本发明涉及一般加工烃气流,从中回收所需要的可冷凝部分,特别涉及改进行气体深冷分离方法,从烃气流回收丙烷和重烃,所述烃气流如天然气或是类似的炼油厂气或反应气体物流。 由于市场对丙烷和重烃液的需求和价格,使得从天然气或者类似的炼油厂气或反应气体流中回收这些化合物总是最经济的。然而,对乙烷并非如此,对乙烷的需求和价格波动惊人,使得在相当长的一段期间内将乙烷留于可燃气体中仅回收丙烷和重烃是经济的,亦由于有些市场的位置,回收乙烷绝非经济之举。因此,需要有从烃气流中回收丙烷和重烃,而把乙烷和轻组分排回到残余物或燃料气体中的方法。
美国专利4,140,504、4,157,904及4,278,457号公开了几种现有技术地烃深冷分离方法。例如,在美国专利4,157,904号中,公开了一种深冷分离烃气流回收乙烷和重烃的方法,如其中所介绍的,待分离气体在约900磅/英寸2高压下预冷,发生部分冷凝,然后将冷凝液和蒸气分离。第一部分蒸气膨胀至低压,进入脱甲烷塔,第二部分蒸气先通过与来自脱甲烷塔的残余气热交换进行冷却,然后通过膨胀阍根据确切的温度条件,在第一部分已膨胀蒸气注入点的上方或下方进入脱甲烷塔。分离器的冷诙物进一步冷却后分成两股物流,其一物流膨胀至低压,转送到脱甲烷塔的较低区,而另一物流直接与来自前述分离器的第二部分蒸气混合,再冷却和膨胀。据介绍,乙烷回收率为90%或更高,丙烷回收率为98%。
在上述专利中所述的大多数现有技术方法中,特别是从以上介绍的方法中主要设计用于高乙烷回收而不是将乙烷排去,可见这些现有技术方法不经改进是不适于从混合烃气物流中有效地回收丙烷和重烃同时排去较轻的烃液,特别是乙烷的。
本发明的目的是提供一种深冷分离方法,从混合烃气物流中回收丙烷和重烃,同时废弃轻烃,其中包括乙烷。
在本发明方法中,进料气通过残余气被冷却至部分冷凝,从蒸气中分离已冷却进料气中的冷凝液,并且通过一个阀欧膨胀至较低压,转送到塔的较低部位。蒸气分成两部分,其第一部分通过膨胀作功机膨胀至低压后进入塔中作为中间进料,第二部分蒸气进一步被残余气体冷却,使得部分蒸气冷凝,从已冷却的第二部分蒸气中将蒸气和液体分离,液体通过阀膨胀至低压供给塔的中间部分,余下的蒸气通过第二膨胀作功机膨胀至低压,转送到塔顶,作为回流。在第二膨胀机之前,蒸气和液体的部分冷凝和分离产生含极少量丙烷的蒸气,用作塔顶回流进料十分有利。来自膨胀作功机的动力用来将残余气或进料气压缩至高压。
根据附图由下述本发明方法的最佳实施例将更好地理解本发明,其中:
图1是用两个膨胀作功机实施本发明方法的流程示意图;
图2表示采用本发明方法,回收效率与再压缩机每百万标英尺3/日消耗的制动马力(BHP/MMSCFD)的关系曲线。
参看图1,混合烃气的气流在485磅/英寸2和60°F下进入流程。进料气体物流1按需要预处理,除去水和其它需要除去如二氧化碳或硫化合物,进料气体物流1通过压缩机41和43压缩,提供具有643磅/英寸2压力和105°F的高压进料气流3,压缩机41和43分别与膨胀作功机40和42的轴连接,按此方法,膨胀作功机40和42提供的动力用来驱动压缩机41和43。
进料气流3通过热交换器25内的残余气体物流18冷却至25°F,压力为638磅/英寸2,使气体物流3中烃组分部分冷凝,这种冷却结果产生的冷凝液在分离器30中与残留的蒸气分离,通过阀80进入塔90的下部,从分离器30来的蒸气物流5被分成第一蒸气物流7和第二蒸气物流8。蒸气流7通过膨胀作功机40形成温度为-55°F和压力为249磅/英寸2较冷的部分冷凝物流,然后,将这部分冷凝物流送进塔90较低的中部,而蒸气物流8在热交换器26中与冷残余气14进行热交换,进一步,冷却和部分冷凝,形成-104°F和631磅/英寸2的液体物流11,通过分离器31分离成蒸气物流12和冷凝液13。冷凝液13流过阀81闪蒸为压力249磅/英寸2和温度-154°F,进入塔90上中部。蒸气流12通过膨胀作功机42膨胀至249磅/英寸2和-162°F,进入塔90的顶部。
与再沸器91相连的分馏塔90包括脱乙烷塔。聚集在分馏塔90底部的烃液通过再沸器91后离开塔90,成为液态烃产品15。加热升高流过再沸器91的底部液体的温度,通过蒸发除去任何残留的较低沸点轻烃,其中包括乙烷,而不蒸发的较高沸点丙烷和重烃形成产品物流15从分馏塔90的底部排出,其温度为147℃,压力为252磅/英寸2。
从分馏塔90来的残余物流14包括残余气,一般几乎全是由分离产生的甲烷,由塔90的顶部排出,温度为-130°F,压力为249磅/英寸2。残余气流14通过热交换器26冷却离开分离器30的蒸气流8,再通过热交换器25冷却供给分离器30的已增压时料气流3。在冷却蒸气物流8和进料气流3的过程中,残余气体物流14被加热至温度100°F,压力为239磅/英寸2。
离开下游热交换器25的已加热残余气体物流19通过再压缩机50提供了加压的残余气流20,其压力为490磅/英寸2,温度为231°F。再压缩机50用来提高残余气体物流的压力,回到进入的进料气流1的压力水平,该残余气体物流构成流程气体进料物流1不含回收的重烃液体产品物流15。
为计算本发明方法的丙烷回能力,进行了深冷分离法的计算机模拟,在此计算模拟,在此计算机模拟中,所用的热力学数据是Soave-Redlich-Kwong(SRK)K值、烩和熵。每个膨胀作功机40和42的效率假定为80%,再压缩机50的效率假定为75%,以及膨胀作功机的损耗假定为总功率的4%。另外,在所有热交换器中使用近似5°F的最低温度以计算传热效能。
此外,在计算机模拟中所用的分馏塔90有20个理论塔板,从膨胀作功机40和42提供的动力用于驱动进料气压缩机41和43,而不是用于驱动再压缩机50。使残余气体物流达到其所需的出口压力490磅/英寸2。在计算机模拟中,从分离器30来的蒸气物流5被分离为蒸气物流7和蒸气流物8以获得最佳的丙烷回收率,现已测定,当蒸气物流7含有约40%至60%的蒸气物流5时,则从分离器30来的蒸气物流5的分离为最佳,另外,液体产品流15的乙烷含量控制在2摩尔%。
用于计算机模拟中的进料气体物流1组成如下:
氦 0.10
氮 1.26
二氧化碳 0.32
甲烷 90.56
乙烷 4.37
丙烷 2.23
异丁烷 0.30
正丁烷 0.57
异戊烷 0.12
正戊烷 0.11
己烷 0.04
庚烷 0.02
图2提供由这种计算机模拟制作的效能推算,即表示为进料气体物流1中丙烷百分比的丙烷回收率与再压缩机制动马力/每百万标英尺3/日(BHP/MMSCFD)的关系曲线。所消耗的再压缩机制动马力/每百万标英尺3气流/日是量度将残余气体物流20的压力回到进料气体物流1的压力所需的功率。因此,丙烷回收率与再压缩机制动马力的曲线提供了衡量该流程的经济效益潜力的量度。如图2所示,本发明方法从再压缩机功率消耗少至每天每百万标英尺3为42制动马力中得到至少98%的丙烷高回收率。图1例示的本发明方法对上文所要求条件的丙烷回收率为进料气流1的丙烷含量98.4%。
如图所示,压缩进料气体物流3通过与来自分馏塔90的残余气流14进行热交换。冷却后才可进入分离器30。这种冷却在实施本发明方法中使进料气中重烃的部分冷凝是必要的,结果,进料气特别富有丙烷和重烃,最理想的是除了通过残余气冷却外还使用辅助冷冻,使压缩进料气流3达最佳低温,这可通过将加压的进料气流3分离成两部分来完成,是中一部分通过与残余气流14热交换冷却,另一部分通过辅助冷冻冷却。
本发明方法还可作些改变,以回收一部分进料气中的乙烷,即通过改变再沸器91的操作条件,使通过再沸器91的底部液体加热至温度小于现有液体压力下乙烷的沸点。采用这种方法,较易挥发的轻烃如甲烷,通过蒸发从再沸器91中的液体中除去,得到富含丙烷和重烃并且还含一部分进料气中的乙烷的产品物流。
熟悉本技术领域的专业人员会认识到在实施本发明方法中,流向分离器30和31的进料气流的具体压力和温度,以及在本流程中各个步骤的压力和温度,取决于待加工气体的条件和性质,以及从进料物流中要回收的液烃。因此,可以理解本发明说明书中列举的确切压力和温度说明在实施本发明方法中预期是目前最好的条件,但并不限制了如在权利要求书中提出的本发明方法。因此,本发明包括了由本领域专业人员对其作出显而易见的种种改进,这类改进均在本发明权利要求的精神和范围以内。