用于燃气涡轮机的转子组件技术领域
本发明涉及用于诸如燃气涡轮机的旋转式机械的转子组件。
背景技术
如所熟知的,用于燃气涡轮机的标准构造展望多个滑动地插入转子体的叶片。特别地,每个叶片包括保留进入转子体的对应枞树状部分的枞树状根部。叶片的外部分包括翼型,其以将与在机器中演变的热流体流相关联的动能和压能转换为在转子轴可用的机械能的方式成形,叶片翼型和叶片枞树状根部通过在其间放入的叶片柄部分而一体。在定位在相继的叶片之间的转子腔中发生的压力和温度导致热流体朝向叶片的柄和枞树状部分的泄漏。这样的事件导致叶片零件的过热,在这样的构件时引起损耗。
为了解决该问题,通常提供锁板以屏蔽叶片枞树状根部和叶片柄免于来自相邻转子腔的热流。锁板的下部通常插入刻入转子体的槽中,同时上部植入在叶片平台边缘中提供的钩形部分。
然而,即使这样的布置确定泄漏减少,但是它无法提供对问题的决定性解决方案。事实上,在机器的正常运转期间,在叶片的枞树状根部和柄部分与相邻的转子腔之间的温度和压力梯度通常被经历,使得非常高的泄漏发生。将理解,在相互连接的构件之间的制造公差不能担保完美的紧密性。因此,尽管在转子腔和叶片零件的界面处有锁板存在,但是仍然经历热流的泄漏,其导致在叶片上的破坏效果并在机械设备时影响总体性能。
发明内容
本发明的目标通过提供如基本在独立权利要求1中限定的转子组件1来解决前述的技术问题。
此外,本发明的目标还是提供如基本在独立权利要求15中限定燃气涡轮机。
在对应的从属权利要求中限定优选的实施例。
根据优选的实施例,其将在下面详细的描述中仅用于示例性和非限制性目的来描述,本解决方案提供位于刻入转子体中的槽内的密封引线。密封引线响应于在机器的正常运转期间作用的径向离心力,并在槽中径向移动直到获得密封构造。
这样,关于现有技术显著地减少了热流体朝向叶片零件的泄漏,并且因此获得叶片材料在完整性和耐久性方面的更好性能。
附图说明
通过在连同附图理解时参考下面详细的描述,本发明的前述目标和许多伴随优点变得更容易被理解,同样更好地被理解。
图1是根据现有技术的转子叶片构造的正剖视图;
图2是转子-叶片-锁板构造沿线A-A的侧剖视图;
图3显示图2的细节;
图4显示根据本实施例的转子组件的横向剖视图,其中转子是静止的;
图5A和5B显示在运转期间的转子组件的横向剖视图;
图6显示根据本发明的转子组件的示意正视图。
具体实施方式
参考图1,显示根据现有技术的转子叶片构造的正剖视图。叶片(大体用标号10指示)固定在转子体3中。更特别地,叶片10包括叶片翼型部分13、叶片柄部分12和叶片枞树状部分11。叶片枞树状部分保留在对应的转子枞树状部分4中。构件之间的必要公差必然确定了在叶片和转子之间的缝隙(在附图中,为了清楚的目的,夸大这样的缝隙的大小)。因此,出于上面的原因而不能在叶片的枞树状表面和转子体之间保证紧密的接触。此外,为了保证转子体内叶片的牢固锁定,需要大的接触表面以用于在零件之间提供必要的摩擦,其增加现有缝隙的存在。
现在参考图2,显示了沿侧剖视线A-A的图1的布置。示意性地显示了可绕轴线a旋转的转子3,其具有保留对应的叶片枞树状部分11的枞树状部分4。横向剖视图展现转子腔31,其沿着轴线a的方向定位在相继的叶片之间(其中仅显示叶片10),其中温度和压力情况(指示为TC和PC)是这样的,以导致朝向叶片(在附图中箭头F)特别地朝向枞树状区域的热流泄漏,在该枞树状区域,后者保留在转子体内并且温度和压力具有指示为TB和PB的值。为了克服该问题,根据已知的方法学,提供锁板7以便屏蔽分别由在叶片和转子体的转子腔31和枞树状区域11、4之间的温度和压力梯度产生的泄漏。更特别地,锁板7包括插入刻在转子体3中的周向槽6的下部71,如在图2的横向剖视图中示意性地显示的。然而,由于在接触的零件之间的公差,穿过锁板7的泄漏仍然发生,使得热流到达叶片枞树状部分11,影响温度和压力TB和PB。
图3显示图2的细节,集中在插入周向槽6中的锁板7的下部。箭头F显示泄漏环绕锁板并到达叶片和转子枞树状区域(未显示)的路径。
现在参考下面的图4,显示根据本发明的优选实施例的转子组件1,其在这里公开为非限制性的示例。转子组件1包括绕轴线a可旋转的转子体3。转子体包括枞树状部分4(构造为保留对应的叶片枞树状部分11)和在转子枞树状部分4的附近刻入转子体3中的周向槽6。提供锁板7,其构造为屏蔽叶片枞树状部分4免受来自转子邻近腔(未显示)的热泄漏。锁板7包括插入槽6中的下部71,后者限定面向锁板下部71的侧壁9。根据本发明的转子组件1进一步包括定位于周向槽6内的密封引线8(在图4中横向剖视中可见)。有利地,布置锁板下部71和槽侧壁9以限定会聚的通道。在转子的运转期间,密封引线8遭受在机器的高速旋转期间发生的离心力,并且它沿着会聚的通道向上移动,直到它以密封构造接触锁板下部71和槽侧壁9。这样,环绕经过锁板7的热泄漏发现沿着其路径的进一步障碍,并且因此显著地改善了组件的紧密性。此外,高的离心力保证了保持引线稳固地挤入会聚通道中的非常紧密的密封构造。图4显示在静止构造中的转子组件,其中转子是静止的,并且密封引线8位于在槽内未限定的位置中。优选地,侧壁9与转子体3(示例未显示)的径向r对准。备选地,侧壁9可以是倾斜的,与径向r形成锐角α2。为了保证密封引线8一旦到达侧壁9就事实上能够克服在接触的表面之间建立的摩擦而在它上面滑动,优选地在范围0<α2<arctan(μf2)的范围内选择角α2,其中μf2是与侧壁表面相关联的摩擦系数。系数μf2是根据Coulomb的摩擦定律计算的。例如,在槽侧壁9和密封引线8两者都由钢铁制成的情形中,μf2具有基本等于0.15的数值。
附加地或备选地,锁板下部71还可成形以便建立会聚的通道以用于采用引线8到达密封构造。有利地,锁板下部71可以是尖端形状。特别地,根据优选的实施例,锁板下部71包括面向侧壁9的终端壁711,其是倾斜的,与前述转子体3的径向r形成锐角α1。优选地,在范围0<α1<arctan(μf1)的范围内选择角α1,其中μf1这次是与终端壁711相关联的摩擦系数。系数μf1以根据Coulomb的摩擦定律用于侧壁9的相同方式来确定。已经显示,提供具有在子范围0.1[arctan(μf1)]<α1<0.3[arctan(μf1)]中选择的α1的尖端形状的锁板下部71引起了最好的密封性能。
现在参考下面的图5A和5B,显示根据本发明在运转期间的转子组件1的功能。由于转子体3绕轴线a的旋转,密封引线8遭受沿着径向r指向的离心力FC。一旦引线8接触会聚通道的表面,在转子组件1上关于所选择角度α1和α2的几何形状为,使得在引线和通道的壁之间的接触处出现的力FT大于根据Coulomb定律计算为FN·μf的摩擦力。如此,因为离心力作用于密封引线8,该密封引线8沿着会聚通道滑动,直到它到达在图5B中描绘的密封构造,这样以妨碍泄漏。
现在参考接着的图6,显示位于周向槽(未描绘)内的密封引线的示意正视图,并通过示例,两个相继的叶片,每一个与各自的锁板相关联。将了解,密封引线将同时地作用于沿着转子体(未显示)属于相同轴向位置的所有叶片。如在附图中显示的,密封引线8是环形的。优选地,引线8由金属材料制成并包括两个自由端81和82,其布置在一个角向位置并基本彼此面对。自由端81和82允许金属引线8穿过周向槽的扩张,这样以在如上面解释地运转期间获得密封构造,并且还有助于安装过程。特别地,如下面描述地执行安装。首先安装叶片。然后单个密封引线位于周向槽中。然后顺次安装所有锁板,每一个朝向它的最终位置滑动。对于最后的锁板,切割引线以单独地装配它。备选地,密封引线可切为若干片,每一个用于分别的锁板。引线中的每一片在锁板中预组装,后者包括合适的容纳密封引线的片的凹部。包括引线的片的预组装的锁板在叶片已经安装在转子体上之后,以上面解释的相同方式顺次安装。将理解,除了金属以外,其他材料可用于密封引线。备选地,绳密封可被使用或弹性体材料(对于金属的情形,其将不需要自由端以允许扩张)。例如,可使用环氧树脂、树脂、弹性体或橡胶材料。
尽管结合优选的实施例已经充分地描述本发明,但是明显的是,修改可被引入它的范围内,不认为本申请被这些实施例限制,而是被所附权利要求书的内容限定。