相关申请的交叉引用
本申请根据35U.S.C.§119(e)(1)要求2009年10月2日提交的、题为 “Endotracheal Tube Apparatus”的美国临时专利申请序列号第61/248,294 号(代理机构案卷号M190.350.101/P0035756.00)的优先权;且该申请的 全部内容以参见方式纳入本文。
背景技术
气管内导管包括电极,这些电极设计成与患者声带接触,以便于在连 接于肌电图(EMG)监测装置的情形下、在手术过程中对于声带的EMG 监测。气管内导管为患者换气提供敞开气道,并且在连接于合适的EMG监 测器时提供对于内部喉部肌肉组织的EMG活性的监测。在外科手术过程 中,气管内导管可连续地监测支配喉部肌肉组织的神经。
发明内容
一个实施例涉及一种用于监测患者喉肌的EMG信号的设备。该设备包 括具有外表面的气管内导管。导电墨水电极形成在气管内导管的外表面上。 导电墨水电极构造成当气管内导管放置在患者的气管内时接收来自喉肌的 EMG信号。至少一个导体联接于导电墨水电极,并且构造成将由导电墨水 电极所接收的EMG信号传送至处理设备。
附图说明
图1示出根据一实施例由挤压聚合物制成的EMG气管内导管。
图2示出根据一实施例的图1所示气管内导管的一部分的放大图。
图3示出根据一实施例由PVC制成的EMG气管内导管。
图4示出根据一实施例的图3所示气管内导管的一部分的放大图。
图5示出根据一实施例管上印有导电墨水电极的EMG气管内导管。
图6示出根据一实施例的图5所示气管内导管的一部分的放大图。
图7示出根据一实施例的图5所示气管内导管的剖视图。
图8示出根据一实施例围绕管的周围印有多对导电墨水电极的EMG气管 内导管。
图9示出根据一实施例的图8所示气管内导管的一部分的放大图。
图10是一示意图,示出根据一实施例的图8所示气管内导管的剖视图。
图11示出根据一实施例带有主囊套和副囊套的EMG气管内导管。
图12A示出根据一实施例副囊套上印有导电墨水电极的图11所示气管内 导管的副囊套。
图12B示出根据另一实施例的图11所示气管内导管的副囊套。
图13示出根据一实施例的具有视觉指示器的EMG气管内导管,该视觉指 示器用于跟踪和验证电极的位置。
图14示出根据一实施例的图13所示气管内导管的一部分的放大图。
图15示出根据一实施例的具有磁体指示器的EMG气管内导管,该磁体指 示器用于跟踪和验证电极的位置。
图16和17示出根据一实施例的图15所示气管内导管的一部分的放大图。
图18示出根据一实施例的带有联接适配件的EMG气管内导管,该联接适 配件用于提供转动自由度。
图19示出根据一实施例的图18所示气管内导管的一部分的放大图。
图20示出根据一实施例的在EMG电极的顶部和底部上具有肋的EMG气 管内导管。
图21示出根据一实施例的图20所示气管内导管的一部分的放大图。
图22示出根据一实施例的管的表面上有导电带的气管内导管,该导电带 用于记录EMG信号。
图23示出根据一实施例的图22所示气管内导管的一部分的放大图。
图24示出根据一实施例带有定制挤压PVC管的EMG气管内导管。
图25和26示出根据一实施例的图24所示气管内导管的一部分的放大图。
图27示出根据一实施例的定位在患者喉部内的EMG气管内导管。
图28A-28D示出根据各实施例的带有具有增大表面积的电极的EMG气管 内导管。
图29示出根据一实施例的EMG气管内导管,该气管内导管的总体形状弯 曲成与人的咽喉形状相匹配。
图30示出根据一实施例的EMG气管内导管的剖视图,该气管内导管具有 构造成降低或消除转动敏感度的电极。
图31示出根据另一实施例的EMG气管内导管,该气管内导管具有构造成 降低或消除转动敏感度的电极。
图32示出根据一实施例的EMG气管内导管的囊套。
图33示出构造成用在根据一实施例的EMG气管内导管中的电极阵列的电 路示意图。
图34示出构造成用在根据一实施例的EMG气管内导管中的柔性膨胀电 极。
图35A示出根据一实施例的具有三个电极的EMG气管内导管的第一侧视 图(后侧)。
图35B示出根据一实施例的图35A所示EMG气管内导管的第二侧视图 (从图35A所示视图转动90度)。
图35C是一示意图,示出根据一实施例的图35A和35B所示气管内导管 的剖视图。
图36A示出根据一实施例的具有四个电极的EMG气管内导管的第一侧视 图(后侧)。
图36B示出根据一实施例的图36A所示EMG气管内导管的第二侧视图 (从图36A所示视图转动90度)。
图36C一示意图,示出示出根据一实施例的图36A和36B所示气管内导 管的剖视图。
图37A示出根据另一实施例的具有四个电极的EMG气管内导管的第一侧 视图(后侧)。
图37B示出根据一实施例的图37A所示EMG气管内导管的第二侧视图 (从图37A所示视图转动90度)。
图38示出根据一实施例的具有多个环形电极的EMG气管内导管的侧视 图。
图39A-39E示出根据各个实施例具有管放置标记的EMG气管内导管。
具体实施方式
图1示出由挤压聚合物制成的EMG气管内导管100。图2示出图1所示 气管内导管100的一部分的放大图。气管内导管100包括实芯线102、接头104、 囊套充胀管106、挤压聚合物管110、线电极112以及主囊套114。实芯线102 在互连部108处连接至线电极112。管110向肺和从肺输送气体。接头104构 造成连接至呼吸机(未示出),以将空气注入肺和从肺抽出空气。囊套充胀管 106构造成连接至压缩空气源(未示出),以对囊套114进行充胀。囊套充胀 管106与位于管110的壁内的内腔连通,而内腔与主囊套114连通。在将气管 内导管100插入患者气管后,线电极112感测EMG信号,这些EMG信号经 由实芯线102输出至诸如神经完整性监测器(NIM)装置120之类的EMG处 理机。可使用冲切带将管110带连接至患者口部,以固定聚合物管并且保持聚 合物管适当地定位。
在一实施例中,NIM 120构造成确定电极112何时与声带接触,并且构造 成在失去此种接触时向外科医生提供警告。在一实施例中,NIM 120还构造成 基于所接收的信号来确定电极112是否与肌肉或组织接触。在一实施例中, EMG管100构造成与NIM 120无线通信,而NIM 120构造成对电极112进行 无线监测。在此种实施例形式中,NIM 120将能量无线地发送至电极112,而 电极112将EMG信号无线地发送至NIM 120。
一些现有的气管内导管可转动,这会致使电极移离声带。相反,管110包 括构造成与声带接触的柔性管段113,且露出的电极112形成在柔性管段113 外。柔性管段113比管110的其余部分更具柔性或更软(例如,由低硬度材料 制成),这使得电极112能够保持与声带更好地抵触,并减少或消除管110的 平移和转动。在一实施例中,主囊套114由粘的低硬度材料制成,以使轮廓抵 靠气管环,这有助于减少或消除管110的平移和转动。在另一实施例中,电极 112约1.3英寸长。在另一实施例中,电极112约1.9英寸长。延长电极112 的长度有助于使管110变得对于俯卧抬头较不敏感。
在一实施例中,管110是比常规实心聚合物管更有柔性并减少扭结的编织 管。根据一实施例的管110由薄壁管内的编织聚合物或尼龙制成,并减少或消 除管在声带处的转动,同时允许管的近侧部分转动。
图3示出由PVC制成的EMG气管内导管300。图4示出图3所示气管内 导管300的一部分的放大图。气管内导管300包括实芯线302、接头304、囊 套充胀管306、PVC管310、带形(taped-on)电极312、主囊套314以及电极 线316。实芯线302在互联部308处连接至电极线316,而电极线316连接至 带形电极312。管310向肺和从肺输送气体。接头304构造成连接至呼吸机(未 示出),以将空气注入肺和从肺抽出空气。囊套充胀管306构造成连接至压缩 空气源(未示出),用于对囊套314进行充胀。囊套充胀管306与位于管310 的壁内的内腔连通,而内腔与主囊套314连通。在将气管内导管300插入患者 气管之后,带形电极312感测EMG信号,这些EMG信号经由实芯线302输 出至EMG处理机(例如,NIM装置120)。
图5示出根据一实施例管上印有导电墨水电极的EMG气管内导管500。 图6示出根据一实施例的图5所示气管内导管500的一部分的放大图。气管内 导管500包括实芯线502、接头504、囊套充胀管506、PVC管510、导电墨水 电极512以及主囊套514。实芯线502在互连部508处连接至导电墨水电极512。 管510向肺和从肺输送气体。接头504构造成连接至呼吸机(未示出),以将 空气注入肺和从肺抽出空气。囊套充胀管506构造成连接至压缩空气源(未示 出),用于对囊套514进行充胀。囊套充胀管506与位于管510的壁522内的 内腔520(图7)连通,而内腔522与主囊套514连通。在将气管内导管500 插入患者气管之后,导电墨水电极512感测EMG信号,这些EMG信号经由 实芯线502输出至EMG处理机(例如,NIM装置120)。
图7是一示意图,示出根据一实施例的图5所示气管内导管500的剖视图。 如图7所示,内腔522位于管510的壁520内,用于对囊套514进行充胀。导 电墨水电极512形成在壁520的外表面上。在一实施例中,通过将填充有银的 聚合物导电墨水或碳导电墨水描绘或印刷在管510上来形成导电墨水电极 512。导电墨水可从诸如银、碳、金、铂、钯、银-钨以及银-钽之类的各种可流 动材料得到。导电墨水可使用诸如移印、丝网印刷、喷墨分配、数字印刷、微 型笔分配、涂刷、气相沉淀以及等离子溅射之类的各种已知技术沉积到基材上。 导电墨水在神经监测应用中可既用于刺激又用于记录目的。
图8示出根据一实施例围绕管周围印有多对导电墨水电极的EMG气管内 导管800。图9示出根据一实施例的图8所示气管内导管800的一部分的放大 图。气管内导管800包括接头804、囊套充胀管806、PVC管810、导电墨水 电极812以及主囊套814。管810向肺和从肺输送气体。接头804构造成连接 至呼吸机(未示出),以将空气注入肺和从肺抽出空气。囊套充胀管806构造 成连接至压缩空气源(未示出),用于对囊套814进行充胀。囊套充胀管806 与位于管810的壁820内的内腔822(图10)连通,而内腔822与主囊套814 连通。在将气管内导管800插入患者气管之后,导电墨水电极812感测EMG 信号,这些EMG信号经由连接至电极812的实芯线(例如,图5所示的实芯 线502)输出至EMG处理机(例如,NIM装置120)。
图10是一示意图,示出根据一实施例的图8所示气管内导管800的剖视 图。如图10所示,内腔822位于管810的壁820内,用于对囊套814进行充 胀。围绕管810的周围形成有多对导电墨水电极812,从而甚至在管810转动 地移位时实现不中断地EMG记录。在一实施例中,通过将填充有银的聚合物 导电墨水描绘或印刷在管810上来形成导电墨水电极812。
图11示出根据一实施例带有主囊套1114和副囊套1130的EMG气管内导 管1100。图12A示出根据一实施例的图11所示气管内导管的副囊套1130的 放大图,在副囊套1130上印有导电墨水电极1132。图12B示出根据另一实施 例的图11所示气管内导管的副囊套1130的放大图。图12A所示副囊套1130 的实施例由附图标记1130-1标示,而图12B所示实施例由附图标记1130-2标 示。气管内导管1100包括PVC管1110、主囊套1114以及其上形成有导电墨 水电极1132的副囊套1130。管1110向肺和从肺输送气体。至少一个囊套充胀 管(未示出)构造成连接至压缩空气源(未示出),用于对囊套1114和1130 进行充胀。在气管内导管1100插入患者气管之后,将副囊套1130充胀,且导 电墨水电极1132与声带接触并感测来自声带的EMG信号。所感测的信号经由 连接至电极1132的导线而输出至EMG处理机(例如,NIM装置120)。在一 实施例中,副囊套1130由顺应性或半顺应性材料制成,且通过将填充有银的 聚合物导电墨水描绘或印刷在副囊套1130上来形成导电墨水电极1132。其上 印有银墨水的副囊套1130有助于在声带上充胀时建立更好的电极接触。电极 1132可喷射到副囊套1130或管1110上,并且可基本上覆盖副囊套1130的整 个表面。电极1132可采用不同于图12A所示的各种形状或形式,例如在本发 明任何其它附图中示出的形状或形式或者其它形状。在其它实施例中,EMG 管1100可包括三个或更多个囊套。
副囊套1130也可具有与图12A所示不同的形状,例如图12B所示的形状。 如图12B所示,副囊套1130-2具有扁平花生形状,具有朝中部1135渐缩的两 个圆形端部1133和1137。根据一实施例的囊套1130-2的扁平花生形状与声带 的形状适配或轮廓匹配,并且有助于减少或消除管1110的平移和转动。在另 一实施例中,副囊套1130由弹性体或泡沫枕形件形成,该弹性体或泡沫垫具 有类似于图12B所示朝中部渐缩的两个圆形端部。在该实施例的一个形式中, 枕形件的端部具有大致三角形横截面。在一实施例中,副囊套1130包括一个 或多个位置传感器,以监测管1110的位置或定位。
图13示出根据一实施例的具有视觉指示器1320的EMG气管内导管1300, 该视觉指示器用于跟踪和验证电极位置。图14示出根据一实施例的图13所示 气管内导管1300的一部分的放大图。气管内导管1300包括实芯线1302、接头 1304、囊套充胀管1306、PVC管1310、电极1312、主囊套1314以及视觉指 示器1320。实芯线1302连接至电极1312。管1310向肺和从肺输送气体。接 头1304构造成连接至呼吸机(未示出),以将空气注入肺和从肺抽出空气。 囊套充胀管1306构造成连接至压缩空气源(未示出),用于对囊套1314进行 充胀。囊套充胀管1306与位于管1310的壁内的内腔连通,而内腔与主囊套1314 连通。在将气管内导管1300插入患者气管之后,电极1312感测EMG信号, 这些EMG信号经由实芯线1302输出至EMG处理机(例如,NIM装置120)。
在一实施例中,视觉指示器1320是用于跟踪并验证电极1312的位置的亮 光发光二极管(LED)或光纤光源。视觉指示器1320靠近电极1312放置在管 1310的表面上,以识别在插管之后电极相对于声带的位置。使用者可观察到面 向前的光点,并且将该光点标记在患者皮肤上。在另一实施例中,视觉指示器 1320是围绕管1310的一部分或整个周界的LED带。
图15示出根据一实施例的具有磁性指示器1520的EMG气管内导管1500, 该视觉指示器用于跟踪和验证电极位置。图16和17示出根据一实施例的图15 所示气管内导管1500的一部分的放大图。气管内导管1500包括实芯线1502、 囊套充胀管1506、管1510、电极1512、主囊套1514以及磁性指示器1520。 实芯线1502连接至电极1512。管1510向肺和从肺输送气体。管1500的接头 构造成连接至呼吸机(未示出),以将空气注入肺和从肺抽出空气。囊套充胀 管1506构造成连接至压缩空气源(未示出),用于对囊套1514进行充胀。囊 套充胀管1506与位于管1510的壁内的内腔连通,而内腔与主囊套1514连通。 在将气管内导管1500插入患者气管之后,电极1512感测EMG信号,这些EMG 信号经由实芯线1502输出至EMG处理机(例如,NIM装置120)。
在一实施例中,磁性指示器1520是用于跟踪并验证电极1512的位置的微 型磁体。磁性指示器1520靠近电极1512放置在管1510的表面上,以识别在 插管之后电极相对于声带的位置。使用者可用包括磁性拾取传感器的装置1530 (图7)来跟踪和定位患者体内的磁体。
除了以上参见图13-17所描述的基于LED和基于磁体的技术以外,其它 实施例可使用用于确定患者体内的电极位置的其它技术,例如以下技术:(1) 定位解剖结构标记;(2)自动周期性刺激(APS)电极跟踪;(3)声纳/超声 (类似于壁柱探测器);(4)使用线圈的外科导航;(5)结合定位装置使用 刺激器,并且使LED的发光与识别笔的刺激脉冲同步;(6)使用加速器(例 如,定位在囊套上)来监测运动;(7)使用振动传感器和空气进口和出口, 从而空气流过声带产生振动,而该振动由振动传感器来感测;(8)使用管内 或管上的超声波转换器以及人体外部的感测电路;(9)使用谐振电路进行位 置和转动感测(可使用刺激通道来提供脉冲);使用接近声带组织谐振的谐振; 通过对于周围阻止的阻抗匹配和能量传递来探测声带的机械阻抗;使用表面声 波或其它机械谐振器;(10)使用电极位置附近的压力传感器或压力传感器阵 列,以探测与声带的配合(例如,在管的每一侧上具有电容传感器的压敏表面); (11)链接至无线界面的无线传感器(例如,管可包括无线视频芯片以将信号 发送到外部监视器(例如,NIM或微型屏幕上的图中图),从而实时观察放置 情况);(12)温度传感器(与声带接触时温度会升高);(13)嵌入式光纤 观察器,该嵌入式光纤观察器具有近端处的光源和电极附近的观察窗(NIM中 的软件来识别位置);(14)包含在管内或管上的一个或多个RFID标记,信 号发送给外部装置或NIM以进行读取和评估;(15)柔性压电条,该柔性压 电条用于监测管的一个或多个部分、诸如柔性管段113(图1和2)的运动, 且监测柔性管段113的运动间接地造成对于声带运动的监测;(16)围绕管的 一个或多个部分、诸如围绕管段113(图1和2)放置的阻抗监测器,以探测 管在声带处的直径变化(这种阻抗监测允许不记录EMG电势而监测声带运 动);(17)使用能够区分肌肉接触和非肌肉接触的电极,这有助于NIM确 保适当的位置和接触。
图18示出根据一实施例的带有联接适配件1820的EMG气管内导管1800, 该联接适配件1820用于提供转动自由度。图19示出根据一实施例的图18所 示气管内导管1800的一部分的放大图。气管内导管1800包括实芯线1802、接 头1804、囊套充胀管1806、PVC管1810、电极1812、主囊套1814以及塑料 联接适配件1820。实芯线1802连接至电极1812。管1810向肺和从肺输送气 体。接头1804构造成连接至呼吸机(未示出),以将空气注入肺和从肺抽出 空气。囊套充胀管1806构造成连接至压缩空气源(未示出),用于对囊套1814 进行充胀。囊套充胀管1806与位于管1810的壁内的内腔连通,而内腔与主囊 套1814连通。在将气管内导管1800插入患者气管之后,电极1812感测EMG 信号,这些EMG信号经由实芯线1802输出至EMG处理机(例如,NIM装置 120)。
在一实施例中,在将气管内导管1800插入患者之后,将管带连接至患者 口部。联接适配件1820定位在近端(远离患者口部),并且允许管1810的近 端如图19中箭头1830所示旋转,这使得管1810的远侧部分在患者内的转动 最小。在一实施例中,联接适配件1820允许沿任一方向转动30度。在另一实 施例中,气管内导管1800包括管中管构造,该构造允许管的近侧部分转动, 同时防止管的远侧部分转动。在一实施例中,主囊套1814由粘性或胶粘材料 (例如,粘性囊体)所形成,以助于防止管的远侧部分转动。
图20示出根据一实施例、在EMG电极2012的顶部和底部上具有肋2020 的EMG气管内导管2000。图21示出根据一实施例的图20所示气管内导管2000 的一部分的放大图。气管内导管2000包括实芯线2002、接头2004、囊套充胀 管2006、管2010、电极2012、主囊套2014以及肋2020。实芯线2002连接至 电极2012。管2010向肺和从肺输送气体。接头2004构造成连接至呼吸机(未 示出),以将空气注入肺和从肺抽出空气。囊套充胀管2006构造成连接至压 缩空气源(未示出),用于对囊套2014进行充胀。囊套充胀管2006与位于管 2010的壁内的内腔连通,而内腔与主囊套2014连通。在将气管内导管2000 插入患者气管之后,电极2012感测EMG信号,这些EMG信号经由实芯线2002 输出至EMG处理机(例如,NIM装置120)。
在插管过程中穿过声带时,根据一实施例的肋2020提供有效感觉,且声 带顶部和底部上的肋2020将不允许管2010移出位置。在一实施例中,肋2020 成形为与开口的轮廓匹配,并且用顺应性或半顺应性材料制成。在另一实施例 中,肋2020实施为具有可充胀囊体。
图22示出根据一实施例带有导电带的气管内导管2200,该导电带在管的 表面上以用于记录EMG信号。图23示出根据一实施例的图22所示气管内导 管2200的一部分的放大图。气管内导管2200包括接头2204、囊套充胀管2206、 管2210、电极2212以及主囊套2214。实芯线连接至电极2212。管2210向肺 和从肺输送气体。接头2204构造成连接至呼吸机(未示出),以将空气注入 肺和从肺抽出空气。囊套充胀管2206构造成连接至压缩空气源(未示出), 用于对囊套2214进行充胀。囊套充胀管2206与位于管2210的壁内的内腔连 通,而内腔与主囊套2214连通。在将气管内导管2200插入患者气管之后,电 极2212感测EMG信号,这些EMG信号经由附连至电极2212的实芯线输出 至EMG处理机(例如,NIM装置120)。
在图22和23所示的实施例中,电极2212是粘结至管2210的表面的各条 导电带。在一实施例中,导电带是织造材料,并且替代某些常规管(2通道或 多对)中的实芯线电极。在一实施例中,图22和23所示各条2212中的一条 或多条包括用于监测管2210的运动的压电条。在另一实施例中,电极2212覆 盖有可膨胀的导电泡沫,该导电泡沫在吸收湿气时膨胀由此提供改进的与声带 的接触。
图24示出根据一实施例具有定制挤压PVC管的EMG气管内导管2400。 图25和26示出根据一实施例的图24所示气管内导管2400的一部分的放大图。 气管内导管2400包括实芯线2402、接头2404、囊套充胀管2406、管2410、 电极2412以及主囊套2414。实芯线2402连接至电极2412。管2410向肺和从 肺输送气体。接头2404构造成连接至呼吸机(未示出),以将空气注入肺和 从肺抽出空气。囊套充胀管2406构造成连接至压缩空气源(未示出),用于 对囊套2414进行充胀。囊套充胀管2406与位于管2410的壁内的内腔连通, 而内腔与主囊套2414连通。在将气管内导管2400插入患者气管之后,电极2412 感测EMG信号,这些EMG信号经由实芯线2402输出至EMG处理机(例如, NIM装置120)。
在一实施例中,管2410包括定制挤压PVC管(刚性或强化),且PVC 囊套并不像硅酮囊套那样有粘性。根据一实施例的定制挤压PVC管2410的大 小接近于标准的现有气管内导管。
本文所描述EMG气管内导管的各实施例的特征包括:(1)比常规管更大 的放置公差;(2)NIM用于辅助放置管;(3)周期地检查电极来确保恒定的 接触;(4)沿正确方向的有意弯曲以将管适当插入;(5)在管中包括高亮 LED,以通过皮肤观察放置情况;(6)使用外部霍尔传感器与管内的磁体来 感测正确的管放置;(7)用于使管稳定的成套包装的带;(8)探测EMG发 生器和分流组织的改进装置;(9)使用肌肉“人工假象”来作为适当放置的指 示器(可通过调整管位置使人工制品最小);(10)连接至光源或摄像机的光 纤束;(11)“固定件”,该“固定件”模制在管近端以对准在患者解剖结构上用 于正确取向;(12)用于塞入患者盒中的改进路径和连接件;(13)经由NIM 内的附加连接件(不是附加导线)或者交点变换件而从2通道产生4通道;(14) 提供来自NIM的信号,以测量与电极接触的组织的电阻和相位角,从而确定 对于分流组织是否存在足够的EMG发生器组织;(15)总体外径减小的EMG 管;以及(16)通过使用标准现有气管内导管减小定制挤压硅酮管件的相关成 本和质量问题。下文阐述其它特征和信息。
根据一实施例的EMG管电极可既与EMG发生器(横纹肌)接触又与分 流组织(不产生EMG信号但导电的导电组织,因此将可用于放大器的EMG 信号分流(减小))接触。“高质量管放置”具有EMG发生器组织与分流组织 的高比值。
本文描述的EMG气管内导管的实施例可包括涂覆在诸如电极112(图1) 之类电极上的导电水凝胶。用导电水凝胶涂覆电极会增大电极的接触表面,允 许EMG管转动更多而不丧失与声带的接触,并产生改进的记录信号。一些实 施例可使用踏板电极来进行后部和前部监测,包括监测杓状肌和环杓后肌 (PCA)。
现有的EMG气管内导管具有一些问题,诸如:(1)管外侧上的脊部会引 起组织刺激;(2)在手术过程中管会转动地移位;以及(3)管壁过厚。这些 问题在一实施例中用以下方式解决:(1)对于管使用诸如聚合物酯酰胺 (pebax)与特氟隆(Teflon)之类的非硅酮材料,这允许管容易地滑动(对于 囊套可使用高摩擦材料,以辅助防止平移移位);(2)将用于导线的隆起部 放置在管的内径(ID)上;(3)沿着长度将管件的不同部件(每个部件可能 具有不同的横截面形状)拼接在一起,以得到与患者解剖结构更紧密匹配的更 优化横截面几何形状,诸如在近端使用具有圆形横截面的第一管部分以允许转 动,而在声带附近使用具有三角形横截面的第二管部分(例如,具有圆形或三 角形内径);(4)在电极紧接着的上方,增加较小壁厚的区域,以将上段 与下段中脱开;以及(5)通过从簧圈加固管转换为编织管而使管的近端与 远端脱开。
图27示出根据一实施例的定位在患者喉部内的EMG气管内导管2700。 气管内导管2700包括接头2704、管2710、电极2712、主囊套2714、食道延 伸部2720以及食道电极2722。图27所示的患者解剖结构的各部分包括舌2730、 气管2732以及食道2734。管2710向肺和从肺输送气体。接头2704构造成连 接至呼吸机(未示出),以将空气注入肺和从肺抽出空气。囊套充胀管构造成 连接至压缩空气源(未示出),用于对囊套2714进行充胀。在将气管内导管 2700插入患者气管2732之后,电极2712感测EMG信号,这些EMG信号经 由连接至电极2712的实芯线输出至EMG处理机(例如,NIM装置120)。
如图27所示,食道延伸部2720远离管2710延伸并延伸到患者食道2734 内。形成在延伸部2720上的食道电极2722感测来自于声带背对食道2734的 背侧肌肉的信号。根据一实施例的电极2722用于记录喉部后方喉肌的EMG信 号。在一实施例中,在手术过程中电极2722定位在环状软骨之后。由喉返神 经(RLN)支配的大部分肌肉位于喉部后方和后侧(例如,杓状肌、环杓后肌 (PCA)以及环杓侧肌(LCA))。将电极2722定位在环状软骨后方提供优 良的EMG信号。在一实施例中,食道电极2720还用于设置管2710的插入深 度和角度放置。
图28A示出根据一实施例的电极具有增大表面面积的EMG气管内导管 2800A。管2800A包括电极2802A,该电极2802A具有围绕管2,800A的外周 延伸的正弦波形状,具有沿管2800A的纵向延伸的峰部和谷部。
图28B示出根据另一实施例的电极具有增大表面面积的EMG气管内导管 2800B。管2800B包括电极2802B,该电极2800B围绕管2800B的外周形成并 沿管2800B的纵向延伸。电极2802B包括第一组电极2802B-1,该第一组电极 2802B-1与第二组电极2802B-2交错并且相对于第二组电极2802B-2纵向地移 位。电极2802B-1与电极2802B-2相比更靠近管2800B的近端定位,而电极 2802B-2与电极2802B-1相比更靠近管2800B的远端定位。
图28C示出根据另一实施例的电极具有增大表面面积的EMG气管内导管 2800C。管2800C包括电极2802C-1和2802C-2,这些电极各具有沿着管2800C 的长度的一部分延伸的正弦波形状,具有沿管2800C的侧向方向延伸的峰部和 谷部。
图28D示出根据另一实施例的电极具有增大表面面积的EMG气管内导管 2800D。管2800D包括电极阵列2802D,该电极阵列2802D包括形成栅格图案 的多个水平电极2802D-1和2802D-2以及多个垂向电极2802D-3和2802D-4。 水平电极2802D-1和2802D-2围绕管2800D的外周侧向延伸,而垂向电极 2802D-3和2802D-4沿管2800D长度的一部分纵向延伸。
图28A-28D所示的电极构造有助于降低或消除管的转动敏感度。在一实 施例中,电极的形状与声带相符,以避免分流(shunting)问题。
图29示出根据一实施例的EMG气管内导管2900,该气管内导管2900的 总体形状弯曲成与人的喉部形状相匹配。气管内导管2900包括接头2904、管 2910、电极2912以及主囊套2214。管2910向肺和从肺输送气体。接头2904 构造成连接至呼吸机(未示出),以将空气注入肺和从肺抽出空气。囊套充胀 管构造成连接至压缩空气源(未示出),用于对囊套2914进行充胀。在将气 管内导管2900插入患者气管之后,电极2912感测EMG信号,这些EMG信 号经由连接至电极2912的实芯线输出至EMG处理机(例如,NIM装置120)。
如图29所示,管2910并非直管,而是在沿着管2910的长度的至少一个 位置弄弯或弯曲,使得管2910具有与人喉部形状匹配或大致匹配的自然形状。 管2910的弯曲形状为在患者体内适当放置提供触觉。
图30示出根据一实施例的EMG气管内导管3000的剖视图,该气管内导 管3000的电极构造成降低或消除转动敏感度。四个电极3002A-3002D定位在 管3004上,并沿着管3004长度的一部分纵向延伸(例如,伸入和伸出图30 的纸面)。在所示的实施例中,四个电极3002A-3002D沿着管3004的外周等 距间隔开。电极3002A对应于通道1+和通道3+。电极3002B对应于通道2 +和通道4+。电极3002C对应于通道1-和通道4-。电极3002D对应于通 道2-和通道3-。
如图30所示,通过使用用于通道3和4的对角成对电极,可使用四个电 极形成四个通道。该电极构造有助于确保管无论是否转动都将一直具有两个良 好监测通道,由此有助于降低或消除管的转动敏感度。四电极管还可用于形成 六个通道(例如,通过使用用于通道5的顶部两个电极,以及用于通道6的底 部两个电极)。在一实施例中,NIM 120(图1)构造成显示所有的四个或六 个通道。在另一实施例中,NIM 120构造成确定四个或六个通道中提供最佳信 号的通道,并且仅仅显示最佳的一个或多个通道。在一实施例中,管3004包 括识别部件(例如,电阻器、RF、磁体、数字),且该识别部件使NIM 120 切换到多通道模式。管还可包括一个或多个LED以检验管的插入深度。也可 通过多路复用大量电极对来降低或消除转动敏感度。
图31示出根据另一实施例的EMG气管内导管3100,该气管内导管3100 的电极构造成降低或消除转动敏感度。EMG气管内导管3100包括管3110、主 囊套3114以及电极载体3120A和3120B。电极载体3120A和3120B中的每个 都是环形的,并围绕管3110的外周。电极载体3120A和3120B沿着管3110 的长度彼此间隔开。电极3112A形成在电极载体3120A上,而电极3112B形 成在电极载体3120B上。电极3112A和3112B中的每个电极具有围绕相应载 体3120A和3120B的外周延伸的正弦波形状,具有沿管3110的纵向延伸的峰 部和谷部。在一实施例中,电极3112A是负电极,而电极3112B是正电极。 图31所示的电极构造有助于降低或消除EMG气管内导管3100的转动敏感度。
在另一实施例中,EMG气管内导管3100仅仅包括单个环形电极载体 3120A,且该载体3120A可滑动地联接至管3110,以允许载体3120A沿着管 3110的长度上下纵向地滑动。在该实施例的一个形式中,控制件可附连于载体 3120A,以选择性地致使载体3120A膨胀并允许滑动或者收缩并防止滑动。例 如,在载体3120A定位在声带处时,控制件可使载体3120A膨胀,使得载体 3120A停留在该位置处,同时允许管3110滑动穿过载体3120A。在一实施例 中,载体3120A和3120B中的一个或两个可具有圆形横截面形状或者非圆形 横截面形状(例如,三角形形状)。
图32示出根据一实施例的EMG气管内导管的囊套3200。囊套3200包括 可膨胀囊套部分3202和拉伸件3204。囊套3200还包括圆柱形开口3206,该 圆柱形开口延伸穿过囊套3200,并允许囊套3200滑到气管内导管上。拉伸件 3204允许囊套部分3202膨胀,但其抵抗扭矩并且有助于使囊套3200和气管内 导管的转动最少。在一实施例中,拉伸件3204是自膨胀的且由诸如镍钛合金 之类的形状记忆材料制成。在一实施例中,拉伸件3204是镍钛合金框架或支 架,而囊套3200包括形成在其上的电极。在该实施例的一种形式中,囊套3200 构造成防损伤地符合声带的形状。
图33示出构造成用在根据一实施例的EMG气管内导管中的电极阵列的电 路示意图。该电极阵列包括呈星形构造的五个电极3302,这些电极3302共用 公共节点3304。正极端子3306连接至该共同节点3304。该阵列还包括端子 3308。在一实施例中,端子3306和电极3302位于管上,而端子3308位于管 的主囊套或副囊套上。图33所示的电极构造有助于降低或消除EMG气管内导 管的转动敏感度。还可通过使用两个环形电极来降低或消除转动敏感度,该两 个环形电极在两个位置围绕管的外周(例如,一个环形电极在声带处,而第二 环形电极在管的主囊套或副囊套上)。
图34示出构造成用在根据一实施例的EMG气管内导管中的柔性膨胀电 极。如图34所示,一对隔开保持环3422和3424各围绕管3410的外周。保持 环3422和3424将柔性电极3412在两环之间保持在位。电极3412沿着管3410 的长度的一部分纵向延伸。保持环3422和3424沿着管3410朝向彼此定位得 越近,电极3412远离管3410延伸得就越远。保持环3422沿着管3410远离彼 此定位得越远,电极3412就越靠近管3412。电极3412可用于机械地刺激声带。 声带将柔性电极3412朝向管3410向内推压。
在手术过程中EMG气管内导管运动的情形下,管上的EMG电极可能失 去与目标肌肉的接触,且可能无法提供最佳的EMG响应。一实施例提供对于 管运动(转动和垂向运动)不敏感或基本上不敏感的EMG气管内导管,且即 使在手术过程中管在患者体内转动或垂向运动,也提供不中断的EMG记录。 该实施例的一种形式是具有三个电极的管,两个电极构造成定位在声带上方, 一个电极构造成定位在声带下方。该实施例的另一形式是具有四个电极的管, 两个电极构造成定位在声带上方,而两个电极构造成定位在声带下方,各电极 等角度布置。这些实施例的电极构造在声带上方和下方不同,这使得激活的肌 肉群和未激活区域之间的信号差最大。声带高度上方和下方的电极改进对于来 自由喉返神经(或非喉返神经)和喉上神经的外部分支所支配的喉肌的肌电图 (EMG)信号的监测。声带上方和下方的电极提供对于例如喉部的后部、侧部 和前部的监测;监测左侧和右侧声带肌、杓状肌、甲杓肌、环杓后肌、环杓侧 肌以及环甲肌。下文将参照图35-37更详细地描述对于管位置基本上不敏感的 各实施例。
图35A示出根据一实施例的具有三个电极的EMG气管内导管3500的第 一侧视图(后侧)。图35B示出根据一实施例的图35A所示EMG气管内导管 3500的第二侧视图(从图35A所示视图转动90度)。图35C是一示意图,示 出根据一实施例的图35A和35B所示气管内导管3500的剖视图。如图35A-35C 所示,气管内导管3500包括管3510、电极3512以及主囊套3514。管3510向 肺和从肺输送气体。管3510的近端(图35A的左端)构造成连接至呼吸机(未 示出),以将空气注入肺和从肺抽出空气。囊套充胀管(未示出)构造成连接 至压缩空气源(未示出),用于对囊套3514进行充胀。在将气管内导管3500 插入患者气管之后,电极3512感测EMG信号,而这些EMG信号输出至EMG 处理机(例如,NIM装置120)。
电极3512包括三个电极3512A-3512C,这些电极围绕管3510的外周形成 并沿管3510的纵向延伸。电极3512B完全定位在管3510的后侧,且在此也称 为后部电极3512B。电极3512A和3512C主要定位在管3510的前侧,且也称 为前部电极3512A和3512C。管3510的前侧是图35C所示管3510的底半部, 而管3510的后侧是图35C所示管3510的顶半部。电极3512A-3512C中的每 个电极联接至相应迹线3524A-3524C(迹线3524A在附图中不可见)。迹线 3524A-3524C定位在管3510的保护(遮蔽)区域3528。后部电极3512B定位 在管3510的露出(非遮蔽)区域3526A。前部电极3512A和3512C定位在管 3510的露出(非遮蔽)区域3526B。
在一实施例中,电极3512A-3512C中的每个电极长度约1英寸,并且围绕 管的外周侧向延伸对应于约90度的角3522的距离(即,电极3512A-3512C中 的每个电极的宽度为管的总周长的约25%)。电极3512A-3512C围绕管的外 周侧向隔开对应于约30度的角3520的距离(即,电极3512A-3512C中的每个 电极之间的侧向间距为管的总周长的约8.333%)。在另一实施例中,电极 3512A-3512C中的每个电极绕管的外周侧向延伸对应于约60度的角3522的距 离,且电极3512A-3512C绕管的外周侧向间隔开对应于约60度的角3520的距 离。在又一实施例中,电极3512A-3512C绕管的外周侧向间隔开对应于大于约 15度的角3520的距离。在一实施例中,绕管外周从其中电极3512A-3512C中 一个电极的中心至相邻电极的中心的距离为约110度至220度。后部电极3512B 侧向地定位在两个前部电极3512A与3512C之间,并相对于前部电极3512A 和3512B纵向地偏移或移位。后部电极3512B与前部电极3512A和3512C相 比更靠近管3510的远端(图35A和35B的右侧)定位,而前部电极3512A和 3512C与后部电极3512B相比更靠近管3510的近端(图35A和35B中的左侧) 定位。
管3510包括交叠区域3530,在该交叠区域3530后部电极3512B的近侧 部分与前部电极3512A和3512C的远侧部分纵向地交叠。由于电极3512彼此 侧向偏移,因而这些电极3512并不彼此实体交叠。在一实施例中,交叠区域 3530约0.1英寸长,且从前部电极3512A和3512C的近端至后部电极3512B 的远端的总长度约为1.9英寸。在另一实施例中,交叠区域3530约0.2英寸长, 且从前部电极3512A和3512C的近端至后部电极3512B的远端的总长度约为 1.8英寸。管3510构造成被定位成使得患者的声带定位在交叠区域3530。因此, 电极3512在声带上方的构造与声带下方的构造不同。单个后部电极3512B构 造成主要定位在声带下方,而两个前部电极3512A和3512C构造成主要定位 在声带上方。已确定在声带上方约0.5英寸处在前侧上提供最大响应。在一实 施例中,电极3512A和3512B用于第一EMG通道,而电极3512C和3512B 用于第二EMG通道。
图36A示出根据一实施例的具有四个电极的EMG气管内导管3600的第 一侧视图(后侧)。图36B示出根据一实施例的图36A所示EMG气管内导 管3600的第二侧视图(从图36A所示视图转动90度)。图36C是一示意图, 示出根据一实施例的图36A和36B所示气管内导管3600的剖视图。如图 36A-36C所示,气管内导管3600包括管3610、电极3612以及主囊套3614。 管3610向肺和从肺输送气体。管3610的近端(图36A的左端)构造成连接至 呼吸机(未示出),以将空气注入肺和从肺抽出空气。囊套充胀管(未示出) 构造成连接至压缩空气源(未示出),用于对囊套3614进行充胀。在将气管 内导管3600插入患者气管之后,电极3612感测EMG信号,而这些EMG信 号输出至EMG处理机(例如,NIM装置120)。
电极3612包括四个电极3612A-3612D,四个电极3612A-3612D绕管3610 的外周形成,且沿管3610的纵向延伸。电极3612A和3612B完全定位在管3610 的后侧,且在此也称为后部电极3612A和3612B。电极3612C和3612D完全 定位在管3610的前侧,并且也称为前部电极3612C和3612D。管3610的前侧 是图36C所示管3610的底半部,而管3610的后侧是图36C所示管3610的顶 半部。电极3612A-3612D中的每个电极联接至相应迹线3624A-3524D(迹线 3524D在附图中不可见)。迹线3624A-3524D定位在管3610的保护(遮蔽) 区域3628中。后部电极3612A和3612B定位在管3610的露出(非遮蔽)区 域3626A中。前部电极3612C和3612D定位在管3610的露出(非遮蔽)区域 3626B中。
在一实施例中,电极3612A-3612D中的每个电极的长度为约1英寸,且 围绕管的外周侧向地延伸对应于约60度的角3622的距离(即,电极 3612A-3612D中的每个电极的宽度为管的总周长的约16.666%)。电极围绕管 的外周侧向间隔开对应于约30度的角3620的距离(即,电极3612A-3612D中 的每个电极之间的侧向间距为管的总周长的约8.333%)。后部电极3612A和 3612B相对于前部电极3612C和3612D纵向地偏移或移位。后部电极3612A 和3612B与前部电极3612C和3612D相比更靠近管3610的远端(图36A和 36B的右侧)定位,而前部电极3612C和3612D与后部电极3612A和3612B 相比更靠近管3610的近端(图36A和36B的左侧)定位。
管3610包括交叠区域3630,在该交叠区域3630后部电极3612A和3612B 的近侧部分与前部电极3612C和3612D的远侧部分纵向地交叠。由于电极3612 彼此侧向地偏移,所以这些电极3612并不彼此实体交叠。在一实施例中,交 叠区域3630约0.1英寸长,且从前部电极3612C和3612D的近端至后部电极 3612A和3612B的远端的总长度约为1.9英寸。在另一实施例中,交叠区域3630 约0.2英寸长,且从前部电极3612C和3612D的近端至后部电极3612A和3612B 的远端的总长度约为1.8英寸。管3610构造成被定位成使得患者的声带定位在 交叠区域3630。因此,电极3612在声带上方的构造与声带下方的构造不同。 后部电极3612A和3612B构造成主要定位在声带下方,而前部电极3612C和 3612D构造成主要定位在声带上方。在一实施例中,电极3612A和3612C用 于第一EMG通道,而电极3612B和3612D用于第二EMG通道。在另一实施 例中,电极3612A和3612D用于第一EMG通道,而电极3612B和3612C用 于第二EMG通道。
图37A示出根据另一实施例的具有四个电极的EMG气管内导管3700的 第一侧视图(后侧)。图37B示出根据一实施例的图37A所示EMG气管内导 管3700的第二侧视图(从图37A所示视图转动90度)。如图37A和36B所 示,气管内导管3700包括管3710、电极3712以及主囊套3714。管3710向肺 和从肺输送气体。管3710的近端(图37A的左端)构造成连接至呼吸机(未 示出),以将空气注入肺和从肺抽出空气。囊套充胀管(未示出)构造成连接 至压缩空气源(未示出),用于对囊套3714进行充胀。在将气管内导管3700 插入患者气管之后,电极3712感测EMG信号,这些EMG信号输出至EMG 处理机(例如,NIM装置120)。
电极3712包括四个电极3712A-3712D,这些电极绕管3710的外周形成, 并沿管3710的纵向延伸。电极3712A-3712D中的每个电极联接至相应迹线 3724A-3724D(迹线3724A和3724D在附图中不可见)。迹线3724A-3724D 定位在管3710的保护(遮蔽)区域3728。电极3712C和3712D定位在管3710 的露出(非遮蔽)区域3726A。电极3712A和3712B定位在管3710的露出(非 遮蔽)区域3726B。
在一实施例中,电极3712A-3712D中的每个电极长度约1英寸。在一实 施例中,电极3712A和3712B中的每个电极绕管的外周侧向延伸对应于约140 度的角的距离(即,电极3712A和3712B中的每个具有电极的宽度是管的总 周长的约38.888%)。在一实施例中,电极3712C和3712D中的每个电极绕 管的外周侧向延伸对应于约110度的角的距离(即,电极3712C和3712D中 的每个电极的宽度是管的总周长的约30.555%)。电极3712A和3712B绕管 的外周侧向间隔开对应于约40度的角的距离(即,电极3,712A和3712B之 间的侧向间距是管的总周长的约11.111%)。电极3712C和3712D绕管的外 周彼此侧向间隔开与大约70度的角度相对应的距离(即,电极3712C和3712D 之间的侧向间距大约是管的总周长的19.444%)。电极3712A和3712B相对 于电极3712C和3712D纵向地偏移或移位。电极3712C和3712D与电极3712A 和3712C相比更靠近管3710的远端(图37A和37B的右侧)定位,而电极 3712A和3712B与电极3712C和3712D相比更靠近管3710的近端(图37A和 37B的左侧)定位。
管3710包括分隔区域3730,在该分隔区域3730中电极3712C和3712D 的近端与电极3,712A和3712B的远端纵向间隔开。在一实施例中,分隔区域 3730约0.1英寸长,且从电极3712A和3712B的近端至电极3712C和3712D 的远端的总长度是约2.1英寸。在另一实施例中,分隔区域3730是大约0.2英 寸长,且从电极3712A和3712B的近端至电极3712C和3712D的远端的总长 度是约2.2英寸。管3710构造成被定位成使得患者的声带定位在分隔区域 3730。因此,电极3712在声带上方的构造与声带下方的构造不同。电极3712C 和3712D构造成主要定位在声带下方,而电极3712A和3712B构造成主要定 位在声带上方。
图38示出根据一实施例的具有多个环形电极的EMG气管内导管3800的 侧视图。如图38所示,气管内导管3800包括管3810、电极3812以及主囊套 3814。管3810向肺和从肺输送气体。管3810的近端(图38的左端)构造成 连接至呼吸机(未示出),以将空气注入肺和从肺抽出空气。囊套充胀管(未 示出)构造成连接至压缩空气源(未示出),用于对囊套3814进行充胀。在 将气管内导管3800插入患者气管之后,电极3812感测EMG信号,这些EMG 信号输出至EMG处理机(例如,NIM装置120)。
电极3812包括多个环形电极3812A。在一实施例中,环形电极3812A中 的每个环形电极完全围绕管3810的外周。在一实施例中,电极3812包括十六 个环形电极3812A,这些环形电极沿管的长度彼此纵向间隔开约0.05英寸的距 离,并沿管的纵向具有约1.55英寸的总长度。
图39A-39E示出根据各个实施例具有管放置标记的EMG气管内导管。在 一实施例中,图39A-39E所示的管标记由辐射不透材料形成。
如图39A所示,EMG气管内导管3900A包括三个带区3902、3904和3906 以及垂线段3908。这些带区3902、3904和3906以及垂线段3908定位在管3900A 的电极区域上,且便于使管3900A的电极相对于患者解剖结构进行适当地纵 向和转动定位。带区3902、3904和3906彼此相邻定位,带区3904位于带区 3902与3906之间。在一实施例中,带区3902、3904和3906中的每个带区围 绕管3900A的外周或者管3900A的外周的一部分,且带区3902、3904和3906 沿着管3900A的纵向轴线的总长度与管3900A的电极的长度相同或大致相同。 在一实施例中,带区3902和3906具有大致相同的长度,该长度约为带区3904 长度的两倍。在一实施例中,带区3902、3904和3906是单色带区,且对三个 带区使用至少两种不同颜色。在一实施例中,带区3902、3904和3906各为具 有与其它带区不同颜色的单色带区(即,对于三个带区使用3种不同的单色)。 在该实施例的一种形式中,带区3902是绿色带区,带区3904是白色带区,而 带区3906是蓝色带区。在一实施例中,这些颜色选择成将带区与血液和周围 组织区分开。垂线段3908沿着管3900A沿纵向延伸,且长度与带区3902、3904 和3906的总长度相同或大致相同。
如图39B所示,EMG气管内导管3900B包括带区3910、垂线段3914以 及水平线段3916、3918和3920。带区3910以及线段3914、3916、3918和3920 定位在管3900B的电极区域上,并且便于使管3900B的电极相对于患者解剖 结构进行适当地纵向和转动定位。在一实施例中,带区3910围绕管3900B的 外周,并且沿着管3900B的纵向轴线具有的长度与管3900B的电极的长度相 同或大致相同。在一实施例中,带区3910是单色带区。在一实施例中,带区 3910是白色带区。在另一实施例中,带区3910是蓝色带区。在一实施例中, 将颜色选定成从血液和周围组织中区分出带区。
垂线段3914沿着管3900B沿纵向方向延伸,并且具有的长度与带区3910 的总长度相同或大致相同。水平线段3916、3918和3920中的每个线段与垂线 段3914相交,并围绕管3900B的外周的一部分沿侧向延伸。水平线段3916、 3918和3920各对中在垂线段3914上,并沿着管3900B的纵向轴线彼此间隔 开。水平线段3918定位在水平线段3916和3920之间。在一实施例中,水平 线段3916和3920具有相同的长度,且该长度小于水平线段3918的长度。在 一实施例中,水平线段3918的长度至少是水平线段3916和3920中每个水平 线段长度的约两倍。
如图39C所示,EMG气管内导管3900C包括带区3922、垂线段3926、 水平线段3928以及对角线段3930和3932。带区3922以及线段3926、3928、 3930和3932定位在管3900C的电极区域上,且便于使管3900C的电极相对于 患者解剖结构适当地纵向和转动定位。在一实施例中,带区3922围绕管3900C 的外周,并且沿着管3900C的纵向轴线的长度与管3900C的电极的长度相同 或大致相同。在一实施例中,带区3922是单色带区。在一实施例中,带区3922 是白色带区。在另一实施例中,带区3922是蓝色带区。在一实施例中,颜色 选择成将带区与血液和周围组织中区分开。
线段3926、3928、3930和3932都在公共点3924处相交。垂线段3926沿 着管3900C沿纵向延伸,且长度与带区3922的长度相同或大致相同。水平线 段3928对中在垂线段3926上,并围绕管3900C的外周的一部分沿侧向延伸。 对角线段3930和3932沿着管3900C纵向且侧向地延伸,且在公共的点3924 处彼此相交以形成x型标记。
如图39D所示,EMG气管内导管3900D包括带区3934、三角形标记3936 和3940以及垂线段3942,它们定位在管3900D的电极区域上,且便于使管 3900D的电极相对于患者解剖结构适当地纵向和转动定位。在一实施例中,带 区3934围绕管3900D的外周,且沿着管3900D的纵向轴线的长度与管3900D 的电极的长度相同或大致相同。在一实施例中,带区3934是单色带区。在一 实施例中,带区3934是白色带区。
根据一实施例的三角形标记3936和3940中的每个三角形标记具有大致等 腰三角形形状。三角形标记3936和3940中的每个三角形标记具有底边段和两 个等边,该底边段围绕管3900D的外周的一部分侧向延伸,而两个等边远离底 边段延伸且在三角形的顶点处相交。三角形标记3936和3940的顶点共用公共 点3938。在一实施例中,三角形标记3936和3940中的每个三角形标记是单色 标记。在一实施例中,标记3936的颜色与标记3940的颜色不同。在该实施例 的一种形式中,标记3936是绿色标记,而标记3940是蓝色标记。在一实施例 中,这些颜色选择成将标记与血液和周围组织区分开。
垂线段3942沿着管3900D沿纵向从三角形标记3936的底边段的中点延伸 至三角形标记3936的底边段的中点,并与公共点3938相交。垂线段3942的 长度与带区3934的长度相同或大致相同。
如图39E所示,EMG气管内导管3900E包括带区3950、垂向线或条3952 以及水平线或条3954,它们定位在管3900E的电极区域上,且便于使管3900E 的电极相对于患者解剖结构适当地纵向和转动定位。在一实施例中,带区3950 围绕管3900E的外周。在一实施例中,带区3950是单色带区。
垂直条3952沿着管3900E沿纵向延伸,且长度与管3900E的电极的长度 相同或大致相同。垂直条3952包括由中部3952B分开的两个端部3952A和 3952C。在一实施例中,端部3952A和3952C具有大致相等的长度,该长度比 中部3952B的长度长约四倍。带区3950从垂直条端部3952A的底端延伸至垂 直条中部3952B的顶端。
水平条3954在中部3952B处与垂直条3952相交,且围绕管3900E的外 周的至少一部分沿侧向延伸。在一实施例中,带区3950是单色带区(例如, 灰色),而水平条3954是单色条(例如,白色)。在一实施例中,垂直条部 分3952A和3952C由相同的单色(例如,蓝色)形成,该单色与垂直条部分 3952B的单色(例如,白色)不同。在一实施例中,这些颜色选择成将带区与 血液和周围组织区分开。
一实施例涉及一种用于监测患者喉肌的EMG信号的设备。该设备包括气 管内导管,该气管内导管具有外表面和形成在该外表面上的导电墨水电极。导 电墨水电极构造成在将气管内导管放入患者的气管时接收来自喉肌的EMG信 号。至少一个导体联接至导电墨水电极,并构造成将由导电墨水电极所接收的 EMG信号传送至处理设备。
根据一实施例的导电墨水电极包括填充有银的聚合物导电墨水或碳导电 墨水。在一实施例中,导电墨水电极包括至少六个导电墨水电极,这些导电墨 水电极沿着管的长度纵向延伸,并间隔开以围绕气管内导管的外周。根据一实 施例的设备包括可充胀囊套和至少一个导电墨水电极,可充胀囊套连接至气管 内导管,至少一个导电墨水电极形成在可充胀囊套上并构造成感测来自患者声 带的EMG信号。在一实施例中,光源和磁体中的至少一个靠近导电墨水电极 定位在气管内导管上。
该设备的一实施例包括联接适配件,该联接适配件构造成允许气管内导管 的近端相对于气管内导管的远端转动。在一实施例中,该设备包括第一肋和第 二肋,该第一肋围绕气管内导管并定位在气管内导管上的导电墨水电极上方, 第二肋围绕气管内导管并定位在气管内导管上的导电墨水电极下方。在一实施 例中,至少一个自动周期性刺激(APS)电极形成在气管内导管上,且处理设 备构造成基于由至少一个APS电极所产生的信号来确定气管内导管的位置。 在一实施例中,导电水凝胶和可膨胀导电泡沫中的至少一种形成在电极上。
在一实施例中,气管内导管包括编织气管内导管。在一实施例中,各电极 包括四个电极,而该至少一个导体包括至少四对导体,且每对导体联接至四个 电极中的不同的成对电极,以提供来自四个电极的EMG信号的至少四个通道。 在该实施例的一种形式中,处理设备构造成分析EMG信号的四个通道,并基 于该分析识别四个通道的子集以进行显示。在一实施例中,至少一个无线传感 器设在气管内导管上,至少一个无线传感器构造成将信息无线地发送至处理设 备。在一实施例中,每个电极的长度至少约1.9英寸。各电极形成具有至少两 个水平电极和至少两个垂直电极的电极栅格。在一实施例中,设备包括温度感 测元件、光纤元件和视频元件中的至少一种。在一实施例中,设备包括应变测 量元件、加速度测量元件以及压电元件中的至少一种。
另一实施例涉及一种用于监测患者喉肌的EMG信号的方法。该方法包括 提供气管内导管,该气管内导管具有外表面和形成在该外表面上的导电墨水电 极。在将气管内导管放入患者的气管时,用导电墨水电极感测来自喉肌的EMG 信号。将由导电墨水电极感测的EMG信号输出至处理设备。
另一实施例涉及一种用于监测患者喉肌的EMG信号的设备。该设备包括 具有外表面的气管内导管。在气管内导管的外表面上形成有四个电极。四个电 极构造成在将气管内导管放入患者的气管时从喉肌中接收EMG信号。至少四 对导体联接至四个电极,并构造成将由电极接收的EMG信号传送至处理设备。 每对导体联接至四个电极中不同的成对电极,以提供来自四个电极的EMG信 号的至少四个通道。
尽管本文阐述的各实施例是在EMG气管内导管的情形下描述的,但应当 理解,这些技术也可应用于其它类型的装置,诸如用于监测患者肛门括约肌或 尿道括约肌的管。
尽管已经参照较佳实施例描述了本发明,但是本领域的技术人员将会认识 到在形式和细节上能够进行变化而不脱离本发明的精神和范围。