挥功能。

    一般而言,其它优选的病毒载体基于非细胞病变性真核病毒,在 这些病毒中非必需基因已被目的基因所替代。非细胞病变性病毒包括 逆转录病毒,其生命周期包括基因组病毒RNA到DNA的逆转录及随后 的前病毒整合到宿主细胞DNA中。腺病毒和逆转录病毒已被许可用于 人基因治疗的试验。一般而言,逆转录病毒是复制缺陷型(即,能指 导所需蛋白的合成,但不能制造出感染性的颗粒)。这类基因改变的逆 转录病毒表达载体具有对基因在体内的高效转导的一般性用途。产生 复制缺陷型逆转录病毒的标准流程(包括步骤:外源性遗传物质整合进 质粒,质粒对包装细胞系的转染,重组性逆转录病毒通过包装细胞系 的产生,从组织培养基中收集病毒颗粒和病毒颗粒对靶细胞的感染) 在Kriegler,M.,“Gene Transfer and Expression,A Laboratory Manual,”W.H.Freeman C.O.,New York(1990)和Murry,E.J.Ed. “Methods in Molecular Biology,”卷7,Humana Press Inc., Cliffton,New Jersey(1991)中被提供。

    另一优选的逆转录病毒载体是源自鼠莫洛尼白血病毒的载体,如 在Nabel,E.G.等,Science,1990,249:1285-1288中所述的。这些 载体据报道对基因运送到动脉壁的所有三层(包括中间层)都有效。 其它优选载体在Flugelman等,Circulation,1992,85:1110-1117 中公开。另外的对运送本发明的分子有用的载体在U.S.Patent No. 5,674,722中被Mulligan等描述。

    除前述载体外,其它传送方法可被用于传送本发明的分子到细胞 例如神经细胞,肝,成纤维细胞,和/或血管内皮细胞,并促进在那 里的吸收。

    本发明的优选的这类运送方法是胶态分散体系统。胶态分散体系 统包括基于脂质的系统,包括水包油乳液,微囊,混合微囊,和脂质 体。本发明优选的胶态系统是脂质体。脂质体是人造膜容器,其作为 体内或体外的运送载体而有用。已有显示,大小范围在0.2-4.0μm 的单层容器(LUV)能包裹进大的大分子。RNA,DNA和完整病毒粒子 能被封装在含水内部,并以生物活性形式运送到细胞中(Fraley等, Trends Biochem.Sci.,1981,6:77)。为了脂质体是有效的基因转 运载体,一种或更多的下列特征应具备:(1)目的基因高效被封装,而 保持生活活性;(2)相对于非靶细胞的与靶细胞的优选和牢固的结合; (3)囊泡的水内容物到靶细胞细胞质的高效运送;和(4)遗传信息 的准确和有效表达。

    脂质体可通过脂质体到特异配体例如单克隆抗体,糖,糖脂, 或蛋白质的偶联,而靶向于特定组织,例如心肌或血管细胞壁。可对 靶向脂质体于血管壁有用的配体包括但不限于,仙台病毒的病毒衣壳 蛋白。此外,载体可偶联到核靶向性肽上,其将定向核酸到宿主细胞 核。

    脂质体可从Gibco BRL商业性地获得,例如由阳离子脂质如 N-[1-(2,3双油氧基)-丙基]-N,N,N-三甲基氯化铵(DOTMA)和二甲 基双十八烷基溴化铵(DDAB)形成的LIPOFECTINTM和LIPOFECTACETM。生 产脂质体的方法在本领域中众所周知,也在许多出版物中被描述。脂 质体也已被Gregoriadis,G.在Trends in Biotechnology,卷3, 235-241页(1985)中所回顾。用于大分子包括核酸的细胞内运送的新 的脂质体也在PCT国际申请PCT/US96/07572(公开号WO 96/40060, 名称为“Intracellular Delivery of Macromolecules”)中被描述。

    在一个特定的实施方案中,优选的载体是适合植入哺乳动物受体 的生物相容性的微颗粒或植入物。作为范例的根据此方法而有用的生 物侵蚀性植入物在PCT国际申请PCT/US/03307(公开号WO 95/24929, 名称为“Polymeric Gene Delivery System”,其要求1994年3月 15日提交的美国专利申请系列号213,668的优先权)中被描述。 PCT/US/0307描述了用于包含(受适当的启动子调控的)外源性基因 的生物相容性的聚合性基质,优选生物降解性的聚合性基质。聚合性 基质被用于实现外源性基因在患者中的持续性释放。根据本发明,在 此所述的核酸在PCT/US/03307中所公开的生物相容性优选生物降解 性的聚合性基质中被封装或分散。聚合性基质优选微颗粒形式例如微 球体(其中核酸被分散到整个固体聚合性基质中)或微囊(其中核酸 被储存在聚合性壳的核心中)。包含本发明的核酸的聚合性基质的其它 形式包括膜,涂层,胶,植入物和支架。聚合性基质装置的大小和组 成被选作引起基质装置被植入的组织中的良好的释放动力学。进一步 设计的聚合性基质的大小根据将被应用的运送方法而选择,所述运送 方法典型地是组织注射或悬浮液通过雾化施用到鼻部和/或肺部区域。 聚合性基质组合物能被选成同时具有良好的降解速率,及由生物粘附 性物质形成,以在设计物被施用到血管表面时进一步增加转运的有效 性。基质组合物也能被选成不降解,但更适合通过持续相当一段时间 的扩散而释放。

    非生物降解性和生物降解性的聚合性基质都能被用作将本发明的 核酸运送到受试者。优选生物降解性基质。这类聚合物可以是自然或 合成性的聚合物。优选合成性聚合物。根据释放所需要的时间长度而 选择聚合物,一般是几个小时到一年或更长时间的级别。典型地,范 围从几个小时到三至十二个月的时间长度的释放最合意。聚合物可选 性地是能吸收高到其重量的约90%的水的水凝胶的形式,而进一步 地,可选性地与多价离子或其它聚合物交联。

    一般而言,本发明的核酸应用生物侵蚀性植入物以扩散方式而被 运送,或更优选地,通过聚合性基质的降解。作为范例的能被用于形 成生物降解性运送系统的合成性聚合物包括:聚酰胺,聚碳酸酯, 聚亚烷基,聚亚烷基二醇,聚环氧烷,聚亚烷基对苯二酸酯,聚乙 烯醇,聚乙烯醚,聚乙烯酯,聚-乙烯卤化物,聚乙烯吡咯烷酮,聚 乙交酯,聚硅氧烷,聚氨基甲酸乙酯和其共聚物,烷基纤维素,羟 基烷基纤维素,纤维素醚,纤维素酯,硝基纤维素,丙烯酸酯和甲 基丙烯酸酯的聚合物,甲基纤维素,乙基纤维素,羟丙基纤维素, 羟丙基甲基纤维素,羟丁基甲基纤维素,醋酸纤维素,丙酸纤维素, 纤维素醋酸丁酸酯,纤维素醋酸邻苯二甲酸酯,羧乙基纤维素,三醋 酸纤维素,纤维素硫酸钠盐,聚(甲基异丁烯酸酯),聚(乙基异丁 烯酸酯),聚(丁基异丁烯酸酯),聚(异丁基异丁烯酸酯),聚(己 基异丁烯酸酯),聚(异癸基异丁烯酸酯),聚(十二烷基异丁烯酸 酯),聚(苯基异丁烯酸酯),聚(甲基丙烯酸酯),聚(异丙基丙 烯酸酯),聚(异丁基丙烯酸酯),聚(十八烷基丙烯酸酯),聚乙烯, 聚丙烯,聚(乙二醇),聚(环氧乙烷),聚(对苯二甲酸乙二酯), 聚(乙烯醇),聚乙烯醋酸,聚氯乙烯,聚苯乙烯和聚乙烯吡咯烷酮.

    非生物降解性聚合物的实例包括亚乙基乙烯醋酸,聚(甲)丙烯 酸,聚酰胺,其共聚物和混合物。

    生物降解性聚合物的实例包括合成性聚合物例如乳酸和乙二酸 的聚合物,聚酸酐,聚(原)酸酯,聚氨基甲酸乙酯,聚(丁酸), 聚(戊酸),聚(丙交酯-共己内酯),天然聚合物例如藻酸和其它多 糖包括葡聚糖和纤维素,胶原,其化学衍生物(化学基团例如,烷基, 亚烷基,羟化,氧化的取代和增加,和其它由本领域技术人员常规进 行的修饰),白蛋白和其它亲水蛋白质,玉米醇溶蛋白和其它醇溶谷 蛋白及疏水蛋白质,其共聚物和混合物。一般而言,这些物质或者通 过酶水解或者在体内暴露于水时通过表面或整体侵蚀而降解。

    特别受关注的生物粘附性聚合物包括H.S.Sawhney,C.P.Pathak 和J.A.Hubell在Macromolecules,1993,26,581-587中所述的 生物侵蚀性水凝胶,其教导在此被整合,聚透明质酸,酪蛋白,明胶, 谷胶酪蛋白,聚酸酐,聚丙烯酸,藻酸,脱乙酰壳多糖,聚(甲基异 丁烯酸酯),聚(乙基异丁烯酸酯),聚(丁基异丁烯酸酯),聚(异 丁基异丁烯酸酯),聚(己基异丁烯酸酯),聚(异癸基异丁烯酸酯), 聚(十二烷基异丁烯酸酯),聚(苯基异丁烯酸酯),聚(甲基丙烯 酸酯),聚(异丙基丙烯酸酯),聚(异丁基丙烯酸酯),和聚(十八 烷基丙烯酸酯)。因此,本发明提供用作药物的本发明的上述分子的组 合物,制备此药物的方法和在体内用于持续释放药物的方法。

    压缩试剂也能与本发明的载体结合应用。在本文中所用的“压缩 试剂”指试剂例如组蛋白,它中和核酸上的负电荷从而允许核酸压缩 成细颗粒。核酸的压缩促进了核酸被靶细胞的吸收。压缩试剂能单独 使用,即以被细胞更有效地吸收的形式运送分离的本发明的核酸或, 更优选地,与一种或更多上述载体组合。

    其它作为范例的能被用于促进靶细胞对本发明的核酸的吸收的组 合物包括磷酸钙及细胞内运输、微注射组合物和电穿孔的其它化学调 节物。

    本发明包含在细胞中增加硫酸酯酶活性的方法。这类方法包括以 有效地在细胞中增加硫酸酯酶活性的量将分离的本发明的核酸分子 (例如如权利要求1-8中任一项所要求的分离的核酸分子,具有选自 SEQ ID NO:1,3,4,45,47,49,51,53,55,57,59,61,63,65, 67,69,71,73,75,77,和80-87的序列的FGE核酸分子)或其表 达产物(例如如权利要求11-15,19,20中所要求的多肽或具有选自 SEQ ID NO.2,5,46,48,50,52,54,56,58,60,62,64,66, 68,70,72,74,76,和78的序列的肽)与表达硫酸酯酶的细胞接 触。在本文中所用的“增加”硫酸酯酶活性,指增加的对硫酸酯酶的 特异性底物的亲合性和/或对其的转化,典型地导致硫酸酯酶分子上的 FGly的形成的增加。在某一实施方案中,细胞以比野生型细胞更高的 水平表达硫酸酯酶。“在细胞中增加硫酸酯酶活性”也指增加细胞所 分泌的硫酸酯酶的活性。细胞可表达内源性和/或外源性的硫酸酯酶。 与FGE分子的所述接触也指激活细胞的内源性FGE基因。在重要的实 施方案中,内源性硫酸酯酶被活化。在一定实施方案中,硫酸酯酶是 艾杜糖醛酸-2-硫酸酯酶,硫酸胺酶,N-乙酰半乳糖胺-6-硫酸酯酶, N-乙酰葡萄糖胺-6-硫酸酯酶,芳基硫酸酯酶A,芳基硫酸酯酶B, 芳基硫酸酯酶C,芳基硫酸酯酶D,芳基硫酸酯酶E,芳基硫酸酯 酶F,芳基硫酸酯酶G,HSulf-1,HSulf-2,HSulf-3,HSulf-4, HSulf-5,和/或HSulf-6。在一定的实施方案中,细胞是哺乳动物细 胞。

    根据本方面的另一方面,药物组合物被提供。组合物以药学上有 效治疗硫酸酯酶缺乏症的量包含细胞产生的硫酸酯酶,也包含药学上 可接受的载体,其中所述细胞已与包含分离的本发明的核酸分子(例如 如权利要求1-8所要求的分离的核酸分子或具有选自SEQ ID NO:1,3, 4,45,47,49,51,53,55,57,59,61,63,65,67,69,71,73, 75,77,和80-87的序列的核酸分子)或其表达产物(例如选自SEQ ID NO.2,5,46,48,50,52,54,56,58,60,62,64,66,68, 70,72,74,76,和78的肽)的试剂接触。在重要的实施方案中,硫 酸酯酶以高于正常/对照细胞的水平表达。

    本发明也包含产生硫酸酯酶的细胞,其中细胞所产生的活性硫酸 酯酶对总硫酸酯酶的比率增加。细胞包含:(i)相对于对照具有增加的 活性的硫酸酯酶,和(ii)相对于对照具有增加的活性的甲酰甘氨 酸生成酶,其中相对于甲酰甘氨酸生成酶缺乏的细胞所产生的活性硫 酸酯酶对总硫酸酯酶的比率,细胞所产生的活性硫酸酯酶对总硫酸酯 酶的比率增加至少5%。在本领域中已知,硫酸酯酶的过表达能减少内 源性硫酸酯酶的活性(Anson等,Biochem.J.,1993, 294:657-662)。此外,仅有重组硫酸酯酶的一部分有活性。出乎意料 地,我们发现在具有硫酸酯酶的增加的表达/活性的细胞中,FGE增加 的表达/活性导致更有活性的硫酸酯酶的产生。既然FGly在硫酸酯酶 分子上的存在与硫酸酯酶活性相关,则“有活性的硫酸酯酶”就能通 过应用MALDI-TOF质谱(如本文中其它部分所描述的)对FGly在硫 酸酯酶细胞产物上的存在的测定而定量。然后对总硫酸酯酶的比率能 很容易测定。

    本发明也提供用于硫酸酯酶缺乏症的诊断和治疗的方法。这类疾 病包括但不限于,多种硫酸酯酶缺乏症,粘多糖病II(MPS II; Hunter综合症),粘多糖病IIIA(MPS IIIA;Sanfilippo综合症A), 粘多糖病VIII(MPS VIII),粘多糖病IVA(MPS IVA;Morquio综合 症A),粘多糖病VI(MPS VI;Maroteaux-Lamy综合症),异常染性 脑白质营养不良(MLD),X-连锁的隐性点状软骨发育不全1,和X-连 锁的鱼鳞病(类固醇硫酸酯酶缺乏症)。

    本发明的方法在对任何前述病症的急性或预防性治疗中都有用。 在此所用的急性治疗指对具有特定病症的受试者的治疗。预防性治疗 指对可能具有此病症但现在并没有或并未经历此病症的症状的受试者 的治疗。

    就其最广泛的意义而言,术语“治疗”表示急性和预防性治疗两 者。如果需要治疗的受试者正经历病症(或具有或正具有特定病症), 那么治疗病症指改善、减弱或消除病症或来自病症的一种或更多的症 状。在某些优选的实施方案中,治疗此病症指改善、减弱或消除与病 症相关的特异的症状或特异亚型的症状。如果需要治疗的受试者是可 能具有此病症的受试者,那么对受试者治疗指减小受试者产生此病症 的风险。

    本发明的治疗剂的施用模式和剂量将随着被治疗的病症的特定阶 段、被治疗的受试者的年龄和生理状态、同时进行的治疗(如果有) 的本性、施用的特定途径和在医学实践者的知识和专业技术范围内的 类似因素而变化。

    如本文中所述的,本发明的试剂以治疗任何前述硫酸酯酶缺乏 症的有效量而被施用。一般而言,有效量是能引起受试者的所期望的 组织中的有益变化的任何量。有效量优选在特定病症中足以引起良好 表型变化例如症状或病症的整体性减轻、缓和或消除的量。

    一般而言,有效量是药学制剂单独或与进一步的药剂一起产生出 所期望的反应那样的量。这可包括只短暂减慢病症的进程,虽然更优 选它包括长期性地阻止病症进程,或延缓病症的发作,或防止病症发 生。这可通过常规方法监测。一般地,活性化合物的剂量将从约0.01 mg/kg每天到1000mg/kg每天。期望范围在50μg-500mg/kg的剂量 将是适合,优选口服和每天施用一次或几次。

    当然,这类量将取决于被治疗的特定病症,病症的严重程度,患 者个体的参数包括年龄、生理状况、身材尺寸和体重,治疗的持续时 间,同时进行的治疗(如果有)的本性,施用的特异途径和在医学实 践者的知识和专业技术范围内的类似因素。低剂量将源自施用的一定 形式,例如静脉内施用。在应用初始剂量时受试者中的反应不充分的 情形中,更高的剂量(或通过不同的更局部化的运送途径的有效更高剂 量)可应用到患者耐受力所允许的程度。每天多重剂量被预期能实现 化合物的合适的系统水平。一般地,优选应用最大剂量,也就是,根 据合理的医学判断的最高安全剂量。然而将被本领域中一般技术人员 所理解的是,患者可出于医学原因、心理原因或事实上的其它任何原 因而坚持较低剂量或可耐受性剂量。

    本发明的试剂可选性地与药学上可接受的载体组合以形成药学 制剂。在本文中所用的术语“药学上可接受的载体”表示适合对人施 用的一种或更多相容性的固体或液体填充物、稀释剂或封装物质。术 语“载体”表示天然或合成性的有机或无机成分,活性成分与其组合 以促进应用。药学组合物的成分也能被与本发明的分子共混合,及彼 此混合,其方式是确保没有实质性破坏所期望的药学效力的相互作用 存在。在某些方面,药学制剂以有效治疗疾病的量包含本发明的试剂。

    药学制剂可包含合适的缓冲剂,包括:盐形式的醋酸、盐形式的 柠檬酸、盐形式的硼酸或盐形式的磷酸。药学组合物可选性地,也可 包含合适的防腐剂例如苯扎氯;氯代丁醇;对羟基苯甲酸酯或乙基汞 硫代水杨酸钠(thimerosal)。

    多种施药途径可用。当然,选出的特定模式将取决于选定的特定 药物,被治疗的病症的严重程度和治疗效力所需的剂量。本发明的方 法,一般而言,可应用医学上可接受的任何施用模式,即产生活性化 合物的有效水平而不引起临床上无法接受的不利效应的有意义的任何 模式而实行。施用的这类模式包括口服,直肠,局部,鼻,皮内,经 皮,或非肠道途径。术语“非肠道的”包括皮下,静脉内, intraomental,肌肉内,或输注。静脉内或肌肉内途径不是特别适合 长期性治疗和预防。作为实例,用于对具有偏头痛的受试者的急性治 疗的药学组合物可配制成多种不同的方式和多种施用模式,包括片剂, 胶囊,粉末,栓剂,注射液和鼻喷雾剂。

    药学制剂可方便地以单位剂型存在,也可通过任何制药领域中众 所周知的方法制备。所有方法包括将活性试剂与载体相连的步骤,所 述载体组成了一种或更多附属成分。一般而言,组合物通过统一地和 密切地将活性化合物与液体载体、很好地分隔的固体载体或同时二者 相连而制备,然后如果需要,将产物定形。

    适合口服施用的组合物可作为离散性单位存在,例如胶囊,片剂, 锭剂,每一个都包含预定量的活性化合物。其它组合物包括水性或非 水性的悬浮液例如糖浆,酏剂或乳剂。

    适合非肠道施用的组合物方便地包含消毒过的本发明试剂的水制 剂,其优选与接受者的血液等渗。此水制剂可根据已知方法应用合适 的分散或润湿剂和悬浮试剂进行配制。无菌的可注射性制剂也可是非 毒性的注射用可接受的稀释剂或溶剂中的无菌的注射溶液或悬浮液, 例如在1,3-丁二醇中的溶液。可接受的可用载体和溶剂有水、Ringer’ s溶液和等渗氯化钠溶液。此外,无菌的固定油传统上被用作溶剂或 悬浮介质。为了这一目的,任何温和的固定油可被应用,包括合成性 的甘油单酯或双酯。此外,脂肪酸例如油酸可在可注射的制剂中应用。 适合口服,皮下,静脉内,肌肉内等施用的配方能在Remington’sPharmaceutical Sciences,Mack Publishing Co.,Easton,PA中找 到。

    根据本发明的一个发明,用于在细胞中增加Cα-甲酰甘氨酸生成 活性的方法被提供。方法包括将分离的本发明的核酸分子(例如SEQ ID NO.1的核酸)或其表达产物(例如SEQ ID NO.2的肽)以在细胞中 增加Cα-甲酰甘氨酸生成活性的有效量与细胞接触。在重要的实施方 案中,方法包括激活内源性FGE基因以在细胞中增加Cα-甲酰甘氨酸 生成活性。在某些实施方案中,接触在允许本发明的分子进入细胞的 条件下进行。

    根据本发明的术语“允许分子进入”细胞具有下面基于分子本性 的含义。对分离的核酸,它用于描述核酸通过细胞膜而进入细胞核, 在其基础上“核酸转基因”能利用细胞机制产生核酸所编码的功能多 肽。“核酸转基因”用于描述所有的有或没有相连载体的本发明的核 酸。对于多肽,它用于描述多肽通过细胞膜进入细胞质,及如果需要, 对细胞的细胞质机制的利用以功能性地修饰多肽(例如修饰成活性形 式)。

    多种技术可被用于将本发明的核酸引入细胞,其依赖于核酸是在 体外还是体内而被引入宿主。这类技术包括核酸-CaPO4沉淀的转染, 与DEAE相连的核酸的转染,包括目的核酸的逆转录病毒的转染,脂 质体介导的转染和类似方法。对于一定的应用,优选将核酸靶向于特 定细胞。在这类例子中,用于将本发明的核酸运送进细胞的载体(例如 逆转录病毒或其它病毒;脂质体)可以具有附着于其上的靶向分子。例 如,分子例如对靶细胞上的表面膜蛋白专一的抗体或靶细胞上的受体 的配体能被固定到核酸运送载体上或整合在其中。例如,脂质体被用 于运送本发明的核酸的情形中,结合到与内吞作用相关的表面膜蛋白 的蛋白质可被整合进用于靶向和/或促进吸收的脂质体的配剂。这类蛋 白质包括对特定细胞类型有亲和力的衣壳蛋白或其片段,针对循环中 经历内化的蛋白质的抗体,靶向细胞内定位和增强细胞内半衰期的蛋 白质,和类似物。聚合性运送系统也已被成功用于运送核酸进入细胞, 如本领域技术人员所已知的。这类系统甚至允许核酸的口服运送。

    其它运送系统能包括定时释放性、延迟释放性或持续释放性运送 系统。这类系统能避免本发明的试剂的重复施用,增加对受试者和医 生的方便性。多种类型的释放运送系统可用,且为本领域一般技术人 员所已知。它们包括以聚合物为基础的系统例如聚(丙交酯-乙交酯), 共聚草酸,聚己内酯,聚酯酰胺,聚原酸酯,聚羟基丁酸和聚酸酐。 包含药物的前述聚合物的微囊在例如U.S.Patent 5,075,109中被描 述。运送系统也包括非聚合物系统:脂类,包括固醇例如胆固醇,胆 固醇酯和脂肪酸或中性脂肪例如单-二-和三-甘油酯;水凝胶释放 系统;sylastic系统;以肽为基础的系统;蜡涂层;应用传统粘合剂 和赋形剂的压制成的药片;部分融合的植入物;和类似物。具体的实 例包括但不限于:(a)本发明的试剂以某一形式被包含在基质内的侵蚀 性系统例如U.S.Patent No s.4,452,775,4,675,189和5,736,152 中所描述的那些类型,和(b)活性成分以受控的速率从聚合物中渗 出的扩散系统例如U.S.Patent Nos.3,854,480,5,133,974和 5,407,686中所述的。此外,以泵为基础的硬件运送系统能被应用, 其中部分适于植入。

    长期持续释放性植入物的应用可以是合乎期望。在本文中所用 的长期释放,表示植入物被构建和计划成至少30天运送治疗水平的 活性成分,优选60天。长期持续释放性植入物是本领域中一般技术人 员众所周知的,包括部分上述的释放系统。具体的实例包括但不限于, 在U.S.Patent No.4,748,024和加拿大No.1330939中所述的长期 持续释放性植入物。

    本发明也包括本发明的FGE分子之外的试剂的施用,和在某些 实施方案中的共施用,所述试剂当以有效剂量施用时可与本发明的分 子合作性地、加成性地或协同性地起作用,以:(i)调节Cα-甲酰甘氨 酸生成活性,和(ii)治疗涉及本发明分子的Cα-甲酰甘氨酸生成活 性的任何病症(例如硫酸酯酶缺乏症包括多种硫酸酯酶缺乏症)。本发 明的分子之外的试剂包括艾杜糖醛酸-2-硫酸酯酶,硫酸胺酶,N-乙 酰半乳糖胺-6-硫酸酯酶,N-乙酰葡萄糖胺-6-硫酸酯酶,芳基硫酸酯 酶A,芳基硫酸酯酶B,芳基硫酸酯酶C,芳基硫酸酯酶D,芳基 硫酸酯酶E,芳基硫酸酯酶F,芳基硫酸酯酶G,HSulf-1,HSulf-2, HSulf-3,HSulf-4,HSulf-5,或HSulf-6,(核酸和多肽,和/或 其片段),和/或其组合。

    在本文中所用的“共施用”指同时施用两种或更多的本发明的 化合物(例如已知在对例如硫酸酯酶缺乏症的治疗中有益的FGE核酸 和/或多肽和试剂,——例如治疗MPSII中的艾杜糖醛酸-2-硫酸酯 酶),其作为单一组合物中的混合物,或以足够的时间间隔顺序施用以 至于化合物可发挥出相加性或甚至协同性的效力。

    本发明也包含固相核酸分子阵列。阵列基本上由固定于固体基 质的一套核酸分子、其表达产物或其(或者核酸或者多肽分子的)片 段组成,每一核酸分子选自FGE,艾杜糖醛酸-2-硫酸酯酶,硫酸胺酶, N-乙酰半乳糖胺-6-硫酸酯酶,N-乙酰葡萄糖胺-6-硫酸酯酶,芳基硫 酸酯酶A,芳基硫酸酯酶B,芳基硫酸酯酶C,芳基硫酸酯酶D, 芳基硫酸酯酶E,芳基硫酸酯酶F,芳基硫酸酯酶G,HSulf-1, HSulf-2,HSulf-3,HSulf-4,HSulf-5,和HSulf-6。在某些实施方 案中,固相阵列进一步包含至少一种对照核酸分子。在一定实施方案 中,这套核酸分子包含至少一种,至少两种,至少三种,至少四种或 甚至至少五种核酸分子,每一种选自FGE,艾杜糖醛酸-2-硫酸酯酶, 硫酸胺酶,N-乙酰半乳糖胺-6-硫酸酯酶,N-乙酰葡萄糖胺-6-硫酸酯 酶,芳基硫酸酯酶A,芳基硫酸酯酶B,芳基硫酸酯酶C,芳基硫 酸酯酶D,芳基硫酸酯酶E,芳基硫酸酯酶F,芳基硫酸酯酶G, HSulf-1,HSulf-2,HSulf-3,HSulf-4,HSulf-5,和HSulf-6。在 优选的实施方案中,这套核酸分子包含最多100种不同核酸分子。在 重要的实施方案中,这套核酸分子包含最多10种不同核酸分子。

    根据此发明,标准的微阵列技术的杂交技术被用于评估核酸表 达的模式和鉴别核酸表达。微阵列技术,其也称为其它名字,包括:DNA 芯片技术,基因芯片技术和固相核酸阵列技术,为本领域一般技术人 员已知,并基于但不限于,获得在固定的基质上的已鉴别出的核酸探 针的阵列(例如在本文中其它部分所述如FGE,艾杜糖醛酸-2-硫酸 酯酶,硫酸胺酶,N-乙酰半乳糖胺-6-硫酸酯酶,N-乙酰葡萄糖胺-6- 硫酸酯酶,芳基硫酸酯酶A,芳基硫酸酯酶B,芳基硫酸酯酶C, 芳基硫酸酯酶D,芳基硫酸酯酶E,芳基硫酸酯酶F,芳基硫酸酯 酶G,HSulf-1,HSulf-2,HSulf-3,HSulf-4,HSulf-5,和/或 HSulf-6的分子),以报告分子(例如放射性的,化学发光的,或荧光 性的标记例如荧光素,Cye3-dUTP或Cye5-dUTP)标记靶分子,将靶核 酸与探针杂交,和评估靶-探针的杂交。一般而言,具有与靶序列完 全匹配的核酸序列的探针,将比不完全匹配的探针检测到更强的报告 分子信号。在核酸微阵列技术中应用的多种成分和技术在The Chipping Forecast,Nature Genetics,卷21,Jan 1999中呈现,其 全部内容在本文中被整合作为参考。

    根据本发明,微阵列基质可包括但不限于玻璃,硅土,铝硅酸 盐,硼硅酸盐,金属氧化物例如氧化铝和氧化镍,多种粘土,硝基 纤维素或尼龙。在所有实施方案中,优选玻璃基质。根据本发明,探 针选自核酸,其包括但不限于:DNA,基因组DNA,cDNA和寡核苷酸; 且可以是天然的或合成的。寡核苷酸探针优选20到25聚体寡核苷酸, 而DNA/cDNA探针优选长度为500到5000个碱基,虽然其它长度也可 被应用。合适的探针长度可被本领域一般技术人员通过本领域内已知 的程序而测定。在某一实施方案中,优选的探针是以SEQ ID NOs:1, 3,4,6,8,10,和/或12给出的核酸分子中的两种或更多的组合。 探针可应用本领域一般技术人员已知的标准方法例如凝胶过滤或沉淀 纯化,以除去污染物。

    在某一实施方案中,微阵列基质可用化合物涂层以增强探针在 基质上的合成。这类化合物包括但不限于,寡聚乙二醇。在另一实施 方案中,基质上的偶联试剂或基团能被用于共价连接第一核苷酸或寡 核苷酸到基质。这些试剂或基团可包括但不限于:氨基,羟基,溴基 和羧基。这些活性基团优选通过烃基例如亚烷基或亚苯基二价基团附 着于基质,一个化合价位置被链连接占据而余下的一个附着到活性基 团。这些烃基基团可包含多至约10个碳原子,优选多至约6个碳原子。 亚烷基通常优选在主链中包含2到4个碳原子。本方法的这些和另外 的细节在例如U.S.Patent 4,458,066中被公开,其全部内容被整合 作为参考。

    在某一实施方案中,应用方法例如光导向的化学合成、光化学 去保护或核苷酸前体到基质的运送及随后的探针产生,探针以预先确 定的栅格模式直接在基质上被合成。

    在另一实施方案中,基质可用化合物涂层以增强探针与基质的 结合。这类化合物包括但不限于:聚赖氨酸,氨基硅烷,氨基-反应性 硅烷(Chipping Forecast,1999)或铬(Gwynne和Page,2000)。

    在此实施方案中,预合成的探针以精确的、预先确定体积的和栅格的 模式被应用于基质,利用了计算机控制的机器人将探针以接触打印方 式或非接触方式例如喷墨或压电运送而应用于基质。以包括但不限于 UV照射的方法,探针可共价连接到基质。在另一实施方案中,探针热 连接到基质。

    靶标是选自包括但不限于下列的核酸:DNA,基因组DNA,cDNA, RNA,mRNA,且可以是天然的或合成性的。在所有实施方案中,优选来 自被怀疑为发展或具有硫酸酯酶缺乏症的受试者的核酸分子。在本发 明的一定的实施方案中,一种或更多对照核酸分子被附着于基质。优 选地,对照核酸分子允许了对包括但不限于下列的因素的测定:核酸 质量和结合特征;试剂质量和有效性;杂交成功性;和分析阈值和 成功性。对照核酸可包括但不限于,基因如管家基因的表达产物或其 片段。

    为选择一套硫酸酯酶缺乏疾病的标记物,优选分析由例如基因 表达的微阵列分析产生的表达数据,以确定在不同患者类别(每一患 者类别是一种不同的硫酸酯酶缺乏疾病)中的哪个基因是显著差异性 地表达。基因表达的显著性可应用Permax计算机软件被测定,虽然任 何能区分表达的显著差异的标准统计包也可被使用。Permax实现了对 数据的大规模阵列的排列双样本t-检验。对于观察中的高维度载体, Permax软件计算了对每一属性的t-统计,并应用全部属性的最大值与 最小值的排列分布评估了显著性。主要应用是确定两组之间差异最大 的属性(基因)(例如对照的健康受试者和具有特定硫酸酯酶缺乏症的 受试者),应用t-统计的值测量“最大差异”和它们的显著性水平。

    硫酸酯酶缺乏疾病相关性核酸分子的表达也能应用蛋白测量方 法测定,以测定SEQ ID NOs:2的表达,例如通过测定SEQ ID NOs:1 和/或3编码的多肽的表达。特异和定量测量蛋白质的优选方法包括但 不限于:基于质谱的方法例如表面增强的激光解吸电离(SELDI;例如 Ciphergen蛋白质芯片系统),非基于质谱的方法,和基于免疫组织化 学的方法例如二维凝胶电泳。

    通过本领域一般技术人员已知的程序,SELDI方法可被用于蒸 发显微量的蛋白,和创造个体蛋白质的“指纹”,从而允许对在单一 样本中的多种蛋白质的含量的同时测量。优选地,基于SELDI的分析 可被用于鉴别多种硫酸酯酶缺乏症的特征,以及这类病症的阶段。这 类分析优选包括,但不限于下列实例。RNA微阵列所发现的基因产物可 通过被专一(抗体介导的)捕获到SELDI蛋白质盘(例如选择性SELDI) 而被选择性地测量。蛋白筛选(例如以2维凝胶)所发现的基因产物 可通过最优化的“总蛋白SELDI”解析以可视化那些来自SEQ ID NOs: 1,6,8,10,12,14,16,18,20,22,24,26,和/或28中的特 定的目的标记。来自SEQ ID NOs:1,6,8,10,12,14,16,18,20, 22,24,26,和/或28中的多种标记物的SELDI测量的特定硫酸酯酶 缺乏症的预测模型可被用于SELDI策略。

    任何前述微阵列方法在测定硫酸酯酶缺乏疾病相关核酸的蛋白 中的应用,能以本领域一般技术人员已知的常规方法完成,而通过蛋 白质测量方法测定的表达可与标记物的预测定水平相关,用作对硫酸 酯酶缺乏疾病患者治疗策略进行选择的预测性方法。

    本发明也包含硫酸酯酶产生性细胞,其中细胞产生的活性硫酸酯 酶对总硫酸酯酶的比率(即比活性)被增加。细胞包含:(i)具有增 强的表达的硫酸酯酶,和(ii)具有增强的表达的甲酰甘氨酸生成酶, 其中细胞产生的活性硫酸酯酶对总硫酸酯酶的比率,相对于甲酰甘氨 酸生成酶缺乏时细胞所产生的活性硫酸酯酶对总硫酸酯酶的比率,增 加至少5%。

    在本文中所用的“具有增强的表达的硫酸酯酶”典型地指硫酸酯 酶和/或其编码的多肽相对于对照的增加的表达。增加的表达指增加 (即到可探测的程度)任何硫酸酯酶核酸(如本文中其它部分所描述的 本发明的硫酸酯酶核酸)的复制、转录和/或翻译,因为任何这些过程 的上调会导致基因(核酸)所编码的多肽的浓度/数量的增加。这能应 用大量本领域中已知也在本文中其它部分描述的方法而完成,例如以 硫酸酯酶cDNA和/或包含硫酸酯酶位点的基因组DNA对细胞的转染, 通过应用同源重组将例如强启动子元件置于内源性硫酸酯酶基因的基 因组位点上游而激活内源性硫酸酯酶基因(参见,例如U.S.Patents Nos.5,733,761、6,270,989和6,565,844中详细描述的基因激活技 术,所有这些被整合在本文中作为参考)等。典型的对照将是载体质粒 所转染的同样的细胞。增强(或增加)硫酸酯酶活性也指防止或抑制硫 酸酯酶的降解(例如通过增强的泛素化),下调等,其导致例如相对于 对照的增加的或稳定的硫酸酯酶分子t1/2(半衰期)。下调或降低的表 达指基因和/或其编码的多肽的降低的表达。基因表达的上调或下调能 通过一定方式直接测定,所述方式为应用任何本领域已知的适合的方 式例如核酸杂交或抗体探测方法分别探测基因(例如,硫酸酯酶)的 mRNA水平或基因所编码多肽的蛋白质表达水平的增加或降低,并与对 照比较。硫酸酯酶基因表达的上调或下调也能通过探测硫酸酯酶活性 的变化而间接测定。

    类似地,在本文中所用的“具有增强的表达的甲酰甘氨酸生成酶”, 典型地指本发明的FGE核酸和/或其编码的多肽相对于对照的增加的 表达。增加的表达指增加(即到可探测的程度)任何本发明的FGE核 酸(如本文中其它部分所描述的)的复制、转录和/或翻译,因为任何这 些过程的上调会导致基因(核酸)所编码的多肽的浓度/数量的增加。 这能应用上述的(对硫酸酯酶)和在本文中其它部分描述的方法而完 成,

    在一定实施方案中,相对于甲酰甘氨酸生成酶缺乏的细胞所产生 的活性硫酸酯酶对总硫酸酯酶的比率,细胞所产生的活性硫酸酯酶对 总硫酸酯酶的比率增加至少10%,15%,20%,50%,100%,200%,500%, 1000%。

    本发明进一步包含在受试者中治疗硫酸酯酶缺乏症的改进的方 法。方法包括对需要这类治疗的受试者以有效剂量施用硫酸酯酶以治 疗受试者中的硫酸酯酶缺乏症,其中硫酸酯酶与一定量的甲酰甘氨酸 生成酶接触,所述量是增加硫酸酯酶比活性的有效量。如本文中其它 部分所描述的,“比活性”指所产生的活性硫酸酯酶对总硫酸酯酶的 比率。在此所用的“接触”指如本文中其它部分所描述的FGE翻译后 修饰硫酸酯酶。将对一般技术人员显然的是,如果编码FGE和硫酸酯 酶的核酸在细胞中共表达,或甚至如果分离的FGE多肽与分离的硫酸 酯酶多肽在体内或体外接触,则FGE能接触硫酸酯酶并对它进行修饰。 即使分离的FGE多肽能与分离的硫酸酯酶多肽共施用于受试者,以治 疗受试者中的硫酸酯酶缺乏症,在FGE和硫酸酯酶之间的接触也优选 在硫酸酯酶施用于受试者之前在体外发生。既然更低量的硫酸酯酶需 要被施用,和/或以更低频率施用(因为硫酸酯酶具有更高的比活性), 此改进的治疗方法对受试者有益。

    参考下面的实施例,本发明将被更充分地理解。然而,这些实施 例只倾向于举例说明本发明的实施方案,而不应被解释为限制本发明 的范围。

    实施例

    实施例1:

    多种硫酸酯酶缺乏症由编码人Cα-甲酰甘氨酸生成酶(FGE)的基因 中的突变所引起。

    实验程序

    材料和方法

    FGE的体外分析

    为监测FGE的活性,N-乙酰化和C-酰胺化的23聚肽P23 (MTDFYVPVSLCTPSRAALLTGRS)(SEQ ID NO:33)被用作底物。位点11的 半胱氨酸残基向FGly转化通过MALDI-TOF质谱监测。30%乙氰和0.1% 三氯乙酸(TFA)中的6μM的P23原液被制备。在标准条件下,6pmol的 P23与高至10μl的酶一起在最终体积为30μl的50mM Tris/HCl(pH 9.0, 含有67mM NaCl,15μM CaCl2,2mM DTT,和0.33mg/ml牛血清白蛋 白)中于37℃培育。为停止酶反应,加入1.5μl 10%TFA。然后P23 被固着于ZipTip C18(Millipore),以0.1%TFA清洗,并在3μl的50% 乙氰和0.1%TFA中洗脱。0.5μl的洗脱液与0.5μl的基质溶液(50% 乙氰和0.1%TFA中的5mg/ml a-氰基-4-羟基-肉桂酸(Bruker Daltonics,Billerica,MA))在不锈钢的靶上混合。MALDI-TOF质谱 应用反射模式和刚好高于解吸/电离阈值的激光能量以Reflex III (Bruker Daltonics)完成。所有谱线是来自靶标上几个点的200-300 次射击(shot)的平均值。质量轴应用分子质量范围在1000到3000Da 的肽作为外部标准而校准。P23的单同位素MH+是2526.28,而包含FGly 产物的是2508.29。活性(pmol产物/小时)根据产物的峰值高度除以 P23和产物的峰值高度总和而计算。

    来自牛睾丸的FGE的纯化

    牛睾丸得自当地屠宰场,冰上保存最多20小时。实质(Parenchyme) 从结缔组织中释放,并在韦林氏搅切器中和通过三轮次的马达陶制 (motor pottering)而匀浆。通过所得到的匀浆的细胞分级分离,粗 微粒体(RM)的制备按(Meyer等,J.Biol.Chem.,2000, 275:14550-14557)所述并进行下面的修正而完成。三次差异离心步骤, 每次4℃下20分钟,在500g(JA10转子),3000g(JA10)和10000g (JA20)下完成。RM膜从最后一次的上清液中沉淀(125000g,Ti45转 子,45分钟,4℃),通过马达陶制匀浆并在蔗糖垫层上分层(50mM Hepes,pH 7.6,50mM KAc,6mM MgAc2,1mM EDTA,1.3M蔗糖,5 mM β-巯基乙醇)。在Ti45转子中以45000rpm4℃下离心210分钟后, RM从沉淀中回收。通常100000-150000等价的RM,如Walter和Blobel (Methods Enzymol.,1983,96:84-93)所定义,从1kg睾丸组织中得 到。reticuloplasm,即RM的腔内容物通过低浓度脱氧Big Chap下的分 级抽提而得到,如Fey等,J.Biol.Chem.,2001,276:47021-47028 所述。对FGE的纯化,95ml的reticuloplasm 4℃下对20mM Tris/HCl, pH 8.0,2.5mM DTT透析20小时,而通过125000g下离心1小时澄 清。32ml澄清reticuloplasm等份物室温下被装在MonoQ HR10/10柱 (Amersham Biosciences,Piscataway,NJ)上,清洗和用线性梯度的 80ml Tris缓冲液中的0到0.75M NaCl以2ml/min洗脱。三轮洗脱的 包含FGE活性的级分(50-165mM NaCl洗脱)被收集(42ml),与2ml 的伴刀豆球蛋白A-Sepharose(Amersham Biosciences,已用含有0.5 M KCl,1mM MgCl2,1mM MnCl2,1mM CaCl2,和2.5mM DTT的50mM Hepes 缓冲液,pH 7.4清洗过)混合。4℃下培育16小时后,伴刀豆球蛋白 A-Sepharose在柱中被收集,并用6ml相同的Hepes缓冲液清洗。固着 的物质通过柱在室温下与6ml 0.5M a-甲基甘露糖苷在50mM Hepes, pH 7.4,2.5mM中培育1小时而洗脱。洗脱用4ml的相同洗脱剂重复。 来自伴刀豆球蛋白A-Sepharose的合并的洗脱液(10ml)以0.5M Tris/HCl(pH 9.0)调至pH 8.0,并与用10mg混杂肽(PVSLPTRSCAALLTGR) (SEQ ID NO:34)衍生化的2ml的Affigel 10(Bio-Rad Laboratories, Hercules,CA)混合,以缓冲液A(50mM Hepes,pH 8.0,含有0.15 M乙酸钾,0.125M蔗糖,1mM MgCl2,和2.5mM DTT)清洗。4℃下培 育3小时后,亲和基质在柱中被收集。收集经过的液体(flow through) 和用4ml缓冲液A清洗的组分,合并,并与已用10mg的Ser69肽 (PVSLSTPSRAALLTGR)(SEQ ID NO:35)取代的2ml Affigel 10混合, 用缓冲液A清洗。4℃下培育过夜,亲和基质在柱中被收集,用6ml的 缓冲液B(含有2M NaCl和20种组成蛋白质的氨基酸(每一浓度 为50mg/ml)的混合物的缓冲液A)清洗3次。通过将Affigel与含有25 mM Ser69肽的6ml缓冲液B培育两次,每次90min,而将固着的物 质从亲和基质洗脱。洗脱液的等分组分以1mg/ml牛血清白蛋白取代, 对缓冲液A透析,并分析活性。活性的保留部分(11.8ml)在Vivaspin 500浓缩器(Vivascience AG,Hannover,Germany)中浓缩,并在95℃ 下溶于Laemmli SDS样品缓冲液。起始物质和层析步骤后得到的制剂的 多肽组成以SDS-PAGE(15%丙烯酰胺,0.16%双丙烯酰胺)监测,和 以SYPRO Ruby(Bio-Rad Laboratories)染色。

    通过质谱对FGE的鉴定

    对于肽质量指纹分析,纯化的多肽用胰蛋白酶在凝胶内被消化 (Shevchenko等,Anal.Chem.,1996,68:850-855),在C18 ZipTip 上脱盐,并应用二氢苯甲酸作为基质和两种来自胰蛋白酶的自降解肽 (m/z 842.51和2211.10)作为内标准而以MALDI-TOF质谱进行分析。对 串联质谱分析,选出的肽通过MALDI-TOF post-source decay质谱而 被分析。它们对应的带双电荷的离子被分离出,并被offline nano-ESI 离子阱质谱(EsquireLC,Bruker Daltonics)所片段化。质谱数据通 过Mascot检索算法用于NCBInr蛋白质数据库中和NCBI EST核苷酸数据 库中的蛋白质鉴定。

    生物信息学

    信号肽和切断的位置根据在EMBOSS(Rice等,Trends in Genetics,2000,16:276-277)中实行的von Heijne(von Heijne, Nucleic Acids Res.,1986,14:4683-90)的方法被描述。N-糖基化 位点应用Brunak的算法(Gupta和Brunak,Pac.Symp.Biocomput., 2002,310-22)被预测。功能结构域通过搜索 PFAM-Hidden-Markov-Models(version 7.8)(Sonnhammer等, Nucleic Acids Res.,1998,26:320-322)而被探测到。为搜索FGE同 源物,National Center for Biotechnology Information的数据库 (Wheeler等,Nucleic Acids Res.,2002,20:13-16)用BLAST (Altschul等,Nucleic Acids Res.,1997,25:3389-3402)查询。 序列类似度应用来自EMBOSS的标准工具而计算。基因组位点组织和同 线性应用NCBI的人和小鼠基因组资源及也来自NCBI,Bethesda,MD的 人类-小鼠同源性图谱而确定。

    人FGE cDNA的克隆

    从人成纤维细胞应用RNEASYTM Mini试剂盒(Qiagen,Inc., Valencia,CA)制备的总RNA,应用OMNISCRIPT RTTM试剂盒(Qiagen, Inc.,Valencia,CA)以及寡(dT)引物或者FGE专一的引物1199nc (CCAATGTAGGTCAGACACG)(SEQ ID NO:36)而被反转录。cDNA的第一链 通过应用正向引物1c(ACATGGCCCGCGGGAC)(SEQ ID NO:37)和作为反 向引物的1199nc或1182nc(CGACTGCTCCTTGGACTGG)(SEQ ID NO:38) 的PCR而扩增。PCR产物被直接克隆进pCR4-TOPOTM载体(Invitrogen Corporation,Carlsbad,CA)。通过对克隆PCR产物(其从不同的个 体和独立的RT-PCR反应得到)的多种测序,FGE cDNA的编码序列被 确定(SEQ ID NOs:1和3)。

    突变探测,基因组测序,定点诱变和RNA印迹分析

    此研究中采用的标准流程本质上如Lübke等(Nat.Gen.,2001, 28:73-76)和Hansske等(J.Clin.Invest.,2002,109:725-733)所 述。Northern点与覆盖整个编码区cDNA探针杂交,并与β-肌动蛋白 cDNA探针杂交而作为RNA负载的对照。

    细胞系和细胞培养

    来自多种硫酸酯酶缺乏症患者1-6的成纤维细胞分别从E. Christenson(Rigshospitalet Copenhagen),M.Beck (Mainz),A.Kohlsch ütter (Eppendorf,Hamburg),E.Zammarchi (Meyer Hospital,University of Florence),K.Harzer(Institut Tübingen),和A.Fensom(Guy’ s Hospital,London)得到。人皮肤成纤维细胞,HT-1080,BHK21和 CHO细胞被以37℃和5%CO2下保存在含有10%胎牛血清的Dulbecco的 修饰后的Eagle培养基中。

    转染,间接免疫荧光,Western印迹分析和FGE活性的探测

    通过add-on PCR(其应用了Pfu聚合酶(Stratagene,La Jolla,CA) 和下列引物:GGAATTCGGGACAACATGGCTGCG(EcoRI)(SEQ ID NO:39), CCCAAGCTTATGCGTAGTCAGGCACATCATACGGATAGTCCATGGTGGGCAGGC (HA)(SEQ ID NO:40),CCCAAGCTTACAGGTCTTCTTCAGAAATCAGCTTTT GTTCGTCCATGGTGGGCAGGC(c-Myc)(SEQ ID NO:41),CCCAAGCTTAG TGATGGTGATGGTGATGCGATCCTCTGTCCATGGTGGGCAGGC(RGS-His6)(SEQ ID NO:42)),FGE cDNA被装上5′EcoRI-位点以及3′HA-,c-Myc或 者RGS-His6-标记序列,及其后的终止密码子和HindIII位点。得到的 PCR产物作为EcoRI/HindIII片段被克隆进pMPSVEH(Artelt等,Gene, 1988,68:213-219)。应用EFFECTENETM(Qiagen)作为转染试剂,得到 的质粒被瞬时转染进生长在盖玻片上的HT-1080,BHK21和CHO细胞。转 染48小时后,细胞通过如前面所述的间接免疫荧光(Lübke等,Nat. Gen.,2001,28:73-76;Hansske等,J.Clin.Invest.,2002, 109:725-733),应用抗HA的单克隆IgG1抗体(Berkeley抗体Company, Richmond,CA),抗c-Myc的单克隆IgG1抗体(Santa Cruz Biotechnology,Inc.,Santa Cruz,CA)或抗RGS-His的单克隆IgG1 抗体(Qiagen)作为第一抗体而被分析。内质网标记蛋白即蛋白二硫键 异构酶(PDI)被用不同亚型的单克隆抗体(IgG2A,Stressgen Biotech.,Victoria BC,Canada)所探测。第一抗体被用分别偶联到 CY2或CY3的同型-专一性的山羊第二抗体(Molecular Probes,Inc., Eugene,OR)所探测。免疫荧光图像在Leica TCS Sp2 AOBS激光扫描 显微镜上得到。对Western印迹分析,应用相同的单克隆抗体,HRP- 缀合的抗-小鼠IgG被用作第二抗体。对FGE活性的测定,胰蛋白酶化的 细胞用含有2.5mM DTT、蛋白酶抑制剂和1%Triton X-100的10mM Tris(pH 8.0)所溶解的磷酸缓冲盐溶液清洗,其含有蛋白酶抑制剂 的混合物(208μM 4-(2-氨基乙基)盐酸苯磺酰基氟,0.16μM抑酶 肽,4.2μM亮抑酶肽,7.2μM苯丁抑制素,3μM抑胃酶肽A,2.8μM E-64),并通过在125,000g离心1小时而澄清。上清液在MonoQ PC 1.6/5 柱上应用上述条件进行层析。在50-200mM NaCl中洗脱的组分被收集, 冷冻干燥,并重构成原始体积的十分之一,随后用肽P23测定FGE活性。

    逆转录病毒转导

    目的cDNAs被克隆进基于莫洛尼鼠白血病病毒的载体pLPCX和 pLNCX2(BD Biosciences Clontech,Palo Alto,CA)。嗜亲性的 FNX-Eco细胞(ATCC,Manassas,VA)的转染,及兼嗜性RETROPACKTMPT67细胞(BD Biosciences Clontech)和人成纤维细胞的转导按Lübke 等,Nat.Gen.,2001,28:73-76;Thiel等,Biochem.J.,2002,376, 195-201所述完成。对部分实验,在测定硫酸酯酶活性前,用嘌呤霉素 选择pLPCX转导的PT67细胞

    硫酸酯酶分析

    ASA,STS和GalNAc6S的活性按Rommerskirch和von Figura, Proc.Natl.Acad.Sci.,USA,1992,89:2561-2565;和 Kresse,Clin.Chim.Acta,1978,88:111-119中所述被测定。

    结果

    对FGE活性的基于肽的快速分析

    我们已发展出应用体外合成的[35S]ASA片段作为底物而用于在微 粒体抽提物中测定FGE活性的分析法。片段被加入分析混合物而作为核 糖体相连的初生链复合物。对产物的定量包括胰蛋白酶消化、肽通过 RP-HPLC的分离,及通过化学衍生为腙、RP-HPLC分离和液闪计数的组 合而对含有[35S]-标记的FGly的胰蛋白酶降解肽的鉴别和定量(Fey 等,J.Biol.Chem.,2001,276:47021-47028)。为监测纯化过程中 的酶活性,此麻烦的程序需要被修正。对应于ASA残基65-80和含有FGly 形成所需的序列基序的合成性的16聚肽在体外分析中抑制了FGE活性。 这暗示了肽例如ASA65-80可作为FGE的底物而起作用。我们合成了23 聚肽P23(SEQ ID NO:33),其对应于ASA残基60-80并附加了N-乙 酰化的甲硫氨酸和C-酰胺化的丝氨酸残基以分别保护N-和C-末端。含 有半胱氨酸和FGly的P23形式能通过基质辅助的激光解析/电离飞行时 间(MALDI-TOF)质谱鉴别和定量。FGly残基在P23位点11的存在通过 MALDI-TOF post source decay质谱证实(参见Peng等,J.Mass Spec.,2003,38:80-86)。P23和来自牛胰或牛睾丸微粒体的抽提物的 培育将高至95%的肽转化成为含有FGly的衍生物(图1)。在标准条件 下,反应与酶的数量和培育的时间成正比例,只要少于50%的底物被 消耗和培育时间不超过24小时。P23的km是13nM。减少的和氧化的谷 胱甘肽、Ca2+和pH的效应与在应用核糖体相连初生链复合物作为底物的 分析中所见到的那些相当(Fey等,J.Biol.Chem.,2001, 276:4702l-47028)。

    FGE的纯化

    对FGE的纯化,牛睾丸微粒体的可溶性的级分(reticuloplasm) 作为起始物质。FGE的比活性比那些来自牛胰微粒体的reticuloplasm 中的类型高10-20倍(Fey等,J.Biol.Chem.,2001, 276:47021-47028)。FGE的纯化通过四个层析步骤的组合而完成。前两 个步骤是在MonoQ阴离子交换柱和伴刀豆球蛋白A-Sepharose柱上的 层析。在pH 8,FGE活性物被固着到MonoQ,并在50-165mM NaCl被洗 脱,而具有60-90%的回收率。当此级分与伴刀豆球蛋白A-Sepharose 混合时,FGE被固着。起始活性的30-40%能用0.5Ma-甲基甘露糖苷洗 脱。后面两个纯化步骤是以16聚肽衍生的亲和基质上的层析。第一亲 和基质是ASA65-80肽的变体所取代的Affigel 10,其中对FGly形成 很关键的残基Cys69,Pro71和Arg73被搅乱(混杂肽 PVSLPTRSCAALLTGR-SEQ ID NO:34)。当以10mM浓度加入体外的分析 中时,此肽不会抑制FGE活性,且当固定到Affigel 10时不会保持FGE 活性。在混杂肽亲和基质上的层析除去了肽结合性蛋白,包括内质网 的伴侣。第二亲和基质是ASA65-80肽的变体所取代的Affigel 10, 其中Cys69被丝氨酸取代(Ser69肽PVSLSTPSRAALLTGR-SEQ ID NO:35)。Ser69肽亲和基质有效结合FGE。FGE活性物能用2M KSCN或者 25mM Ser69肽洗脱,而具有20-40%的回收率。在活性测定之前,KSCN 或Ser69肽必须通过透析除去。Cys69被丝氨酸的取代对活性FGE的洗脱 至关重要。被野生型ASA65-80肽所取代的Affigel 10有效结合FGE。然 而,几乎没有活性能在用离液盐(KSCN,MgCl2),肽(ASA65-80或 Ser69肽),或者低或高pH值缓冲液洗脱的洗脱液中回收。在图2中显 示了起始物质和在经历了典型纯化过程的四个层析步骤之后得到的活 性组分的多肽模式。在最终级分中,5%的起始FGE活性和0.0006%的起 始蛋白被回收(8333-倍纯化)。

    纯化的39.5和41.5kDa多肽被单个基因编码

    在纯化的FGE制剂中的39.5和41.5kDa多肽被进行肽质量指纹分 析。通过MALDI-TOF质谱得到的两个多肽的胰蛋白酶肽的质谱很大程度 地重叠,暗示着两个蛋白质源自相同基因。在两个多肽的胰蛋白酶肽 中,两个富含肽(MH+1580.73,SQNTPDSSASNLGFR(SEQ ID NO:43) 和MH+2049.91,MVPIPAGVFTMGTDDPQIK-SEQ ID NO:44外加两处甲硫 氨酸氧化)被发现,其与具有GenBank Acc.No.AK075459(SEQ ID NO:4) 的cDNA所编码的蛋白质吻合。这两个肽的氨基酸序列被MALDI-TOF post source decay谱和应用offline nano-electrospray ionisation(ESI)离子阱质谱的MS/MS分析所确认。人cDNA的牛定向 进化同源物的EST序列,其覆盖FGE的C端部分并与两个肽的序列都吻 合,提供了牛FGE的另外的序列信息。

    FGE的进化保守和结构域结构

    人FGE基因被SEQ ID NOs:1和/或3的GDNA编码,并位于染色体3p26。 它跨度约为105kb,而编码序列分散在9个外显子中。人FGE基因的三 个定向进化同源物在小鼠中(87%一致),黄果蝇(48%一致),和疟蚊 (47%一致)被发现。定向进化同源物的EST序列在更多的8个物种中被 发现,包括奶牛,猪,非洲爪蟾,Silurana tropicalis,斑马鱼,鲑 鱼和其它鱼物种(对于细节,参见实施例2)。外显子-内含子结构在人 与小鼠基因间保守,而在染色体6E2上的小鼠基因位于与人染色体3p26 同线的区域内。S.cerevisiae和C.elegans的基因组缺乏FGE同源物。 在原核生物中,12种人FGE的同源物被发现。人FGE的cDNA被预测编码 一个374残基的蛋白(图3和SEQ ID NO:2)。此蛋白包含一个33残基 的可切断的信号序列,其表明FGE到内质网中的迁移,此蛋白也包含了 在Asn141处的单一N-糖基化位点。FGE与伴刀豆球蛋白A的结合暗示着 此N-糖基化位点被应用。FGE的残基87-367被列在PFAM蛋白质基序 数据库中,作为未知功能的结构域(PFAM:DUF323)。人FGE和其在数 据库中已鉴定出的真核生物的定向进化同源物的序列比较分析说明此 结构域由三个不同的亚结构域组成。

    在四种已知的真核生物FGE定向进化同源物中,N端亚结构域(人 FGE中的残基91-154)具有46%的序列一致性和79%的相似性。在人 FGE中,此结构域在Asn 141携带N-糖基化位点,这在其它定向进化同 源物中保守。FGE的中间部分(人FGE中的残基179-308)为富含色氨 酸的亚结构域(每129残基中12个色氨酸)。真核生物定向进化同源 物在此亚结构域内的一致性是57%,相似性是82%。C端亚结构域(人FGE 中的残基327-366)是FGE家族内最高度保守的序列。人C端亚结构域 与真核生物定向进化同源物(3个全长序列和8个EST)的序列一致性是 85%,相似性是97%。在亚结构域3的40个残基内,四个半胱氨酸残基完 全保守。三个半胱氨酸也在原核生物FGE定向进化同源物中保守。FGE 家族的12个原核生物成员(细节参见实施例2)与真核生物FGE共享亚 结构域结构。三个亚结构域之间的边界在原核生物FGE家族中更加明 显,因为可变长度的非保守序列将亚结构域彼此分开。人和小鼠基因 组编码两个密切相关的FGE同源物(SEQ ID NOs:43和44,GenBank Acc. No.NM_015411,在人中;和SEQ ID NOs:45和46,GenBank Acc.No. AK076022,在小鼠中)。两个平行进化同源物为86%一致。它们的基因 位于同线染色体区域(在人中7q11,在小鼠中5G1)。两个平行进化同源 物都与FGE定向进化同源物分享亚结构域结构,与人FGE有35%一致性 和47%的相似性。在两个同源物中都100%一致的第三亚结构域中,含 有半胱氨酸的亚结构域3的十一体序列缺失。

    表达,亚细胞定位和分子形式

    2.1kb的单一转录子通过来自成纤维细胞的总RNA和来自心脏、 脑、胎盘、肺、肝脏、骨骼肌、肾和胰的聚A+RNA的RNA印迹分析可被 探测。相对于β-肌动蛋白RNA,含量有一个数量级的变化,而在胰和 肾中最高,脑中最低。多种真核生物细胞系,其稳定地或瞬时表达人 FGE的cDNA或C端被HA-,Myc-或His6-tag所延长的FGE衍生物的cDNA, 被用于对FGE活性和FGE亚细胞定位进行分析。标记或非标记的FGE的瞬 时表达增加了1.6-3.9倍的FGE活性。FGE在PT67细胞中的稳定表达增加 了约100倍的FGE活性。在BHK 21,CHO和HT1080细胞中通过间接免疫荧 光对带标记的FGE形式的探测显示多种带标记的FGE形式与蛋白质二硫 键异构酶(一种内质网的腔蛋白)共定位。来自BHK 21细胞(被编码 带标记的FGE形式的cDNA所瞬时转染)的抽提物的Western印迹分析显 示单一的免疫活性条带,其表观大小在42到44kDa之间。

    FGE基因携带多种硫酸酯酶缺乏症中的突变

    多种硫酸酯酶缺乏症由硫酸酯酶中无法产生FGly残基的缺陷所 引起(Schmidt,B.等,Cell,1995,82:271-278)。FGE基因因此是 多种硫酸酯酶缺乏症的候选基因。我们对7位多种硫酸酯酶缺乏症患者 的FGE编码性cDNA进行了扩增和测序,发现十个不同的突变,其被基因 组DNA测序所确证(表1)。

    表1:MSD患者中的突变

      突变   对蛋白质的作用   说明   患者   1076C>A   S359X   C-端16残基截短   1*   IVS3+5-8del   删去残基149-173   按读码框删去外显子3   1,2   979C>T   R327X   失去亚结构域3   2   1045C>T   R349W   置换亚结构域3中的保守残基   3,7   1046G>A   R349Q   置换亚结构域3中的保守残基   4   1006T>C   C336R   置换亚结构域3中的保守残基   4   836C>T   A279V   置换亚结构域2中的保守残基   5   243delC   移码和截短   丢失所有三个亚结构域   5   661delG   移码和截短   丢失FGE的C末端第三,包括亚   结构域3   6**   IVS6-1G>A   删去残基281-318   按读码框删去外显子7   5

    *患者1是在Schmidt,B.等,Cell,1995,82:271-278和Rommerskirch和von Figura,Proc.Natl.Acad.Sci.,USA,1992,89:2561-2565中的多种硫酸酯酶缺乏 症患者Mo.。

    **患者6是被Burk等,J.Pediatr.,1984,104:574-578报道的多种硫酸酯酶 缺乏症患者。

    其它患者代表未发表的病例。

    第一位患者是1076C>A置换(将丝氨酸359的密码子转换成了终止 密码子)(S359X)和导致149-173的25个残基(被外显子3所编码和将 蛋白质的第一与第二结构域分开)的删除的突变的杂合子。基因组测 序显示第三个内含子的+5-8核苷酸的删除(IVS3+5-8del),其从而破 坏了内含子3的剪切供体位点。第二位患者是引起外显子3丢失 (IVS3+5-8del)的突变和979C>T置换(将精氨酸327的密码子转换成 了终止密码子)(R327X)的杂合子。由979C>T等位基因编码的截短的FGE 缺乏了亚结构域3的绝大部分。第三位患者是1045C>T置换(亚结构域 3中的保守精氨酸349被色氨酸取代)(R349W)的纯合子。第四位患者是 FGE结构域中取代保守残基的两个错义突变的杂合子:1046>T置换(精 氨酸349被谷氨酰胺取代)(R349Q)和1006T>C置换(半胱氨酸336 被精氨酸取代)(C336R)。第五位患者是836C>T置换(保守丙氨酸 279被缬氨酸取代)(A279V)的杂合子。第二突变是一种单一核苷酸删 除(243delC),其在脯氨酸81之后改变序列并导致残基139之后的翻 译停止。第六位患者是单一核苷酸删除(661delG)(其在残基220之后 改变氨基酸序列并在残基266之后引入终止密码子)的杂合子。第二突 变是内含子6的剪切受体位点突变(IVS6-1G>A),其导致编码残基 281-318的外显子7的按读码框删除。在第七位患者中,与在第三位患 者中相同的1045C>T置换被发现。此外,我们探测到来自对照和多种 硫酸酯酶缺乏症患者的18FGE等位基因的编码区中的两种多态性。22% 携带188G>A置换(丝氨酸63被天冬酰胺取代)(S63N),而28%有沉 默的1116C>T置换。

    多种硫酸酯酶缺乏症成纤维细胞以野生型和突变体FGE cDNA的转 导

    为了确认FGE缺陷是多种硫酸酯酶缺乏症中合成的硫酸酯酶无活 性的原因,我们在多种硫酸酯酶缺乏症成纤维细胞中应用逆转录病毒 基因转移来表达FGE cDNA。作为对照,我们转导了没有cDNA插入物的 逆转录病毒载体。为监测代谢缺陷的补偿(complementation),ASA、 类固醇硫酸酯酶(STS)和N-乙酰半乳糖胺6-硫酸酯酶(GalNAc6S) 的活性在选择之前或之后在被转导的成纤维细胞中测量。野生型FGE 的转导部分恢复了两种多种硫酸酯酶缺乏症-细胞系中的三种硫酸酯 酶的催化活性(表2),而在第三种多种硫酸酯酶缺乏症细胞系中部分 恢复了STS的活性。应当指出的是,对于ASA和GalNAc6S,恢复只是在 对成纤维细胞选择之后的部分恢复,达到正常活性的20到50%。对于 STS,活性被发现在选择后恢复到对照成纤维细胞的水平。选择增加了 ASA和STS的活性50到80%,其与早些时候的观察即15到50%的成纤维细 胞被转导(Lübke等,Nat.Gen.,2001,28:73-76)相一致。仅以逆 转录病毒载体转导的多种硫酸酯酶缺乏症成纤维细胞中的硫酸酯酶活 性(表2)与非转导性多种硫酸酯酶缺乏症成纤维细胞(未显示)中的那 些结果相当。携带IVS3+5-8del突变的FGE cDNA的转导无法恢复硫酸酯 酶活性(表2).

    表2:多种硫酸酯酶缺乏症成纤维细胞通过野生型或突变体 FGE cDNA转导的补偿

    1数值给出了ASA(mU/mg细胞蛋白质),STS(μU/mg细胞蛋白质),GalNAc6S (μU/mg细胞蛋白质)和β-己糖胺酶(U/mg细胞蛋白质)之间的比率。对于对照成纤维细 胞,6-11个细胞系的均值和方差被给出。指明了平行转导的两种培养物的范围的情形 针对多种硫酸酯酶缺乏症成纤维细胞给出。

    °多种硫酸酯酶缺乏症成纤维细胞的数目指表1中的患者的数目

    +选择前活性测定

    ++选择后活性测定

    n.d.没有测定

    讨论

    FGE是内质网的高度保守的糖蛋白

    来自牛睾丸的FGE的纯化得到了源自相同基因的39.5和41.5kDa 的两种多肽。三种FGE不同标记形式在三种不同真核生物细胞系中作为 单一形式的表达暗示,在从牛睾丸纯化的FGE制剂中观察到的两种形式 中的一种可能由纯化过程中的有限蛋白水解所产生。ASA65-80肽中 Cys69被丝氨酸的置换,对于FGE通过亲和层析的纯化至关重要。FGE 具有可切断的信号序列,其介导穿过内质网膜的移位。成熟蛋白的更 多部分(340个残基中的275个)定义了独有的结构域,其很可能由三个 亚结构域组成(参见实施例2),对于这三个亚结构域,都没有在具有 已知功能的蛋白质中找到同源物。对线性FGly修饰基元在新合成的硫 酸酯酶多肽中的识别(Dierks等,EMBO J.,1999,18:2084-2091) 可能是FGE亚结构域的功能。催化结构域能以数种方式催化FGly形成。 已有建议提出,FGE从半胱氨酸的巯基吸取电子,并将它们转移到受体。 得到的硫醛将自发地水解成FGly和H2S(Schmidt,B.等,Cell,1995, 82:271-278)。替代性地,FGE能扮演混合功能的加氧酶(单加氧酶), 在电子供体如FADH2的协助下将O2的一个原子引入到半胱氨酸,而另一 个引入H2O。得到的半胱氨酸硫醛水合衍生物将自发地反应成FGly和 H2S。部分纯化的FGE制剂的初步实验显示FGly形成对分子氧的重要依 赖性。这将暗示FGE扮演混合功能的加氧酶。亚结构域3特别高的保守 性和三个完全保守的半胱氨酸残基在其中的存在使得此亚结构域成为 催化位点很可能的候选者。将会有趣的是研究,介导FGly基元的识别 和电子受体或电子供体的结合的结构元件是否与FGE的结构域结构相 关。

    重组FGE定位于内质网,这与所建议的其行为位置一致。FGly残 基在新合成的硫酸酯酶中产生,这发生在它们移位到内质网的过程中 或短时间之后(Dierks等,Proc.Natl.Acad.Sci.U.S.A.,1997, 94:11963-11968;Dierks等,FEBS Lett.,1998,423:61-65)。FGE 本身不含有KDEL类型的ER-保留信号。因此它在内质网中的保留可被 与其它ER蛋白的相互作用所介导。移位/N-糖基化机制的成分是这类 相互作用的伴侣的有吸引力的候选者。

    导致多种硫酸酯酶缺乏症的FGE中的突变

    我们已显示,编码FGE的基因中的突变导致多种硫酸酯酶缺乏症。 FGE也可与其它成分相互作用,而编码后者的基因中的缺陷能同等有效 地导致多种硫酸酯酶缺乏症。在七位多种硫酸酯酶缺乏症患者中,我 们确实发现了FGE基因中的十种不同突变。通过在亚结构域3(三个突 变)或亚结构域2(一个突变)中取代高度保守的残基或C端不同长度 的截短(四个突变)或大的按读码框删除(两个突变),所有突变对FGE 蛋白有严重的影响。对于两种多种硫酸酯酶缺乏症-细胞系和一种多种 硫酸酯酶缺乏症的突变,已有显示,野生型而不是突变体的FGE cDNA 的转导部分恢复硫酸酯酶的活性。这清晰地鉴定出FGE基因作为突变位 点以及突变的致病本质。多种硫酸酯酶缺乏症是临床和生化方面都异 型。在出生时期存在而发展出脑积水的罕见的新生形式,起初象幼儿 异染性脑白质营养不良而后来发展出鱼鳞癣和粘多糖症类似特征的普 遍形式,以及较少发生的温和形式(在此形式中,粘多糖症临床特征 流行),已被区分开。生化上其特征是硫酸酯酶的残余活性能被测到, 对于大多数病例而言,其在培养的皮肤成纤维细胞中低于对照的10% (Burch等,Clin.Genet.,1986,30:409-15;Basner等,Pediatr. Res.,1979,13:1316-1318)。然而,在某些多种硫酸酯酶缺乏症细胞 系中,选出的硫酸酯酶的活性能达到正常范围(Yutaka等,Clin. Genet.,1981,20:296-303)。此外,残余活性已被报道经历了基于细 胞培养条件和未知因素的变化。生化上,多种硫酸酯酶缺乏症被分类 为两组。在组I中,硫酸酯酶的残余活性低于15%,包括ASB的那些部分。 在组II中,硫酸酯酶的残余活性更高一些,特别是ASB的那些部分可达 到高至对照的50-100%的值。所有在此报道的患者除了患者5都属于组 I,患者5属于生化表型的组II(ASB活性在对照的范围内)。基于临床标 准,患者1和6是新生型病例,而患者2-4和7是普遍型,患者5是多种硫 酸酯酶缺乏症的类粘多糖症形式。

    表型异质性暗示多种硫酸酯酶缺乏症患者中的不同突变与不同的 FGE残余活性相关。稳定表达FGE IVS3+5-8del的PT67细胞上的初步 数据表明外显子3的按读码框删除完全终止了FGE活性。应用最近发展 出的高敏感性质谱方法对多种硫酸酯酶缺乏症中的突变、变体FGE的生 化性质的特征鉴定,及对硫酸酯酶中的FGly的残余含量的特征鉴定 (Peng等,J.Mass Spec.,2003,38:80-86)将为多种硫酸酯酶缺乏 症中基因型-表型相关性提供更好的理解。

    实施例2:

    人FGE基因定义了修饰硫酸酯酶的从原核生物到真核生物都保守 的新基因家族

    生物信息学

    信号肽和切断位点以von Heijne所述的方法(Nucleic Acids Res., 1986,14:4683),该方法在EMBOSS中的实行(Rice等,Trends in Genetics,2000,16:276-277),和Nielsen等的方法(蛋白质 Engineering,1997,10:1-6)来描述。N-糖基化位点应用Brunak的算 法(Gupta和Brunak,Pac.Symp.Biocomput.,2002,310-22)预测。

    功能结构域通过搜索PFAM-Hidden-Markov-Models(version 7.8) 而被探测(Sonnhammer等,Nucleic Acids Res.,1998, 26:320-322)。来自PFAM DUF323种子的序列从TrEMBL(Bairoch,A. 和Apweiler,R.,Nucleic Acids Res.,2000,28:45-48)得到。多 重排列和系统发生树的构建用Clustal W(Thompson,J.等,Nucleic Acids Res.,1994,22:4673-4680)完成。对于系统发生树的估计, 缺口位置被排斥,而多重置换被修正。完成树引导程序(Tree bootstraping)以得到显著的结果。树应用Njplot(Perriere,G.和 Gouy,M.,Biochimie,1996,78:364-369)而可见。比对应用来自 EMBOSS的pret-typlot命令而作出曲线。

    为搜索FGE同源物,National Center for Biotechnology Information(NCBI)的数据库NR,NT和EST(Wheeler等,Nucleic Acids Res.,2002,20:13-16)被用BLAST(Altschul等,Nucleic Acids Res.,1997,25:3389-3402)查询。对于蛋白质序列,对当前 版本NR数据库应用迭代收敛性Psi-Blast完成搜索,使用期望截止值 10-40和默认参数。收敛在5次迭代后实现。对于核苷酸序列,搜索以 Psi-TBlastn完成:应用NR和人FGE的蛋白质序列作为输入值,用迭代 收敛性Psi-Blast建立针对hFGE的分值矩阵。此矩阵被用作对blastall 的输入值,以查询核苷酸数据库NT和EST。对于这两个步骤,都用期望 截止值10-20。

    蛋白质二级结构预测应用Psipred(Jones,D.,J Mol Biol., 1999,292:1950-202;McGuffin,L.等,Bioinformatics,2000, 16:404-405)完成。

    亚结构域的相似性分数应用EMBOSS的cons算法以默认参数从比对 中计算。次比对(meta alignments)通过比对FGE家族亚类的共有序 列而产生。基因组位点组织和同线性应用在NCBI(Bethesda,MD)的 NCBI人和小鼠基因组资源和Softberry’s(Mount Kisco,NY) Human-Mouse-Rat Synteny而测定。细菌基因组序列从NCBI-FTP-服 务器下载。NCBI微生物基因组注解被用于获得对细菌FGE基因的基因 组位点的总览。

    结果和讨论

    人FGE与相关蛋白的基本特征和基元

    人FGE基因(SEQ ID NOs:1,3)编码预测具有374个残基的FGE蛋白 (SEQ ID NO:2)。在残基22-33之间的切断信号(15.29的Heijne值) 和在1.7和3.3之间的残基17-29的亲水值(Kyte,J.和Doolittle,R., J Mol Biol.,1982,157:105-132)表明,33个N端残基在ER移位后 被切下来。然而应用Nielsen等人的算法(Protein Engineering, 1997,10:1-6),预测信号序列的切断发生在残基34之后。蛋白质在Asn 141处具有单一的潜在N-糖基化位点。

    以FGE蛋白序列对蛋白质基元数据库PFAM(Sonnhammer等人, Nucleic Acids Res.,1998,26:320-322)的搜索显示人FGE的残基 87-367能被分类成具有7:9*10-114的高显著期望值的蛋白结构域 DUF323(“未知功能的结构域”,PF03781)。确定DUF323的PFAM一种 子由25个蛋白质序列组成,其受试者是源自测序数据的假设性蛋白质。 为分析人FGE和DUF323间的关系,进行具有DUF323种子序列的FGE的 多重比对。基于此,构建系统发生树并进行自展分析。假设性序列中 的四个(TrEMBL-IDs Q9CK12,Q9I761,094632和Q9Y405)与种子的其 它成员有如此强的差异以至于它们阻止成功的自展分析而不得不被从 这套序列中除去。图2显示经自展的树,其显示人FGE和余下的21种 DUF323种子蛋白质之间的关系。此树可用于将这些种子成员亚分成两 个类别:与人FGE密切相关的同源物,和余下的相关性较小的基因。

    最顶上的7个蛋白质具有在0.41和0.73之间的对人FGE的系统发生 距离。它们只含有单一结构域,DUF323。在本组内的同源性延伸到整 个氨基酸序列,其较大部分由DUF323结构域组成。DUF323结构域在此 组同源物内非常保守,而种子的其它15个蛋白与人FGE的相关性较小 (系统发生距离在1.14和1.93之间)。它们的DUF323结构域与高度保守 的第一组的DUF323-结构域(参见“FGE亚结构域和FGE基因中的突变” 这一节)有明显的差异。这15个蛋白质中的大多数是假设的,它们中的 6个已被进一步研究。它们中的一个,来自C.trachomatis的丝氨酸/ 苏氨酸激酶(TrEMBL:084147)包含除DUF 323之外的其它结构域:ATP- 结合结构域和激酶结构域。来自R.sphaeroides(TrEMBL:Q9ALV8) 和假单孢菌属物种(TrEMBL:052577)的序列编码蛋白质NirV,它是 与含铜的亚硝酸盐还原酶nirK共转录的基因(Jain,R.和Shapleigh, J.,Mlcrobiology,2001,147:2505-2515)。CarC(TrEMBL:Q9XB56) 是涉及来自E.carotovora的β-内酰胺抗生素的合成的加氧酶 (McGowan,S.等人,Mol Microbiol.,1996,22:415-426;Khaleeli N,T.C.,和Busby RW,Biochemistry,2000,39:8666-8673)。XylR (TrEMBL:031397)和BH0900(TrEMBL:Q9KEF2)是在芽孢杆菌科 (bacillaceae)和梭菌科(clostridiaceae)中涉及戊糖利用的调节 的增强子结合蛋白质(Rodionov,D.等人,FEMS Microbiol Lett., 2001,205:305-314)。FGE和DUF323的比较导致建立区分FGE家族与具 有不同功能的、疏远的、含有DUF323的同源物的同源性阈值。后者包 括丝氨酸/苏氨酸激酶和XylR(转录增强子)以及FGE(产生FGly的酶) 和CarC(加氧酶)。如本文中其它部分所讨论的,FGE也可作为加氧酶 而发挥其半胱氨酸修饰功能,这暗示DUF323种子的FGE和非FGE成员可 共享加氧酶功能。

    FGE的同源物

    人FGE的密切相关的同源物在DUF323种子中的存在引导我们在 NCBI的NR数据库中搜索人FGE的同源物(Wheeler等人,Nucleic Acids Res.,2002,20:13-16)。搜索的阈值以这样的方式选择,即 获得在DUF323种子中存在的全部6个同源物和其它密切相关的同源物 而没有发现其它的种子成员。此搜索导致鉴定出真核生物中的3种FGE 定向进化同源物、原核生物中的12种定向进化同源物和人与小鼠中的2 种平行进化同源物(表3)。

    表3:真核生物和原核生物中的FGE基因家族

      SEQ ID NOs:   NA,AA   [GI]   物种  长度[AA ]   亚类   1/3,2   智人(Homo sapiens)   374   E1   49,50   [22122361]   小家鼠(Mus musculus)   372f   E1   51,52   [20130397]   黄果蝇(Drosophila melanogaster)   336   E1   53,54   [21289310]   疟蚊(Anopheles gambiae)   290   E1   47,48   [26344956]   小家鼠   308   E2   45,46   [24308053]   智人   301   E2   55,56   [21225812]   天蓝色链霉菌(Streptomyces   coelicolor)A3(2)   314   P1   57,58   [25028125]   Corynebacterium efficiens YS-314   334   P1   59,60   [23108562]   Novosphingobium aromaticivorans   338   P2   61,62   [13474559]   根瘤菌(Mesorhizobium loti)   372   P2   63,64   [22988809]   Burkholderia fungorum   416   P2   65,66   [16264068]   苜蓿中华根瘤菌(Sinorhizobium   meliloti   303   P2   67,68   [14518334]   微颤菌属物种(Microscilla sp.)   354   P2   69,70   [26990068]   恶臭假单孢菌(Pseudomonas putida)   KT2440   291   P2   71,72   [22975289]   Ralstonia metallidurans   259   P2   73,74   [23132010]   海洋原绿球藻(Prochlorococcus   marinus)   291   P2   75,76   [16125425]   新月柄杆菌(Caulobacter crescentus)   CB15   338   P2   77,78   [15607852]   结核分枝杆菌(Mycobacterium   tuberculosis)Ht37Rv   299   P2

    GI-GenBank蛋白质标识符

    NA-核酸AA-氨基酸

    E1真核生物定向进化同源物E2-真核生物平行进化同源物

    P1密切相关的原核生物定向进化同源物P2其它原核

    生物定向进化同源物

    f-GenBank中误预测的蛋白质序列

    注意小鼠序列GI 22122361在GenBank中是被预测成编码一种284 个氨基酸的蛋白质,虽然cDNA序列NM 145937编码一种372个残基的 蛋白质。此误预测是由于忽略了鼠FGE基因第一外显子。所有在NR数据 库中发现的序列都来自更高等的真核生物或原核生物。FGE-同源物没 有在古细菌或植物中被探测到。以甚至更低的阈值在被完全测序的秀 丽线虫(C.elegans)和啤酒糖酵母(S.cerevisiae)基因组及相关 的ORF数据库中所进行的搜索没有显示出任何同源物。在NT和EST核苷 酸数据库的真核生物序列中的搜索导致鉴定出8种另外的FGE定向进 化同源的EST,它们具有在蛋白质水平上显示高度保守性的3’-端cDNA 序列片段,并且没有在NR数据库中列出。这些序列不包含mRNA的全部 编码部分,且全都来自更高等的真核生物(表4)。

    表4:真核生物中的FGE定向进化同源物EST片段

      SEQ ID NOs:   NA   [GB]   物种   80   [CA379852]   虹鳟(Oncorhynchus mykiss)   81   [AI721440]   斑马鱼(Danio rerio)   82   [BJ505402]   青鳉(Oryzias latipes)   83   [BJ054666]   非洲爪蟾(Xenopus laevis)   84   [AL892419]   Silurana tropicalis   85   [CA064079]   加拿大鲑鱼(Salmo salar)   86   [BF189614]   野猪(Sus scrofa)   87   [AV609121]   黄牛(Bos taurus)

    GB-GenBank登录号;NA-核酸

    来自NR数据库的编码序列的多重比对和系统发生树的构建(应用 ClustalW)允许了对同源物四个亚组的定义:真核生物定向进化同源 物(人、小鼠、蚊子和果蝇FGE),真核生物平行进化同源物(人和小 鼠FGE平行进化同源物),与FGE密切相关的原核生物定向进化同源物 (链霉菌(Streptomyces)和棒状菌(Corynebacterium)),和其它 原核生物定向进化同源物(柄细菌(Caulobacter),假单胞菌 (Pseudomonas),分支杆菌(Mycobacterium),Prochlorococcus, Mesorhizobium,根瘤菌(Sinorhizobium),Novosphingobium, Ralstonia,伯克霍尔德氏菌(Burkholderia),和微颤菌 (Microscilla))。真核生物定向进化同源物显示对人FGE的87%(小 鼠),48%(果蝇)和47%(疟蚊)的总体一致性。虽然FGE定向进化同 源物在原核生物和更高等的真核生物中被发现,但是它们在系统发生 上位于啤酒糖酵母和黄果蝇之间的更低等真核生物的全测序基因组中 不存在。此外,FGE同源物在大肠杆菌和the pufferfish的全测序基因 组中也不存在。

    如本文其它部分所讨论的,在人和小鼠中发现的FGE平行进化同源 物可具有较小的产生FGly的活性,并对在多种硫酸酯酶缺乏症患者中 发现的残余硫酸酯酶活性作出贡献。

    FGE的亚结构域

    FGE基因家族的成员具有三个高度保守的部分/结构域(如本文其 它部分所述)。除了分开前者的两个非保守序列外,它们在N-和C-端还 具有非保守的延伸。三个保守部分被认为代表了DUF323结构域的亚结 构域,因为它们被不同长度的非保守部分所间隔开。间隔开亚结构域1 和2的部分的长度在22和29个残基之间变化,而间隔开亚结构域2和3 的部分的长度在7到38个氨基酸之间变化。N-和C-端非保守部分显示甚 至更强的长度变化(N-端:0-90个氨基酸,C-端:0-28个氨基酸)。 来自Ralstonia metallidurans的FGE基因的序列很有可能不完整,因 为它缺乏第一亚结构域。

    为验证对DUF323的亚结构域的定义有道理,我们应用Psipred完成 了对人FGE蛋白的二级结构预测。疏水性的ER-信号(残基1-33)被 预测为含有螺旋结构,确认了von-Heijne算法的信号预测。N-端非保 守区(氨基酸34-89)和亚结构域2和3之间的分隔区(氨基酸 308-327)包含卷绕部分。分隔亚结构域1和2的区域包含卷绕。氨基酸 65/66处的α-螺旋具有低的预测置信度,并且很可能是预测假象。亚 结构域边界位于卷绕内,而不打断α-螺旋或β-链。第一亚结构域由几 个β-链和一个α-螺旋组成,第二亚结构域包含两个β-链和四个α-螺 旋。第三亚结构域在亚结构域的起点和终点具有侧面与折叠片相接的 α-螺旋。简而言之,二级结构与所提出的亚结构域结构一致,因为亚 结构域边界位于卷绕内且亚结构域包含结构性的元件α-螺旋和β-链。

    应当指出的是,没有亚结构域以数据库所列出的序列中的单独的 模块存在。在FGE家族的四个亚组的每一种内,亚结构域高度保守,而 第三亚结构域显示最高的同源性(表5)。此亚结构域在亚组之间也显 示最强的同源性。

    表5:FGE家族亚结构域的同源性(%相似性)

    E1-真核生物定向进化同源物;E2-真核生物平行进化同源物

    P1密切相关的原核生物定向进化同源物;P2其它原核生 物定向进化同源物

    FGE家族的第一亚结构域在亚组间显示出最弱的同源性。在真核生 物定向进化同源物中,它携带N-糖基化位点:人中的残基Asn 141, 小鼠中的Asn 139和果蝇中的Asn 120。在疟蚊中,在与黄果蝇Asn120 同源的残基130处没有发现天冬酰胺。然而,两个核苷酸的改变将在 疟蚊中创造出一个N-糖基化位点Asn 130。因此,包含残基130的序 列需要再次测序。第二亚结构域富含色氨酸,人FGE的129个残基中有 12个Trp。这些色氨酸中的十个在FGE家族中保守。

    亚结构域3的高保守性:真核生物定向进化同源物之间的亚结构域 3是100%类似和90%一致。第三亚结构域对蛋白质功能的重要性被这样 的观察结果所强调,即此亚结构域是多种硫酸酯酶缺乏症患者中的致 病性突变的热点。实施例1中所述的在6位多种硫酸酯酶缺乏症患者中 鉴别的9个突变中的7个是位于编码亚结构域3的40个残基的序列中。残 基包含4个半胱氨酸,其中3个在原核生物和真核生物定向进化同源物 中保守。两种真核生物平行进化同源物显示出与FGE家族其它成员的最 小同源性,例如它们缺乏亚结构域3的3个保守半胱氨酸中的2个。在定 向进化同源物和平行进化同源物的亚结构域3序列之间保守的特征是 起始的RVXXGG(A)S基元(SEQ ID NO:79),一种含有3个精氨酸的七肽 (亚结构域共有序列的残基19-25),和末端的GFR基元。对15个不是FGE 密切同源物的种子序列的DUF323结构域进行比较,显示出显著的序列 差异:15个种子序列具有相对不保守的第一和第二亚结构域,虽然整 个亚结构域结构也可见到。当与原核生物FGE家族成员(约60%的相似 性)比较时,在FGE家族中非常保守的亚结构域3更短,并具有对真核 生物亚结构域3的显著更弱的同源性(约20%的相似性)。因此它们缺 乏所有的亚结构域3的保守半胱氨酸残基。仅有的保守特征是起始的 RVXXGG(A)S基元(SEQ ID NO:79)和末端的GFR基元。

    人和鼠FGE基因的基因组组织

    人FGE基因位于染色体3p26。它含有105kb和9个用于翻译序列的 外显子。鼠FGE基因长度为80Kb,位于染色体6E2。鼠FGE基因的9个外 显子具有几乎与人外显子同样的大小(图3)。人和小鼠基因之间的主 要差异是外显子9中的3′-UTR的更低的保守性和外显子9的长度,在鼠 基因中外显子9的长度多了461bp。小鼠染色体6的区段6E2与人染色体 区段3p26是高度同线性的。在朝着端粒的方向上,人和鼠FGE座位的侧 面都与编码LMCD1、KIAA0212、ITPR1、AXCAM和IL5RA的基因相接。 在着丝粒方向上,两个FGE座位在侧面都与CAV3和OXTR的座位相接。

    原核生物FGE基因的基因组组织

    在原核生物中,硫酸酯酶根据在它们的活性中心中转换成FGly的 残基而被分类为或者半胱氨酸型或者丝氨酸型的硫酸酯酶(Miech,C. 等人,J Biol Chem.,1998,273:4835-4837;Dierks,T.等人,J Biol Chem.,1998,273:25560-25564)。在肺炎克雷伯氏菌(Klebsiella pneumoniae)、大肠杆菌(E.coli)和鼠疫耶尔森氏菌(Yersinia pestis)中,丝氨酸型硫酸酯酶是具有AtsB的操纵子的一部分,其编 码含有铁-硫族的基元的胞质蛋白质,并对从丝氨酸残基产生FGly是 至关重要的(Marquordt,C.等人,J Biol Chem.,2003, 278:2212-2218;Szameit,C.等人,J Biol Chem.,1999, 274:15375-15381)。

    因此有意思的是,检测原核生物FGE基因是否位于作为FGE底物的 半胱氨酸型硫酸酯酶的邻近位置。在表3中所示的原核生物FGE基因中, 7种具有已被完全测序的基因组,从而允许了对FGE座位的相邻相关效 应的分析。实际上,在7个基因组的4个(C.efficiens:PID 25028125, 恶臭假单孢菌:PID 26990068,新月柄杆菌:PID 16125425和结核分 枝杆菌:PID 15607852)中,发现半胱氨酸型硫酸酯酶直接与FGE相 邻,这与FGE和硫酸酯酶的共转录相一致。在它们中的两种(C. efficiens和恶臭假单孢菌)中,FGE和硫酸酯酶甚至具有重叠的ORF, 这强烈地指明了它们的共表达。此外,FGE和硫酸酯酶基因在四种原核 生物中的基因组相邻相关效应为细菌FGE是功能性的定向进化同源物 的假设提供了另外的证据。

    余下的三种生物含有半胱氨酸型硫酸酯酶(天蓝色链霉菌:PID 24413927,根瘤菌:PID 13476324,苜蓿中华根瘤菌:PIDs 16262963, 16263377,15964702),然而,在这些生物中邻近FGE的基因既不含有 规范的硫酸酯酶特征(Dierks,T.等人,J Biol Chem.,1998, 273:25560-25564)也不含有将会指明它们功能的结构域。因此在这些 生物中,FGE和半胱氨酸型硫酸酯酶的表达很可能被反式调节。

    结论

    对其缺乏可引起常染色体隐性传递的溶酶体储存性疾病(多种硫 酸酯酶缺乏症)的人FGE进行鉴定使得能够定义一个新的基因家族,所 述基因家族包含来自原核生物和真核生物的FGE定向进化同源物以及 小鼠和人中的FGE平行进化同源物。在全测序的大肠杆菌,啤酒糖酵母, 秀丽线虫和Fugu rubripes的基因组中没有发现FGE。此外,在原核生 物和更高等的真核生物之间存在系统发生上的间隔,在系统发生上位 于原核生物和黄果蝇之间的任何物种中没有FGE。然而,这些更低等真 核生物中的一部分,例如秀丽线虫,具有半胱氨酸型硫酸酯酶基因。 这指明了作用于半胱氨酸型硫酸酯酶的第二产生FGly的系统的存在。 此假设被这样的观察结果支持,即没有FGE的大肠杆菌能在半胱氨酸型 硫酸酯酶中产生FGly(Dierks,T.等人,J Biol Chem.,1998, 273:25560-25564)。

    实施例3:

    FGE表达引起硫酸酯酶过表达的细胞系中的硫酸酯酶活性的显著

    增加

    我们想检测FGE对表达/过表达硫酸酯酶的细胞的影响。为此目 标,表达艾杜糖醛酸-2-硫酸酯酶(I2S)或N-乙酰半乳糖胺6-硫酸酯 酶(GALNS)这些人硫酸酯酶的HT-1080细胞用FGE表达构建体 pXMG.1.3(表7和图4)或用对照质粒pXMG.1.2(反义方向的FGE, 不能产生功能性FGE,表7)进行两次重复的转染。在进行一次24小 时电穿孔后的培养基改变之后24、48和72小时采集培养基样本。培 养基样本通过活性分析来测试各自的硫酸酯酶活性,并通过对艾杜糖 醛酸-2-硫酸酯酶或N-乙酰半乳糖胺6-硫酸酯酶专一的ELISA来评估 总硫酸酯酶蛋白水平。

    表6.表达硫酸酯酶的转染的细胞系,该硫酸酯酶用作转染的底 物

      细胞株   质粒   表达的硫酸酯酶   36F   pXFM4A.1   N-乙酰半乳糖胺6-硫酸酯酶   30C6   pXI2S6   艾杜糖醛酸-2-硫酸酯酶

    表7.用于转染表达艾杜糖醛酸2-硫酸酯酶和N-乙酰半乳糖胺 6-硫酸酯酶的HT-1080细胞的FGE和对照质粒

      质粒  主要DNA序列元件的构造*   pXMG.1.3   (FGE表达)  >1.6kb CMV增强子/启动子>1.1kb FGE cDNA>hGH 3’非翻译序  列<amp<DHFR盒<Cdneo盒(新霉素磷酸转移酶)   pXMG.1.2(对   照,FGE反方向)  >1.6kb CMV增强子/启动子<1.1kb FGE cDNA<hGH3’非翻译序  列<amp<DHFR盒<Cdneo盒(新霉素磷酸转移酶)

    *>表示方向5’到3’

    实验程序

    材料和方法

    对产生艾杜糖醛酸2-硫酸酯酶和N-乙酰半乳糖胺6-硫酸酯酶的 HT-1080细胞的转染

    采集HT-1080细胞,以得到对于每次电穿孔有9-12×106的细 胞。用两种质粒重复转染两次:一种是待测试(FGE)的,而另一种作对 照;在此情形中对照质粒包含相对于CMV启动子以反向克隆的FGE cDNA。细胞以约1000RPM离心5分钟。细胞以16×106个细胞/mL悬 浮在1X PBS中。将100μg的质粒DNA加到电穿孔小杯的底部,将 750μL的细胞悬浮液(12×106个细胞)加入小杯中的DNA溶液中。细 胞和DNA用塑料移液管轻轻混合,小心不要产生泡沫。细胞以450V, 250μF(BioRad Gene Pulser)进行电穿孔。记录时间常数。

    让电穿孔的细胞静置10-30分钟。然后加入1.25mL的DMEM/10% 小牛血清到每一个小杯,混合,并将所有细胞转移到含有20mL DMEM/10的新鲜的T75烧瓶。24小时后,烧瓶中再注入20mL DMEM/10 以除去死亡的细胞。转染后48-72小时,收集培养基样本,从完全一 样的T75烧瓶采集细胞。

    培养基制备

    1L DMEM/10(含有:23ml的2mM L-谷氨酸,115mL小牛血清)

    细胞在不含氨甲蝶呤(MTX)的培养基中被转染。24小时后,细胞 用含有适量MTX(36F=1.0μM MTX,30C6=0.1M MTX)的培养基再 进行培养。再培养后24、48和72小时,收获培养基和收集细胞。

    活性分析

    艾杜糖醛酸-2-硫酸酯酶(I2S)

    NAP5脱盐柱(Amersham Pharmacia Biotech AB,Uppsala,Sweden) 用透析缓冲液(5mM醋酸钠,5mM tris,pH 7.0)平衡。含有I2S的 样本被加到柱上,并让其进入柱床。样本以1mL的透析缓冲液洗脱。 脱盐的样本用反应缓冲液(5mM醋酸钠,0.5mg/L BSA,0.1%Triton X-100,pH 4.5)进一步稀释到约100ng/mL I2S。将10μL的每一I2S 样本加入96-孔的Fluormetric Plate(Perkin Elmer,Norwalk,CT) 的顶上一排,并在37℃预培育15分钟。底物通过将4-甲基-繖形基 硫酸酯(Fluka,Buchs,Switzerland)溶解在底物缓冲液(5mM醋酸 钠,0.5mg/mL BSA,pH 4.5)中至最终浓度为1.5mg/mL而制备。 100μL的底物被加至含有I2S样本的每一孔中,并将平板在37℃于 黑暗中培育1小时。培育后,将190μL的终止缓冲液(332.5mM甘 氨酸,207.5mM碳酸钠,pH 10.7)加至含有样本的每一孔中。4-甲 基伞形酮(4-MUF,Sigma,St.Louis,MO)储液在试剂级水中制备成 最终浓度为1μM以作为产物标准。150μL的1μM 4-MUF储液和150 μL终止缓冲液加至平板中的顶上一排。150μL的终止缓冲液加至96 孔平板中剩下的每一孔中。从平板的每一列的顶上一排至最后一排制 备两倍的系列稀释液。平板在Fusion Universal Microplate Analyzer (Packard,Meriden,CT)上以330nm的激发过滤波长和440nm的发 射过滤波长进行阅读。得到4-MUF储液的微摩尔数量对荧光的标准曲 线,而未知样本具有由此曲线推断的荧光。结果以“单位/mL”(一个 单位的活性等于在37℃下每分钟产生1μmole的4-MUF)显示。

    N-乙酰半乳糖胺6-硫酸酯酶(GALNS)

    GALNS活性分析利用了荧光底物4-甲基繖形基-β-D-吡喃半乳糖 苷-6-硫酸酯(Toronto Research Chemicals Inc.,目录号M33448)。 分析包括两个步骤。在第一步骤中,75μL的在反应缓冲液(0.1M醋 酸钠,0.1M氯化钠,pH 4.3)中制备的1.3mM底物与10μL的培养基 /蛋白质样本或其相应的稀释液在37℃培育4小时。反应通过加入5μL 的2M磷酸二氢钠以抑制GALNS活性而被终止。加入约500U的来自 米曲霉(Aspergillus oryzae)的β-半乳糖苷酶(Sigma,目录号G5160) 后,反应混合物在37℃再培育1小时以释放底物的荧光部分。第二反 应通过加入910μL的终止溶液(1%甘氨酸,1%碳酸钠,pH 10.7)而 被终止。所得混合物的荧光通过使用359nm的测量波长和445nm的参 考波长,并以4-甲基伞形酮(钠盐,Sigma,目录号M1508)用作参考标 准来测量。一个活性单位对应每小时释放的4-甲基伞形酮的nmole数 量。

    免疫分析(ELISA)

    艾杜糖醛酸-2-硫酸酯酶(I2S)

    96孔平底平板用在50nM碳酸氢钠(pH 9.6)中稀释到10μg/mL 的小鼠单克隆抗-I2S抗体于37℃包被1小时。抗纯化的、重组产生的 全长人I2S多肽的小鼠单克隆抗-I2S抗体在与Maine Biotechnology Services,Inc.(Portland,ME)的合同下应用标准杂交瘤产生技术 来制备。平板用含有0.1%Tween-20的1X PBS清洗3次和用清洗缓 冲液中的2%BSA在37℃封闭1小时。含2%BSA的清洗缓冲液用于稀 释样本和标准物。I2S标准物被稀释到100ng/mL至1.56ng/mL,并 如此进行应用。除去封闭缓冲液后,样本和标准被施加到平板上,并 在37℃培育1小时。将探测抗体,即缀合辣根过氧化物酶的小鼠抗-I2S 抗体,在含2%BSA的清洗缓冲液中稀释到0.15μg/mL。平板清洗3 次,将探测抗体加至平板,并在37℃培育30分钟。为使平板显色, 制备TMB底物(Bio-Rad,Hercules,CA)。平板清洗3次,将100μL 的底物加至每一孔中,并在37℃培育15分钟。反应用2N硫酸(100 μL/孔)终止,和将平板在微量滴定平板读取器上于450nm,并用655 nm作为参考波长进行阅读。

    N-乙酰半乳糖胺6-硫酸酯酶(GALNS)

    两种小鼠单克隆抗-GALNS抗体提供了GALNS ELISA的基础。抗纯 化的、重组产生的全长人GALNS多肽的小鼠单克隆抗-GALNS抗体也 在与Maine Biotechnology Services,Inc.(Portland,ME)的合同 下应用标准杂交瘤产生技术来制备。为捕获GALNS,第一抗体被用于 在包被缓冲液(50mM碳酸氢钠,pH 9.6)中对F96 MaxiSorp Nunc-Immuno Plate(Nalge Nunc,目录号442404)进行包被。在37 ℃培育1小时和用清洗缓冲液清洗后,平板用封闭缓冲液(PBS,0.05% Tween-20,2%BSA)在37℃封闭1小时。然后将实验和对照样本与 GALNS标准物一起装载到平板上,并进一步在37℃培育1小时。在用 清洗缓冲液清洗后,抗体,即缀合HRP的探测抗体被加到封闭缓冲液 中,之后在37℃培育30分钟。再次清洗平板后,加入Bio-Rad TMB 底物试剂,并培育15分钟。然后加入2N硫酸以终止反应,结果通过 应用Molecular Device平板读取器在450nm波长以分光光度测量法 进行评分。

    讨论

    FGE对硫酸酯酶活性的影响

    GALNS

    相对于对照水平观察到大约50倍的总GALNS活性的增长(图 5)。此增长的活性的水平在全部三个培养基取样时间点都被观察到。 此外,GALNS活性随时间线性积累,在24和48小时之间具有4倍的 增长,在48和72小时之间的时间点有2倍的增长。

    I2S

    虽然是更小的绝对数量级,但对于总I2S活性,也观察到类似 效应,其中相对于对照水平观察到大约5倍的总I2S活性增长。此增 长的活性的水平在实验延续过程中维持不变。I2S活性在培养基中随 时间线性积累,类似于用GALNS所见到的结果(在24和48小时之间 为2.3倍,在48和72小时之间为1.8倍).

    FGE对硫酸酯酶比活性的影响

    GALNS

    FGE在36F细胞中的表达以相对于对照水平的40-60倍增强了 GALNS的表观比活性(由ELISA测得的酶活性对总酶的比率)(图6)。 此比活性的增长在研究中的三个时间点都维持不变,并似乎在转染后 积累的三天中一直增长。

    I2S

    用I2S见到类似效应,其中相对于对照值(0.5-0.7U/mg)观察到 比活性的6-7倍的增长(3-5U/mg)。

    GALNS(图7)和I2S的ELISA值都没有受到FGE的转染的明显影 响。这表明FGE的表达没有影响到参与硫酸酯酶产生的翻译和分泌途 径。

    总之,两种硫酸酯酶的所有这些结果表明,FGE表达在过表达 GALNS和I2S的细胞系中显著地增长了硫酸酯酶的比活性。

    FGE(SUMF1)和其它硫酸酯酶基因的共表达

    为测试FGE(SUMF1)在正常细胞中对另外的硫酸酯酶活性的效 应,我们在共转染或没有共转染FGE(SUMF1)cDNA的不同细胞系中过 表达ARSA(SEQ ID NO:14),ARSC(SEQ ID NO:18)和ARSE(SEQ ID NO:22) cDNA,并测量硫酸酯酶活性。硫酸酯酶cDNA在Cos-7细胞中的过表 达引起硫酸酯酶活性的适度增长,而当硫酸酯酶基因和FGE(SUMF1) 基因共表达时,观察到惊人的协同性增长(20到50倍)。虽然更弱但 类似的效应在三种另外的细胞系即HepG2、LE293和U20S中被观察到。 多重硫酸酯酶cDNA的同时过表达引起每一种专一硫酸酯酶活性相对 于单一硫酸酯酶过表达时更少的增长,表明存在不同硫酸酯酶对修饰 机制的竞争。

    为测试FGE(SUMF1)基因在进化过程中的功能保守性,我们在共 转染或没有共转染多种硫酸酯酶缺乏症cDNA的多种细胞系中过表达 ARSA、ARSC和ARSE cDNA,并测量硫酸酯酶活性。鼠和果蝇的FGE(SUMF1) 基因对全部三种人硫酸酯酶都有活性,果蝇FGE(SUMF1)效率更低。 这些数据证明FGE(SUMF1)在进化过程中的高度功能保守性,暗示了 对细胞功能和生存的显著的生物重要性。通过应用FGE2(SUMF2)基因 观察到虽然弱得多但类似和一致的效应,暗示由此基因编码的蛋白质 也具有硫酸酯酶修饰活性。这些数据证明FGE(SUMF1)所编码的蛋白 质的数量是对硫酸酯酶活性的限制性因素,这是一个对于大规模生产 用于酶替代治疗的活性硫酸酯酶具有重要暗示的发现。

    实施例4:

    通过应用微细胞介导的染色体转移的功能互补来鉴定多种硫酸酯 酶缺乏症中突变的基因

    在应用微细胞介导的染色体转移以功能互补反式进行的单独的实 验中,我们证实了多种硫酸酯酶缺乏症中突变的基因是FGE。我们的 发现提供了对于影响某一在关系较疏远的生物体中的整个蛋白质家族 的新生物机制的进一步见解。除了鉴别罕见遗传病的分子基础之外, 我们的数据进一步证实了FGE基因产物对硫酸酯酶活性的有力的增强 效应。后一发现对于至少8种由硫酸酯酶缺乏引起的人类疾病的治疗 具有直接的临床意义。

    染色体3p26的多种硫酸酯酶缺乏症基因图谱

    为鉴别多种硫酸酯酶缺乏症中突变的基因的染色体位置,我们尝 试以通过微细胞介导的染色体转移的功能互补来补救缺陷性的硫酸酯 酶。含有单独的用显性可选择标记HyTK标记的正常人染色体的一组人 /小鼠杂交细胞系,被用作人染色体供体的来源,并与来自多种硫酸酯 酶缺乏症患者的永生化细胞系融合。所有22条人常染色体被一条条 地转移到患者细胞系,用潮霉素选出杂交体。在22个转移实验的每一 个中,挑选出大约25个存活的克隆。这些克隆单独生长,并进行采集 以用于随后的酶测试。对于大约440个(20×22)克隆的每一个,测试 芳基硫酸酯酶A(ARSA)(SEQ ID NO:15),芳基硫酸酯酶B(ARSB)(SEQ ID NO:17)和芳基硫酸酯酶C(ARSC)(SEQ ID NO:19)活性。此分析 清晰地表明源自染色体3转移的数个克隆的硫酸酯酶活性比其它所有 克隆都显著地高。当分析源自染色体3转移的每一单独克隆的活性时, 观察到惊人的可变性。为核实是否每一克隆都具有来自供体细胞系的 完整的人染色体3,我们应用一组23个染色体3多态性遗传标记,它 们沿染色体的长度均匀分布,并于先前基于在供体和患者细胞系之间 具有不同等位基因而挑选出来。这允许我们检测供体染色体的存在和 鉴别由于偶然染色体断裂而造成的特异区域可能的丢失。每一具有高 酶活性的克隆保持了完整的来自供体细胞系的染色体3,然而根据来 自供体细胞系的染色体3等位基因的缺失,低活性的克隆似乎已没有 了完整的染色体。后者的克隆很可能保持了含有可选择标记基因的供 体染色体的小区域,这些标记基因使得这些克隆能够在含有潮霉素的 培养基中存活。这些数据表明正常的人染色体3能对在多种硫酸酯酶 缺乏症患者细胞系中所观察到的缺陷进行补充。

    为确定含有对于补充活性起着作用的基因的特异染色体区域,我 们应用被发现已丢失染色体的多个部分的Neo-标记的染色体3杂交 体。此外,我们进行了HyTK-标记的人染色体3的经辐射微细胞介导 的染色体转移。通过使用一组31个跨越整个染色体的多态性微卫星 标记,对115个染色体3被辐射的杂交体进行硫酸酯酶活性测试和基 因型的确定。显示高酶活性的所有克隆似乎已保存了染色体3p26。应 用来自此区域的另外标记的更高分辨率的分析绘制出了在标记 D3S3630和D3S2397之间的补充基因的推定位置。

    多种硫酸酯酶缺乏症中突变的基因的鉴别

    我们研究了来自涉及多种硫酸酯酶缺乏症患者中的突变的3p26 基因组区域的基因。每一包括拼接接点的外显子进行PCR扩增,和通 过直接测序进行分析。突变分析在12位不相关的被影响的个体中完 成;5位是前述的MSD患者,而7位是未发表的病例。从我们的多种 硫酸酯酶缺乏症群体中,在已表达序列标志(EST)AK075459(SEQ ID NOs:4,5)中鉴定了数个突变,该已表达序列标志对应于未知功能的基 因,这强烈暗示了这是涉及多种硫酸酯酶缺乏症的基因。发现每一个 突变在100个对照个体中不存在,因此排除了序列多态性的存在。另 外的确证性突变分析是对于反转录的患者RNA来进行的,特别是在基 因组DNA分析显示突变存在于拼接位点或其附近而有可能影响拼接的 那些情况下。移码、无义、拼接和错义突变也被鉴别,暗示此病由于 功能机制的丧失而引起,正如对隐性疾病所预言的。这也与以下的观 察相一致,即几乎所有的错义突变影响在整个进化中高度保守的氨基 酸(参见下面)。

    表8:另外的被鉴别的多种硫酸酯酶缺乏症突变

    在每一位被测试的多种硫酸酯酶缺乏症患者中鉴定突变,因此排 除了座位点异质性。在所鉴定的突变的类型和患者中所报道的表型的 严重程度之间没有观察到明显的相关性,暗示临床上的可变性不是由 等位基因异质性引起的。在三种情况下,发现不同患者(表6中的病 例1和4,病例6和9,和病例11和12)携带相同突变。这些患者 中的两位(病例11和12)来自Sicily中的同一城镇,这暗示单元型 分析(haplotype analysis)所真正确证的建立者效应的存在。令人 惊讶的是,发现大多数患者是双重杂合子,携带不同的等位突变,而 只有一小部分是纯合子。虽然与父母所报告的不存在近亲关系相一致, 但这是关于非常罕见的隐性疾病例如多种硫酸酯酶缺乏症的无法预料 的发现。

    FGE基因和蛋白质

    人FGE(也在本文中可互换性地用作SUMF1)cDNA(SEQ ID NO:1) 的共有cDNA序列组装自数个已表达序列标志(EST)克隆,并部分 组装自对应的基因组序列。此基因包含9个外显子,并跨越大约105kb (参见实施例1)。序列比较也鉴别了位于人染色体7上的FGE基因平 行进化同源物的存在,我们将其指定为FGE2(也在本文中可互换性地 用作SUMF2)(SEQ ID NOs:45,46)。

    硫酸酯酶缺乏的功能补充

    来自两位多种硫酸酯酶缺乏症患者(表8中的病例1和12,在他 们中我们鉴别了FGE(SUMF1)基因的突变(细胞系BA426和BA920)) 的成纤维细胞用含有FGE(SUMF1)cDNA的野生型和两个突变形式 (R327X和Δex3)的HSV病毒感染。ARSA、ARSB和ARSC活性在感染后 72小时进行测试。野生型FGE(SUMF1)cDNA的表达导致全部三种活 性的功能补充,而突变体FGE(SUMF1)cDNA则没有(表9)。这些数 据提供了对鉴别FGE(SUMF1)作为多种硫酸酯酶缺乏症基因的决定性 的证据,且它们证明了患者中发现的突变的相关性。疾病相关的突变 引起硫酸酯酶缺乏,因此证明FGE(SUMF1)是硫酸酯酶活性的必需因 素。

    表9:硫酸酯酶缺乏的功能补充

    (1)所有酶活性均以释放的4-甲基伞形酮的nmole数·mg蛋白质-1·3hrs表示

    多种硫酸酯酶缺乏症细胞系BA426和BA920单独用HSV扩增子感染,和用携带突 变体或野生型SUMF1 cDNA的的构建体感染。在用野生型SUMF1基因感染的成纤维细 胞中的单一的芳基硫酸酯酶活性,相对于只用载体感染的细胞的活性的增加在括号中 指出。标明了在未感染的对照成纤维细胞中测得的活性。

    多种硫酸酯酶缺乏症的分子基础

    基于这样的假设即疾病基因应能补偿患者细胞系中的酶缺乏,我 们完成了微细胞介导的染色体转移,转移到来自多种硫酸酯酶缺乏症 患者的永生化的细胞系。此技术已成功用于其预期功能能在细胞系中 评估(例如通过测量酶活性或通过探测形态学特征)的基因的鉴别。为 说明酶活性随机变化性的问题,我们在互补分析中测量了三种不同硫 酸酯酶(ARSA,ARSB和ARSC)的活性。染色体转移的结果清晰地指 明了补充性基因在染色体3上的位置。亚区域的图谱绘制通过产生染 色体3的放射杂合组而实现。单独的杂交体克隆同时在基因组水平(通 过在供体和受体细胞系之间显示不同等位基因的31个微卫星标记的 分型)和功能水平(通过测试硫酸酯酶活性)被表征。对130个这类 杂交体的分析导致对染色体3p26补充区域的图谱绘制。

    一旦关键的基因组区域被确定,FGE(SUMF1)基因也通过患者DNA 中的突变分析而鉴别。突变在所有测试患者中被发现,显示出单一基 因涉及多种硫酸酯酶缺乏症。所发现的突变是不同的类型,其中的主 要部分(例如拼接位点,起始位点,无义,移码)估计会导致所编码 蛋白质的功能丧失,如对隐性疾病所预计的。大多数错义突变影响对 应于进化过程中高度保守的氨基酸的密码子,暗示这些突变也导致功 能的丧失。在突变类型和表现型的严重程度之间没有相关性,表明后 者是由于不相关的因素造成的。对于罕见的遗传疾病出乎意料的是, 许多患者被发现是杂合子,携带两种不同的突变。然而,对源自Sicily 中的一个小城镇的一个突变的奠基者效应被鉴别。

    FGE(SUMF1)基因功能

    对FGE(SUMF1)基因作为“互补因子”的鉴别,通过插入病毒载 体中的外源性FGE(SUMF1)cDNA在两种不同患者细胞系的表达挽救了 四种不同硫酸酯酶的酶性缺乏这一点而肯定地被证明。在每一病例中, 所有硫酸酯酶活性的一致的和部分的(相对于以空载体转染的对照患 者细胞系的)恢复被观察到。平均地,酶活性的增加范围在1.7到4.9 倍之间,达到在正常细胞系中所观察到的大约一半的水平。酶活性与 在每一实验中所用的病毒颗粒的数目相关,也与(通过标记蛋白质(GFP) 分析所测试的)感染效率相关。在相同实验中,含有携带在患者中发 现的两种突变(R327X和Δex3)的FGE(SUMF1)cDNA的载体被应用, 而没有显著的酶活性增加被观察到,因此证明这些突变的功能相关性。

    如本文中其它部分所提到的,Schmidt等首先发现硫酸酯酶经历 高度保守的半胱氨酸到Cα-甲酰甘氨酸的翻译后修饰,其被发现位于 大多数硫酸酯酶的活性位点。它们也显示出,此修饰在多种硫酸酯酶 缺乏症中有缺陷(Schmidt,B.等,Cell,1995,82:271-278)。我们 的突变性和功能性的数据为以下这点提供了有力的证据,即FGE (SUMF1)对此修饰负责。

    FGE(SUMF1)基因在所有被分析的远距离相关物种(从细菌到人) 中显示非常高程度的序列保守性。我们提供了证据,即人FGE(UMF1) 基因的果蝇同源物能激活过表达的人硫酸酯酶,证明所观察的远距离 相关物种的FGE(SUMF1)基因的高水平的序列类似性与惊人的功能保 守性相关。值得注意的例外是酵母,其似乎缺失了FGE(SUMF1)基因 以及任何的硫酸酯酶编码基因,说明硫酸酯酶功能不为此生物所需, 也暗示对FGE(SUMF1)和硫酸酯酶基因的进化的互惠性影响的存在。

    有趣的是,在所有被分析的脊椎动物包括人的基因组中存在两个 同源性的基因FGE(SUMF1)和FGE2(SUMF2)。如系统发生树上明显的, FGE2(SUMF2)基因似乎已独立地从FGE(SUMF1)基因进化。在我们的 分析中,FGE2(SUMF2)基因也能激活硫酸酯酶,然而它以相对于FGE (SUMF1)基因效率低很多的方式完成。这可解释在多种硫酸酯酶缺乏症 患者中发现的残余硫酸酯酶活性,并暗示完全的硫酸酯酶缺乏将是致 命的。此时,我们不能排除FGE2(SUMF2)基因具有另外而仍然未知的 功能的可能性。

    在因硫酸酯酶缺乏导致的疾病的治疗方面的影响

    相对于只过表达单一硫酸酯酶的细胞,硫酸酯酶活性的强增长(高 至50倍)在FGE(SUMF1)cDNA与ARSA,ARSC或者ARSE cDNAs一起 过表达的细胞中被观察到。在所有细胞系中,显著的协同效应被发现, 表明FGE(SUMF1)是硫酸酯酶活性的限制性因子。然而,可变性在不 同硫酸酯酶中被观察到,可能是由于FGE(SUMF1)-编码蛋白质与多种 硫酸酯酶的不同亲和性。可变性也在可能具有内源性甲酰甘氨酸生成 酶的不同水平的不同细胞系之间观察到。与这些观察相一致,我们发 现多种硫酸酯酶缺乏症基因的表达在不同组织间变化,在肾和肝中具 有显著的高水平。这可具有重要的意义,因为具有FGE(SUMF1)基因 低表达水平的组织不太能够有效修饰外源性递送的硫酸酯酶蛋白质 (参见下面)。这些数据合在一起暗示着FGE(SUMF1)基因的功能已进 化到实现双重调节系统,每一硫酸酯酶被两个机制同时控制,一个是 负责每一结构性硫酸酯酶基因的mRNA水平的单独机制,一个是所有硫 酸酯酶共享的普遍机制。此外,FGE2(SUMF2)提供了对硫酸酯酶修饰 的部分冗余。

    这些数据对将在酶替换治疗中应用的活性硫酸酯酶的大量生产具 有深远的意义。酶替换研究已在硫酸酯酶缺乏的动物模型上报道,例 如,粘多糖病VI的猫科动物模型,并被证明是在防止和治愈数个症状 中有效。针对两种源于硫酸酯酶缺乏的先天疾病MPSII(Hunter综合 症)和MPSVI(Maroteaux-Lamy综合症)的人的治疗性试验目前正在进 行,并将很快扩展到大量的患者。

    实施例5:

    以FGE-激活的GALNS对Morquio病MPS IVA的酶替换疗法

    Morquio患者中主要的骨病理学原因是硫酸角质素(KS)在骺盘 (生长平板)软骨细胞中因缺乏溶酶体硫酸酯酶(GALNS)而积累。体内 研究的基本目标是确定是否静脉内(IV)施用的FGE-激活的GALNS能渗 透生长平板的软骨细胞以及其它正常小鼠中的合适的细胞类型。尽管 一般缺乏骨畸形,GALNS缺乏的小鼠模型(Morquio Knock-In-MKI,S. Tomatsu,St.Louis University,MO)也被用于证明重复施用的FGE- 激活的GALNS的体内生化活性。小鼠模型中的骨病理的缺乏反映了这 样的事实,即骨KS在啮齿动物中或剧烈减少或者缺乏(Venn G,& Mason RM.,Biochem J.,1985,228:443-450)。然而,这些小鼠的 确显示了GAG和其它细胞异常在多种器官和组织中的可探测的积累。 因此,研究的总体目标是证明FGE-激活的GALNS渗透进了生长平板 (生物分布研究)和显示涉及积累的GAG在受影响组织中的清除的功能 性GALNS酶活性(药物动力学研究)。

    这些研究的结果证明IV注射的FGE-激活的GALNS被生长平板的 软骨细胞内化,虽然相对于其它组织是相对较低的水平。此外,FGE- 激活的GALNS在MKI小鼠中持续16周的注射有效清除了积累的GAG, 也减少了在所有被检测的软组织中溶酶体生物标记染色。总之,实验 成功证明了GALNS到生长平板软骨细胞的转运,也证明了关于GAG在 多种组织中的清除方面的生化活性。

    生物分布研究

    四周大的ICR(正常)小鼠被给予单次5mg/kg FGE-激活的GALNS 的IV注射。肝,股骨,心脏,肾和脾在注射后两小时被收集,并为 组织学检测作准备。抗-人GALNS的单克隆抗体被用于探测注射的 GALNS在多种组织中的存在。与载体对照相比,GALNS在所有被检测的 组织中被探测。此外,应用辣根过氧化物酶报告系统,GALNS很容易 地在所有被检测的组织中被观察到,但骨例外。对GALNS在生长平板 中吸收的证明需要更灵敏的荧光素-异硫氰酸酯(FITC)报告系统的应 用,说明了虽然GALNS渗透进生长平板,但相对于软组织的细胞,它 不那么容易渗透至生长平板软骨细胞。尽管需要更灵敏的荧光探测方 法,与载体对照相比,GALNS到骨生长平板软骨细胞的转运在所有被 检测的生长平板切片中被观察到。

    MKI小鼠中的药物动力学研究

    四周大的MKI或野生型小鼠每周性地被给予IV注射(每组n=8)直 到20周龄。每一次每周性的注射由2mg/kg FGE-激活的GALNS或者 载体对照(对野生型小鼠没有注射)所组成。所有小鼠在20周龄时被 杀死用于组织学检测,并用下面的方法染色:苏木精和曙红用于细胞 形态学,爱茜蓝用于GAG的探测。

    积累的GAG的清除通过在所有被检测的软组织(肝、心脏、肾和 脾)中减少的或缺乏的爱茜蓝染色而证明。这只在GALNS注射的小鼠 中被观察到,虽然MKI小鼠中的生长平板如正常骨形态学所证实的是 正常发挥功能,但存在被观察到的更细微的细胞异常(包括没有明显 病理效应的软骨细胞空泡化)。生长平板肥大和增生区域的空泡化的 软骨细胞没有受GALNS施用影响。这与生长平板的钙化区中的软骨细 胞相反,在那种情形中,空泡化的减弱在GALNS注射的小鼠中被观察 到。一般地,由于已知的KS在小鼠的生长平板中的缺乏,软骨细胞的 空泡化和推测的非-KS GAG在MKI小鼠的生长平板中的积累是令人惊 讶和出乎意料的。这些特别的观察结果很可能反映了这样的事实,即 在敲入(knock-in)小鼠中,存在突变体GALNS的高水平(与敲除小鼠 相反,其中不存在残余的突变体GALNS,不存在生长平板软骨细胞空 泡化,也不存在GAG积累——Tomatsu S.等,Human Molecular Genetics,2003,12:3349-3358)。生长平板中的空泡化现象也许表 明对表达突变体GALNS的细胞的亚类的第二效应。但是,持续16周的 酶注射有力证明了多种组织的FGE-激活的GALNS运送和体内酶活性的 事实。

    附图详述

    图1:P23在来自牛睾丸微粒体的可溶性抽提物缺乏(A)或存在(B) 条件下培育后的MALDI-TOF质谱

    6pmol的P23在标准条件下37℃培育10分钟,其中缺乏或存在1μl 的微粒体抽提物。按实验程序所述为MALDI-TOF质谱制备样本。P23 (2526.28)和其FGly衍生物(2508.29)的单种同位素质量MH+被指出。

    图2:源自人FGE和PFAM-DUF323种子的21种蛋白质的比对的系 统发生树

    分支处的数目指出了系统发生距离。蛋白质通过它们的TrEMBL ID 数目和物种名称被指定。hFGE-人FGE。右上部:系统发生距离的标尺。 星号表示基因已进一步地被研究。顶部的7种基因是FGE基因家族的部 分。

    图3:人和鼠FGE基因位点的组织

    外显子被显示成以暗盒(人位点)和亮盒(鼠位点)来按比例表 示。右下方角落的横杆显示标尺。外显子之间的线显示内含子(没有 按比例)。内含子线上的数字表示以kb表示的内含子的大小。

    图4:显示FGE表达质粒pXMG.1.3图谱的图

    图5:描述在以FGE表达质粒瞬时转染的36F细胞中的N-乙酰半 乳糖胺6-硫酸酯酶活性的柱状图

    在不含氨甲蝶呤(MTX)的培养基中以带有反向的FGE cDNA的对照 质粒pXMG.1.2,或者FGE表达质粒pXMG.1.3转染细胞。24小时后, 细胞被含有1.0μM MTX的培养基再培养。再培养24,48和72小时后, 采集培养基并收集细胞。N-乙酰半乳糖胺6-硫酸酯酶活性通过活性分 析被测定。显示的每一值是两次分别转染的平均值,标准方差以误差 标尺指出。

    图6:描述在以FGE表达质粒瞬时转染的36F细胞中的N-乙酰 半乳糖胺6-硫酸酯酶比活性的柱状图

    在不含氨甲蝶呤(MTX)的培养基中以带有反向的FGE cDNA的对照 质粒pXMG.1.2,或者FGE表达质粒pXMG.1.3转染细胞。24小时后, 细胞被含有1.0μM MTX的培养基再培养。再培养24,48和72小时后, 采集培养基并收集细胞。N-乙酰半乳糖胺6-硫酸酯酶比活性通过活性 分析和ELISA被测定,并以N-乙酰半乳糖胺6-硫酸酯酶活性/每毫克 ELISA-反应性的N-乙酰半乳糖胺6-硫酸酯酶的比率表示。每个显示的 值是两次分别转染的平均值。

    图7:描述在以FGE表达质粒瞬时转染的36F细胞中的N-乙酰半 乳糖胺6-硫酸酯酶的产生的柱状图

    在不含氨甲蝶呤(MTX)的培养基中以带有反向的FGE cDNA的对照 质粒pXMG.1.2,或者FGE表达质粒pXMG.1.3转染细胞。24小时后, 细胞被含有1.0μM MTX的培养基再培养。再培养24,48和72小时后, 采集培养基并收集细胞。N-乙酰半乳糖胺6-硫酸酯酶总蛋白通过 ELISA测定。显示的每一值是两次分别转染的平均值,标准方差以误差 标尺指出。

    图8:描述在以FGE表达质粒瞬时转染的30C6细胞中的艾杜糖 醛酸-2-硫酸酯酶活性

    在不含氨甲蝶呤(MTX)的培养基中以带有反向的FGE cDNA的对照 质粒pXMG.1.2,或者FGE表达质粒pXMG.1.3转染细胞。24小时后, 细胞被含有1.0μM MTX的培养基再培养。再培养24,48和72小时后, 采集培养基并收集细胞。艾杜糖醛酸-2-硫酸酯酶活性通过活性分析测 定。显示的每一值是两次分别转染的平均值。

    图9:描述体现本发明特征的试剂盒

    本文中公开的所有参考文献都以全文被整合而作为参考。权利 要求出现在下面,并在其后给出序列表。

    关 键  词:
    使用 甘氨酸 生成 FGE 多种 硫酸酯酶 缺乏 其它 病症 进行 诊断 治疗
      专利查询网所有文档均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    0条评论

    还可以输入200字符

    暂无评论,赶快抢占沙发吧。

    关于本文
    本文标题:使用甲酰-甘氨酸生成酶(FGE)对多种硫酸酯酶缺乏症和其它病症进行诊断和治疗.pdf
    链接地址:https://www.zhuanlichaxun.net/p-8637361.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
    经营许可证编号:粤ICP备2021068784号-1