本发明与金属氧化物薄膜的阴极溅射技术有关,特别与金属和金属氧化物多层薄膜的磁溅射技术有关。 吉勒里等人(Gillery et al)的U.S.专利4,094,763披露,在一种控制氧含量的低压气氛中和温度高于400°F的条件下,利用阴极溅射法将诸如金属例如锡和铟溅射到耐熔衬底上,例如玻璃上,以制造透明导电的制品。
吉勒里的U.S.专利4,113,599讲述了一种关于氧化铟活性沉积的溅射技术,调节氧气流速维持一个恒定的放电电流,调节氩气的流速在溅射室中保持一个恒定的压力。
蔡平(chapin)的U.S.专利4,166,018叙述了一种溅射装置,在该装置中形成的磁场邻近一个平面溅射表面,该磁场由拱形磁力线组成,覆盖在溅射表面上的一个闭合回路侵蚀区上面。吉勒里的U.S.专利公开一个制造低电阻氧化铟薄膜的方法,该方法是首先在低温条件下沉积一层非常薄的铟底涂料层(primer layer)然后加热衬底以便在典型的高阴极溅射温度用阴极溅射法沉积主要厚度的氧化铟导电层。
格罗思(Groth)的U.S.专利4,327,967公开了一种具有非彩色外观的热反射面板,它由一层玻璃板,一层在玻璃表面上折射率大于2地干涉膜,一层覆盖在干涉膜上的热反射金膜和一层覆盖在金膜上的铬、铁、镍、钛或它们合金的中性膜(neutralization fiem)组成。
米耶克等人(Miyake et al)的U.S.专利4,349,425公开了在氩-氧的混合气中,由镉-锡合金的直流活性溅射生成镉-锡的氧化物膜,这种膜具有低的电阻和高的透明度。
哈特(Hart)的U.S.专利4,462,883公开在一个透明衬底上,例如玻璃上通过阴极溅射形成一个银层,一种不同于银的少量金属层和一个金属氧化物的抗反射层来生产一种低发射率的涂层。上述抗反射层可以是氧化锡,氧化钛,氧化锌,氧化铟,氧化铋或氧化锆。
从改进双釉窗件的能量效果考虑,希望在玻璃的一面提供因减少辐射热交换而增加隔热能力的涂层。涂层在光谱的红外波段辐射性必需低。实际应用中,涂层在可见光波段透射率要高。美学上,涂层的发光反射应当低,最好是无色的。
上述透明性的、低发射涂层一般在能减少可见光反射的金属氧化物介质之间夹有薄金属层、以反射红外光和降低辐射。这些多层薄膜一般用阴极溅射法产生,特别是磁溅射法。金属层可是金或铜,但银更常用。先有技术中的金属氧化物层包括锡、铟、钛、铋、锌、锆和铅的氧化物。有时,这些氧化物中还有少量的其它金属,如氧化铋中有锰,氧化锡中有铟,以克服如耐久性差或边界放射等缺点。总之,所有这些氧化物都有缺点。
虽然涂层可置于所用的双釉窗件的内表面,从而避免与会损坏涂层的因素和环境接触,但还是希望,长久有效的涂层应能耐受手摸,包装,清洗和制造和安装间要经过的其它处理。这些性能应在金属氧化物中找到。因此,除机械耐久性的硬度,化学稳定的惰性,对玻璃和金属层的复着性之外,这些金属氧化物应有下述性质。
金属氧化物需有合适的折射指数,以大于2.0为好,以减少金属层反射,从而增加涂层产品的透射率。氧化物的吸收率必需小,以增加产品透射率。为商业化,其价格应合理,应无毒,而且用磁溅射其沉积速度要快。
而最重要的,也许是最难满足的,对金属氧化物膜的要求涉及到它与金属膜层之间的反应。金属氧化物膜必需孔洞少,以防止其下的金属层的扩展作用;对金属的扩散性要低,以保各层的整体性。最后,为再沉积金属层,金属氧化物层需提良好的成核表面,这样后面的金属膜层才易于沉积上,且透射率高。连续或断续的银膜层的特性公开在USP4462884中,其内容并于此处。
在常用的金属氧化物多层膜中,含氧化锌和氧化铋者的耐久性差,这种氧化物溶于酸或碱,手印可降低其质量,在盐,二氧化硫和潮气试验中都会损坏。氧化铟(最后添加了锡)耐久性好,能保护下面的金属层;但是溅射很慢,而且较贵。可添加铟或锑的氧化锡耐久性更好且能保护下面的金属层,但不能提供银薄膜的成核表面,结果阻挡性强,透射率低。对再沉积银膜表面适当的成核性的金属氧化物的特征现在还未确立,如上所述,对金属氧化物已经进了广泛的成功和失败的实验。
U.S.P4610771公开的内容也并在此处,它提供了锌-锡合金的氧化组合物以及用作高透射性低辐射性涂层的多层银和锌-锡合金氧化物薄膜。
U.S.P812,680公开了用如氧化钛等化学稳定材料为外保护层改进多层膜耐久性,特别是改进包含抗反射金属层和/或金属合金氧化物层和如银之类的红外反射金属层的多层薄膜。
U.S.P841,056公开了通过制备底涂层,如铜层,改进金属和金属氧化物层间的结合性的途径改善了多层薄膜的耐久性,特别是抗反射金属层,如包括银层的多层薄膜。
当多层、低辐射,高透射薄膜的制作对于建筑应用的多层釉窗件有很好的耐久性时,它还未必有充足的耐高温加工性,例如退火,弯曲,或者未必有作为加热元件使用的耐温性,如风挡玻璃的除霜、防冻、除雾涂层。
本发明涉及多层涂层,它充分耐温,能在复到如玻璃之类的基底上之后经受高温处理,如退火,回火,弯曲,层压,玻璃焊,或在窗或风挡中起除霜,防冻,除雾元件的作用。本发明的多层涂层包括第一抗反射金属氧化物层,如锌或锌-锡合金氧化物;红外反射金属层,如银;含钛底层,如钛金属或氧化钛;第二抗反射金属氧化物层;和金属钛或其氧化物的外保护层。
最好用阴极溅射法,特别磁溅射法沉积包括金属氧化物和最好是含锌的合金的组合薄膜。阴极靶用含所需金属或金合制成。然后在反应性气氛溅射靶,最好在含氧气氛中以在基底上沉积金属或合金氧化物膜。
据本发明,以含锌和锡的合金的氧化物为最好。可用阴极溅射,最好用磁性加强溅射,沉积锌/锡合金氧化物膜。本发明中沉积高透射,低辐射薄膜用阴极溅射法较好。这样膜是多层膜,较好地膜包括一层高反射金属,如金或银,夹在抗反射金属氧化物层,如氧化铟或氧化钛或者最好含锡酸锌的含锌和锡的合金氧化物层之间。
根据本发明,为产生高透射,低辐射多层薄膜,可溅射多种金属合金形成合金氧化物膜,但以锌锡合金为最好。具体合金可含10~90%的锌或含10~90%的锡。较好的锌/锡合金含30~60%的锌,最好锌/锡比在4∶6~6∶4之间。锡对锌的重量比在46∶54~50∶50之间最好。锌/锡合金阴极在氧化性气氛中溅射,得到的金属氧化物沉积层含有锌,锡和氧,最好含Zn2SnO4。
在常规磁溅射中,基底放在溅涂室中,与要溅射材料的阴极靶表面正相对。本发明中,较好的基底有玻璃,陶瓷和在溅涂过程中不受伤害的塑料。最好的基底是玻璃,可有色也可无色。对本发明溅涂的透明性载体、Solex着色玻璃是理想的基底。
阴极可按常规设计,如矩形,与电压源相联,为增强溅射最好再加磁场。至少有一个含金属合金,如锌/锡合金,的阴极靶表面在反应性气氛中溅射,形成金属合金氧化物膜。阳极最好对称,如USP4478702所述,该文献的内容并在此处。
在本发明优选实例中,用阴极溅射沉积多层膜,形成低辐射,高透射涂层。除合金靶之外,至少有一个含要溅射的金属以形成反射金属层的阴极靶表面。至少有一个另外的阴极靶表面含要沉积成底层的金属。有反射金属膜和抗反射金属膜和抗反射合金氧化物膜的耐久性多层涂层可按下述方法生产,用底涂层改善金属和金属氧化物膜层间的接合性能,该底涂层还为本发明的多层涂层提供耐高温性,使得到涂复制品可经受高温加工,例如弯曲,退火,回火,层压或玻璃焊等,而不会损伤涂层。具有反射金属薄膜和抗反射锌氧化物薄膜的耐久性多层涂层的生产过程中是用钛层改进银层和氧化锌层间的接合性能,这种底层还为本发明的多层导电涂层提供了耐高温性,使得到的涂复制品可通过电阻加热,产生除霜,防冻和/或除雾的透明性。
现有技术中的底层以薄为好,而本发明中的底层以10~50埃为好、最好10~30埃。如果在反射金属膜上沉积一层底涂层,其厚度大于20埃为好。如果在此反射金属层上的底层厚度小于20埃,最好在第一抗反射金属氧化物层与反射金属之间再沉积,另一底涂层。
将干净的玻璃基底置于溅射室,再抽真空,真空度少于10-4托,最好小于2×10-5托。在溅射室中充入选用的惰性和反应性气氛,较好的是氩气和氧气,维持5×10-4~10-2托的压力。对着要涂的基底表面,使有锌或锌/锡合金靶面的阴极工作。溅射靶金属,且与室内反应气体反应,在玻璃基底上沉积锌或锌/锡合金的氧化物涂层。
沉积了初始层锌或锌/锡合金氧化物后,抽空溅射室,充入惰性气体,如纯氩气,建立5×10-4~10-2托的压力。较理想的是,再在锌/锡氧化物层上,用钛表面阴极溅射第一金属钛底层。在变换的实施方案中,可在轻微的氧化性气氛中溅射钛阴极靶,以在锌/锡氧化物层上沉积氧化钛底层。然后,在底层上用银表面阴极靶溅射一层反射性银层。较理想的,还可在银层上用钛表面阴极靶溅射第二底涂层。钛靶的溅射即可在惰性气氛中沉积金属钛,也可在轻微氧化性气氛中沉积氧化钛底层。最后,在实际上与沉积第一层锌或锌/锡合金氧化物相同的条件下,在第二底涂层上沉积第二锌或锌/锡合金氧化物层。
在本发明优选实例中,在最后的氧化物层上还沉积了保护外层。例如,可按U.S.P.4594137中公开的内容,在金属氧化层上溅射某种金属,沉积保护外层。作为外保护层,较好的金属包括铁或镍的合金,如不锈钢,Inconel合金。由于钛传导性好,钛为外保护层更好。在变换的实施方案中,外保护层是具体的化学稳定材料,如氧化钛,在U.S.P812680中已经公开,公开的内容并在此处。
在多层膜上沉积含氧化钛的保护涂层大大改善了其化学稳定性。最好是在较低压力下,如3毫托,较高的沉积速度,用阴极溅射沉积钛氧化物保护层。含氧化钛的保护层可在富氧的气氛中溅射钛,直接形成。在本发明变换的实施方案中,在惰性气氛中溅射钛,沉积含钛薄膜,然后再将其暴露到氧化环境,如空气,氧化成氧化钛,形成含氧化钛的保护层。
同样,如本发明底涂层是在惰性气氛中沉积,沉积物是金属钛,以后的高温加工会使金属氧化成氧化钛。从下述实例,会更深入理解本发明。例1中,虽然不需薄膜成份是精确的Zn2SnO4,最好锌/锡合金的氧化物膜以锡酸锌的形式存在。
例1
在钠-钙硅酸盐玻璃上沉积多层薄膜,生产透射性高,低辐射涂复产品。12.7×43.2厘米(5×7英寸)静阴极上有52.4%(重)锌和47.6%锡的合金溅射表面。将钠-钙玻璃基底置于溅射室中,室中先抽真空,再建立氧对氩为50∶50,压力为4毫托的氧氩气氛。在磁场中用1.7千瓦的功率溅射阴极,玻璃以2.8米/分的速度通过溅射面。锡酸锌薄膜沉积在玻璃表面。通过三次后膜厚度为340埃,结果透射率为90%的玻璃变成透射率为78%的锡酸锌涂层玻璃。然后在锡酸锌上溅射钛靶静阴极形成钛底涂层,透射率减到63%。接着在4毫托的氩气环境中溅射银阴极靶,在钛底涂层上沉积一层银。基底以同样速度通过银阴极靶,每平方厘米沉积10微克银需通过银靶二次,与约90埃的厚度相应,透射率降到44%。再在银层上溅射第二钛底层,透射率减到35%以下,然后沉积第二锡酸锌抗反射层,透射率提高到63%。
最后,用10千瓦功率,在3毫托的等体积比的氧和氩气环境中溅射12.7×43.2厘米的静止钛阴极。基底以2.8米/分的速度通过二次就足以沉积约15~20埃厚的氧化钛保护涂层。该保护层不会明显地影响多层涂层的反射性和阻挡性,其透射性的变化不会超1%。
由于钛金属底层的总厚度比先有技术中的大,沉积了上述6层后,涂层基底的透射率一般为63%左右。但经过高温加工,如弯曲,退火,回火,层压或玻璃焊,透射率增加到80~85%,而且没有在先有技术中遇到的颜色改变。另外,涂层的电阻和辐射性降低。例如,于627℃15分钟后,电阻从每平方5.3欧降到3.7欧,辐射性从0.09降到0.06。
用湿布擦涂层表面的简单磨擦试验很容易证明,由于有了本发明的底涂层改善了金属层和金属氧化物层间的结合改善了涂层制的耐久性。对于没有底涂层的、只用锡锌/银/锡酸锌涂复的表面,只经几次湿布擦磨之后,其反射率从6%增加到约18%,这表明上面的锡酸锌层和其下的银层都有损失。相反,更多次更强的湿布擦磨,对于有本发明的底涂层的锡酸锌/钛/银/钛/锡酸锌涂复制品不产生明显改变。
可取的氧化钛保护层的厚度为10~50埃。有厚度为20埃的钛的氧化物保护层,据此实例的多层涂层在室温2.5%的盐溶液中的耐久性从2小时提高到22小时;在Cleyeland潮湿试验中耐久性从5小时提高到一星期(在约60℃,用含去离子水的Q-Panel Cleveland Condensation Tester Model QCT-ADO进行实验)。
例2
在玻璃基底上沉积非彩色多层薄膜生产导电的,耐热的涂层制品。12.7×43.2厘米静阴极上有锌溅射表面。将Solex着色玻璃置于溅射室,室内建立4毫托的50∶50的氧和氩气环境。用1.7千瓦的功率于磁场中溅射阴板,玻璃以2.8米/分速度在溅射面下通过,玻璃上沉积氧化锌薄膜。玻璃通过靶面三次后,由于上面沉积了一定厚度的氧化锌层,其透射率由84%降到73.2%。然后,在4毫托的氩气中溅射银阴极靶,在氧化锌层上沉积一层银。基底以同样速度移动,需通过银靶二次后才沉积10微克/cm,相当于银膜约90埃厚,透射率降到67%。在银层上溅射一层含钛底涂层,透射率降到61.6%。再在含钛底层上沉积第二氧化锌抗反射层,透射率提高到81.9%。银电阻为7.7欧/平方,多层涂层是非彩色的。
最好将涂复的Solex玻璃与另一透明薄板层压,在透明的两板间的涂层形成透明且可导电加热以除霜、防冻和/或防雾的涂层。因此例中的涂层与外界不接触,所以无需用保护层。在其它情况下,如需要保护外层,以用氧化钛为好,如USP.812680所述,该文献合并在此处。
提供上述例子只在于说明了本发明。产品和工艺上的各种变化都属于本发明。例如,在本发明范围内的其它复合涂层。当溅射锌/锡合金时,依赖于锌锡的比,涂层可在很宽范围内,除锡酸锌外含有各种数量比的氧化锌和氧化锡。底涂层可含在多种氧化状态下的钛。根据本发明,其它金属、如锆、铬、锌/锡合金,及其混合物都可作为底涂层使用。各种涂层的厚度主要由所需要的光学性质(如透射性)限定。同样的非彩色导电可加热多层薄也可沉积在无色玻璃上,它也可再层压,如与Solex等着色玻璃层压。压力和气体浓度等所有工艺参数都可在很宽范围内改变。可以金属或氧化态金属的形式沉积其它化学稳定材料作为保护涂层。本发明的范围由下述权利要求限定。