书签 分享 收藏 举报 版权申诉 / 31

膜状电路连接材料及电路部件的连接结构.pdf

  • 上传人:54
  • 文档编号:829743
  • 上传时间:2018-03-14
  • 格式:PDF
  • 页数:31
  • 大小:1.79MB
  • 摘要
    申请专利号:

    CN200880014148.3

    申请日:

    2008.05.07

    公开号:

    CN101675715A

    公开日:

    2010.03.17

    当前法律状态:

    授权

    有效性:

    有权

    法律详情:

    授权|||实质审查的生效IPC(主分类):H05K 1/14申请日:20080507|||公开

    IPC分类号:

    H05K1/14; C09J4/00; C09J7/00; C09J9/02; C09J11/06; C09J175/04; H01B5/16; H01L21/60; H01R11/01

    主分类号:

    H05K1/14

    申请人:

    日立化成工业株式会社

    发明人:

    望月日臣; 有福征宏; 小岛和良; 小林宏治

    地址:

    日本东京都

    优先权:

    2007.5.9 JP 124436/2007

    专利代理机构:

    北京银龙知识产权代理有限公司

    代理人:

    钟 晶

    PDF完整版下载: PDF下载
    内容摘要

    一种膜状电路连接材料,其为用于将在第一电路基板的主面上形成有第一电路电极的第一电路部件和在第二电路基板的主面上形成有第二电路电极的第二电路部件在第一和第二电路电极相对的状态下进行电连接的膜状电路连接材料,含有膜形成材料、自由基聚合性化合物、经加热产生游离自由基的自由基聚合引发剂、含异氰酸酯基的化合物,相对于膜形成材料和自由基聚合性化合物的合计100质量份,含异氰酸酯基的化合物的含有比例为0.09~5质量份。

    权利要求书

    1.  一种膜状电路连接材料,其为,用于将在第一电路基板的主面上形成有第一电路电极的第一电路部件和在第二电路基板的主面上形成有第二电路电极的第二电路部件在所述第一和所述第二电路电极相对的状态下电连接的膜状电路连接材料,
    含有膜形成材料、自由基聚合性化合物、经加热产生游离自由基的自由基聚合引发剂和含异氰酸酯基的化合物,
    相对于所述膜形成材料和所述自由基聚合性化合物的合计100质量份,所述含异氰酸酯基的化合物的含有比例为0.09~5质量份。

    2.
      根据权利要求1所述的膜状电路连接材料,其中,进一步含有含氟有机化合物。

    3.
      根据权利要求1或2所述的膜状电路连接材料,其中,所述膜形成材料包含重均分子量为10000以上的具有氨基甲酸酯键的有机化合物。

    4.
      根据权利要求1~3中任何一项所述的膜状电路连接材料,其中,进一步含有导电性粒子。

    5.
      一种电路部件的连接结构,其具有第一电路部件、第二电路部件和电路连接部,所述第一电路部件为在第一电路基板的主面上形成有第一电路电极的电路部件,所述第二电路部件为在第二电路基板的主面上形成有第二电路电极并且按照使所述第二电路电极与所述第一电路电极相对配置的方式来配置的电路部件,所述电路连接部设置在所述第一电路基板和所述第二电路基板之间、按照使所述第一和所述第二电路电极被电连接的方式来连接所述第一电路部件和所述第二电路部件,
    所述电路连接部是权利要求1~4中任何一项所述的膜状电路连接材料的固化物。

    6.
      根据权利要求5所述的电路部件的连接结构,其中,所述第一和所述第二电路电极中的至少一方的表面由包含选自金、银、锡、铂族的金属和铟-锡氧化物组成的组中的至少一种物质的材料形成。

    7.
      根据权利要求5或6所述的电路部件的连接结构,其中,所述第一和所述第二电路基板中的至少一方是由包含选自聚对苯二甲酸乙二醇酯、聚醚砜、环氧树脂、丙烯酸树脂、聚酰亚胺树脂和玻璃组成的组中的至少一种物质的材料形成的基板。

    8.
      根据权利要求5~7中任何一项所述的电路部件的连接结构,其中,在所述第一和所述第二电路部件中的至少一方与所述电路连接部之间,形成有包含选自氮化硅、有机硅树脂、聚酰亚胺树脂和丙烯酸树脂组成的组中的至少一种材料的层。

    说明书

    膜状电路连接材料及电路部件的连接结构
    技术领域
    本发明涉及一种膜状电路连接材料及电路部件的连接结构。
    背景技术
    近些年,在半导体、液晶显示器等领域中,为了固定电子部件或进行电路连接,使用了各种粘接材料。这些用途之中,随着高密度化、高精细化日益发展,对粘接剂也要求了高粘接力、可靠性。
    特别是在液晶显示器和TCP的连接、FPC和TCP的连接、或者FPC和印刷配线板的连接中,将在粘接剂中分散有导电性粒子而形成的各向异性导电性粘接剂用作电路连接材料。此外,最近将半导体硅芯片安装在基板上时,取代了以往的丝焊,进行通过倒装将半导体硅芯片直接安装在基本上的所谓的倒装法安装,在此也开始了各向异性导电性粘接剂的应用。
    而且,近些年在精密电子机器领域中,随着电路高密度化的发展,电极宽及电极间隔变得极窄。为此,以往使用环氧树脂类的电路连接材料的连接条件变得容易发生配线的脱落、剥离、位置偏离。
    此外,为了提高生产效率,期望缩短连接时间,所以寻求一种可在10秒以内连接的电路连接材料。因此,正在开发低温迅速固化性能优异且可使用时间长的电气电子用的电路连接材料(例如参照专利文献1)。
    专利文献1:日本特开平11-97825号公报
    发明内容
    发明要解决的问题
    但是,上述电路连接材料的粘接强度因所连接的电路部件的材质而不同。特别是电路部件表面用氮化硅、有机硅树脂或聚酰亚胺树脂涂布,或将这些树脂附着在电路部件表面上时,粘接强度倾向于下降。因此,期望一种不论对于何种电路部件的材质,粘接性优异且可使用时间非常长的电路连接材料。
    本发明鉴于上述情况而作出,目的在于提供一种不论对何种电路部件的材质均显示出非常高的粘接性且可使用时间非常长的膜状电路连接材料以及使用该电路连接材料的电路部件的连接结构。
    解决问题的方法
    本发明提供一种膜状电路连接材料,其为,用于将在第一电路基板的主面上形成有第一电路电极的第一电路部件和在第二电路基板的主面上形成有第二电路电极的第二电路部件在第一和第二电路电极相对的状态下进行电连接的膜状电路连接材料,该膜状电路连接材料含有膜形成材料、自由基聚合性化合物、经加热产生游离自由基的自由基聚合引发剂、含异氰酸酯基的化合物,相对于膜形成材料和自由基聚合性化合物的合计100质量份,含异氰酸酯基的化合物的含有比例为0.09~5质量份。
    通过具有上述构成,本发明的膜状电路连接材料不论对何种电路部件的材质均显示出非常高的粘接性且可使用时间非常长。可实现这种效果的理由还不明确,但本发明人等推测如下。
    通常,为了延长电路连接材料的可使用时间,需要控制电路连接材料的反应性。但是,如果控制了电路连接材料的反应性,根据被粘接体的种类而会有很难显示出足够的粘接性的倾向。另一方面,认为上述含异氰酸酯基的化合物虽然在电路连接时的温度条件下的反应性优异,但在比其低的温度下是稳定的。因此认为,本发明的膜状电路连接材料通过与其它成分一起同时含有规定量的含异氰酸酯基的化合物,可以兼顾良好的粘接性和非常长的可使用时间。
    上述膜状电路连接材料优选含有含氟有机化合物。这种膜状电路连接材料不仅粘接性更进一步提高,也起到转印性优异的效果。
    此外,本发明的膜状电路连接材料的膜形成材料优选包含重均分子量为10000以上的具有氨基甲酸酯键的有机化合物。由此,可进一步有效地发挥膜状电路连接材料的柔性提高、与各种电路部件的粘接性优异的本发明效果。
    本发明的电路连接材料优选进一步含有导电性粒子。由此,电路连接材料其自身可易于具有导电性。为此,该电路连接材料在电路电极、半导体等电气工业或电子工业领域中可用作导电性粘接剂。而且此时,由于电路连接材料具有导电性,因此能够进一步降低固化后的连接电阻。
    本发明提供一种电路部件的连接结构,其具有第一电路部件、第二电路部件和电路连接部,所述第一电路部件为在第一电路基板的主面上形成有第一电路电极的电路部件,所述第二电路部件为在第二电路基板的主面上形成有第二电路电极且按照使第二电路电极与第一电路电极相对配置的方式来配置的电路部件,所述电路连接部设置在第一电路基板和第二电路基板之间、连接第一电路部件和第二连接部件以电连接第一和第二电路电极,电路连接部由上述膜状电路连接材料的固化物形成。
    这种电路部件的连接结构因为其电路连接部由粘接性非常优异、可使用时间非常长的本发明的膜状电路连接材料的固化物形成,所以在维持同一电路部件上相邻的电路电极间的绝缘性的同时,可减少相对的第一和第二电路电极之间的电阻值。
    在本发明的电路部件的连接结构中,第一和第二电路电极中的至少一方的表面优选由包含选自金、银、锡、铂族金属和铟-锡氧化物组成的组中的至少一种物质的材料形成。在这种电路部件的连接结构中,在维持同一电路部件上相邻的电路电极间的绝缘性的同时,可更进一步减少相对的电路电极间的电阻值。
    此外,在本发明的电路部件的连接结构中,第一和第二电路基板中的至少一方优选由包含选自聚对苯二甲酸乙二醇酯、聚醚砜、环氧树脂、丙烯酸树脂、聚酰亚胺树脂和玻璃组成的组中的至少一种物质的材料形成的基板。上述本发明的电路连接材料固化形成电路连接部时,在用这些特定材料构成的基板之间可实现更高的粘接性。
    而且,在上述电路部件的连接结构中,在第一和第二电路部件中的至少一方与上述电路连接部之间优选形成有包含选自氮化硅、有机硅树脂、聚酰亚胺树脂和丙烯酸树脂组成的组中的至少一种材料的层。由此,与未形成上述层相比,电路部件与电路连接部之间的粘接性更进一步提高。
    发明的效果
    根据本发明,可提供一种不论对何种电路部件的材质均显示出非常高的粘接性且可使用时间非常长的膜状电路连接材料以及使用这些电路连接材料的电路部件的连接结构。
    附图说明
    图1为表示本发明中的电路部件连接结构的一个实施方式的简要截面图。
    图2为通过简要截面图表示图1所示的电路部件连接结构的制造方法的一个例子的工序图。
    符号说明
    1电路部件的电路连接结构  5粘接剂成分           7导电性粒子
    10电路连接部             11粘接剂成分的固化物  20第一电路部件
    21第一电路基板           21a第一电路基板主面   22第一电路电极
    30第二电路部件           31第二电路基板        31a第二电路基板主面
    32第二电路电极           40膜状电路连接材料
    具体实施方式
    以下,根据需要参照附图,对本发明的优选实施方式进行详细说明。另外,在附图中,相同部件附有相同符号,并省略其重复说明。此外,上下左右等位置关系只要没有特别说明,则基于附图所示的位置关系。进而,附图的尺寸比例并不限于图示比例。此外,本说明书中的“(甲基)丙烯酸”是指“丙烯酸”和与其对应的“甲基丙烯酸”,“(甲基)丙烯酸酯”是指“丙烯酸酯”和与其对应的“甲基丙烯酸酯”,“(甲基)丙烯酰”是指“丙烯酰”和与其对应的“甲基丙烯酰”。
    (膜状电路连接材料)
    本发明的膜状电路连接材料(电路连接用粘接膜),将在第一电路基板的主面上形成有第一电路电极的第一电路部件和在第二电路基板的主面上形成有第二电路电极的第二电路部件在第一和第二电路电极相对的状态下电连接。本发明的膜状电路连接材料含有膜形成材料、自由基聚合性化合物、经加热产生游离自由基的自由基聚合引发剂和含异氰酸酯基的化合物来作为粘接剂成分,相对于膜形成材料和自由基聚合性化合物的合计100质量份,含异氰酸酯基的化合物的含量为0.09~5质量份。
    膜形成材料,是在将液态物固化,将构成组合物形成为膜状时,该膜容易处理,能够付与不易裂开、破裂和粘连的机械特性的材料,是在通常状态下可以作为膜来处理的材料。作为膜形成材料,例如可以列举聚乙烯醇缩甲醛、聚苯乙烯树脂、聚乙烯醇缩丁醛树脂、聚酯树脂、聚酯型聚氨酯树脂、聚酰胺树脂、聚氨酯树脂、聚酰胺酰亚胺树脂、聚酰亚胺树脂、二甲苯树脂、苯氧基树脂等。此外,膜形成材料可通过自由基聚合性的官能团进行改性。
    从粘接性更优异的观点考虑,本发明的膜状电路连接材料膜形成材料的膜形成材料优选含有具有氨基甲酸酯键的有机化合物(以下,有时称为“氨基甲酸酯化合物”)。另外,氨基甲酸酯化合物优选其主链中具有氨基甲酸酯键,更优选具有氨基甲酸酯键的同时,具有酯键。
    该氨基甲酸酯化合物例如可以通过聚酯型多元醇和二异氰酸酯反应得到。通常,由该反应得到的氨基甲酸酯化合物有时称为聚酯型聚氨酯树脂。
    作为二异氰酸酯,适宜使用2,4-甲苯二异氰酸酯(TDI)、4,4′-二苯基甲烷二异氰酸酯(MDI)、1,6-六亚甲基二异氰酸酯(HDI)、异佛尔酮二异氰酸酯(IPDI)等芳香族、脂环族或脂肪族的二异氰酸酯。
    聚酯型多元醇例如可以通过二羧酸和二醇反应得到。二羧酸优选对苯二甲酸、间苯二甲酸、己二酸、癸二酸等芳香族或脂肪族二羧酸。二醇优选乙二醇、丙二醇、1,4-丁二醇、己二醇、新戊二醇、二乙二醇、三乙二醇等二醇类。
    氨基甲酸酯化合物的重均分子量优选为10000以上。如果氨基甲酸酯化合物的重均分子量不到10000,则膜形成性能趋于降低。另外,氨基甲酸酯化合物的重均分子量的上限值没有特别限定,但如果重均分子量太高,则向溶剂的溶解性和相溶性降低,有很难调制用于成形为膜状的涂布液的趋势,所以优选200000左右。
    本说明书中的重均分子量按照表1所示的条件通过凝胶渗透色谱(GPC)分析进行测定,通过用标准聚苯乙烯校准曲线进行换算求得。另外,GPC条件1为测定聚酰亚胺树脂的重均分子量时的条件,GPC条件2为测定聚酰亚胺树脂以外的有机化合物的重均分子量时的条件。
    表1

      GPC条件1  GPC条件2  所用仪器  高效液相色谱C-R4A  (岛津制作所制,商品名)  日立L-6000型  (日立制作所制,商品名)  检测器  L-4200  (日立制作所制)  L-3300RI  (日立制作所制,商品名)

    接下页
    表1,接上页
      色谱柱  G6000HXL  G4000HXL  G2000HXL  (东曹社制,商品名)  Gelpack GL-R420  Gelpack GL-R430  Gelpack GL-R440  (日立化成工业社制,商品名)  洗脱液  溴化锂(LiBr)/  N,N-二甲基甲酰胺(DMF)(0.03mol/L)  磷酸(0.06mol/L)  四氢呋喃  测定温度  30℃  40℃  流量  1.0ml/min  1.75ml/min

    自由基聚合性化合物是具有能够自由基聚合的官能团的化合物。自由基聚合性化合物例如适宜使用(甲基)丙烯酸化合物、马来酰亚胺化合物或苯乙烯衍生物。这些自由基聚合性化合物可为聚合性单体和聚合性低聚物中的任何一种,也可并用聚合性单体和聚合性低聚物。因为聚合性低聚物通常为高粘度,所以在使用聚合性低聚物时,优选并用低粘度的聚合性多官能团(甲基)丙烯酸酯等聚合性单体来调节粘度。
    作为(甲基)丙烯酸化合物,例如可以举出环氧型(甲基)丙烯酸酯低聚物、氨基甲酸酯型(甲基)丙烯酸酯低聚物、聚醚型(甲基)丙烯酸酯低聚物和聚酯型(甲基)丙烯酸酯低聚物等光聚合性低聚物;三羟甲基丙烷三(甲基)丙烯酸酯、聚乙二醇二(甲基)丙烯酸酯、聚亚烷基二醇二(甲基)丙烯酸酯、(甲基)丙烯酸二环戊烯酯、(甲基)丙烯酸二环戊烯氧基乙酯、新戊二醇二(甲基)丙烯酸酯、二季戊四醇六(甲基)丙烯酸酯、异氰脲酸改性2官能团(甲基)丙烯酸酯、异氰脲酸改性3官能团(甲基)丙烯酸酯、2,2′-二(甲基)丙烯酰氧基二乙基磷酸酯和2-(甲基)丙烯酰氧基乙基酸式磷酸酯等多官能团(甲基)丙烯酸酯化合物;季戊四醇(甲基)丙烯酸酯、(甲基)丙烯酸-2-氰基乙酯、(甲基)丙烯酸环己酯、(甲基)丙烯酸-2-(2-乙氧基乙氧基)乙酯、(甲基)丙烯酸-2-乙氧基乙酯、(甲基)丙烯酸-2-乙基己酯、(甲基)丙烯酸正己酯、(甲基)丙烯酸-2-羟乙酯、(甲基)丙烯酸羟丙酯、(甲基)丙烯酸异冰片酯、(甲基)丙烯酸异癸酯、(甲基)丙烯酸异辛酯、(甲基)丙烯酸正十二烷酯、(甲基)丙烯酸-2-甲氧基乙酯、(甲基)丙烯酸-2-苯氧基乙酯、四氢糠醇(甲基)丙烯酸酯、新戊二醇二(甲基)丙烯酸酯、(甲基)丙烯酸叔丁基氨基乙酯、(甲基)丙烯酸环己酯、(甲基)丙烯酸二环戊烯氧基乙酯、(甲基)丙烯酸-2-羟乙酯、(甲基)丙烯酸异冰片酯、(甲基)丙烯酸异癸酯、(甲基)丙烯酸正十二烷酯、硬脂酰(甲基)丙烯酸酯、(甲基)丙烯酸十三酯和(甲基)丙烯酸缩水甘油酯。
    (甲基)丙烯酸化合物可单独一种或组合两种以上使用。为了抑制电路连接材料的固化收缩,提供柔性,优选调配氨基甲酸酯型(甲基)丙烯酸酯低聚物。
    马来酰亚胺化合物优选分子中含有两个以上马来酰亚胺基的化合物。作为其具体例,可以举出1-甲基-2,4-双马来酰亚胺苯、N,N′-间亚苯基双马来酰亚胺、N,N′-对亚苯基双马来酰亚胺、N,N′-间甲苯基双马来酰亚胺、N,N′-4,4-亚联苯基双马来酰亚胺、N,N′-4,4-(3,3′-二甲基-亚联苯基)双马来酰亚胺、N,N′-4,4-(3,3′-二甲基二苯基甲烷)双马来酰亚胺、N,N′-4,4-(3,3′-二乙基二苯基甲烷)双马来酰亚胺、N,N′-4,4-二苯基甲烷双马来酰亚胺、N,N′-4,4-二苯基丙烷双马来酰亚胺、N,N′-4,4-二苯醚双马来酰亚胺、N,N′-3,3′-二苯砜双马来酰亚胺、2,2-双[4-(4-马来酰亚胺苯氧基)苯基]丙烷、2,2-双[3-仲丁基-4-(4-马来酰亚胺苯氧基)苯基]丙烷、1,1-双[4-(4-马来酰亚胺苯氧基)苯基]癸烷、4,4′-环亚己基-双[1-(4-马来酰亚胺苯氧基)-2-环己基苯]和2,2-双[4-(4-马来酰亚胺苯氧基)苯基]六氟丙烷。
    马来酰亚胺化合物可单独一种或组合两种以上使用。
    为了提高粘接性,本发明的膜状电路连接材料的自由基聚合性化合物优选含有磷酸酯型(甲基)丙烯酸酯。通过含有磷酸酯型(甲基)丙烯酸酯,膜状电路连接材料的粘接性、特别是与金属等无机材料的粘接性提高。磷酸酯型(甲基)丙烯酸酯没有特别限制,可使用公知的磷酸酯型(甲基)丙烯酸酯。作为其具体例,可以举出下述通式(2)表示的化合物。
    [化学式1]

    其中,n表示1~3的整数。
    通常,磷酸酯型(甲基)丙烯酸酯可以作为磷酸酐和(甲基)丙烯酸2-羟乙酯的反应物而得到。作为磷酸酯型(甲基)丙烯酸酯,具体可以举出单(2-甲基丙烯酰氧基乙基)酸式磷酸酯、二(2-甲基丙烯酰氧基乙基)酸式磷酸酯。这些酯可单独一种或组合两种以上使用。
    从粘接性更优异的观点考虑,本发明的膜状电路连接材料可包括(甲基)丙烯酸烯丙酯。相对于膜形成材料和自由基聚合性化合物的合计100质量份,(甲基)丙烯酸烯丙酯的配合比例优选为0.1~10质量份,更优选为0.5~5质量份。
    此外,作为经加热产生游离自由基的自由基聚合引发剂,可使用现有已知的过氧化合物(有机过氧化物)和偶氮化合物。
    有机过氧化物和偶氮化合物经加热主要产生游离自由基。将这些化合物用作自由基聚合引发剂时,根据作为目的的连接温度、连接时间、可使用时间(以下,有时称为“贮存期”)等,可从有机过氧化物和/或偶氮化合物中适当地选择一种或两种以上。
    从兼顾反应性高和贮存期长的观点考虑,有机过氧化物优选10小时半衰期温度为40℃以上且1分钟半衰期温度为180℃以下的有机过氧化物,更优选10小时半衰期温度为60℃以上且1分钟半衰期温度为170℃以下的有机过氧化物。此外,为了防止腐蚀电路部件的电路电极(接线端子),有机过氧化物优选氯离子、有机酸的含量为5000质量ppm以下。进而,更优选加热分解后产生的有机酸较少的有机过氧化物。
    作为有机过氧化物,具体优选从二酰基过氧化物、过氧化二碳酸酯、过氧化酯、过氧化缩酮、二烷基过氧化物、氢过氧化物和过氧化硅烷组成的组中选择的一种以上的有机过氧化物。这些有机过氧化物之中,从兼顾保存时的保存稳定性高和使用时的反应性高的观点考虑,更优选从过氧化酯、过氧化缩酮、二烷基过氧化物、氢过氧化物和过氧化硅烷组成的组中选择的一种以上的有机过氧化物。进而,为了得到更高的反应性,进一步优选过氧化酯和过氧化缩酮。
    作为二酰基过氧化物,例如可以举出过氧化异丁酰、过氧化-2,4-二氯苯甲酰、过氧化-3,5,5-三甲基己酰、过氧化辛酰、过氧化月桂酰、过氧化硬脂酰、过氧化琥珀酰、过氧化苯甲酰甲苯和过氧化苯甲酰。这些二酰基过氧化物可单独一种或组合两种以上使用。
    作为二烷基过氧化物,例如可以举出α,α′-双(过氧化叔丁基)二异丙基苯、二枯基过氧化物、2,5-二甲基-2,5-二(过氧化叔丁基)己烷和叔丁基枯基过氧化物。这些二烷基过氧化物可单独一种或组合两种以上使用。
    作为过氧化二碳酸酯,例如可以举出二正丙基过氧化二碳酸酯、二异丙基过氧化二碳酸酯、双(4-叔丁基环己基)过氧化二碳酸酯、二-2-乙氧基甲氧基过氧化二碳酸酯、双(过氧化-2-乙基己基)二碳酸酯、二甲氧基丁基过氧化二碳酸酯和双(过氧化-3-甲基-3-乙氧基丁基)二碳酸酯。这些过氧化二碳酸酯可单独一种或组合两种以上使用。
    作为过氧化酯,例如可以举出过氧化新癸酸枯基酯、过氧化新癸酸-1,1,3,3-四甲基丁酯、过氧化新癸酸-1-环己基-1-甲基乙酯、过氧化新癸酸叔己酯、过氧化新戊酸叔丁酯、过氧化-2-乙基己酸-1,1,3,3-四甲基丁酯、2,5-二甲基-2,5-双(过氧化-2-乙基己酰基)己烷、过氧化-2-乙基己酸-1-环己基-1-甲基乙酯、过氧化-2-乙基己酸叔己酯、过氧化-2-乙基己酸叔丁酯、过氧化异丁酸叔丁酯、1,1-双(过氧化叔丁基)环己烷、叔己基过氧化异丙基单碳酸酯、过氧化-3,5,5-三甲基己酸叔丁酯、过氧化月桂酸叔丁酯、2,5-二甲基-2,5-双(过氧化间甲苯酰基)己烷、叔丁基过氧化异丙基单碳酸酯、叔丁基过氧化-2-乙基己基单碳酸酯、过氧化安息香酸叔己酯、过氧化乙酸叔丁酯和双(过氧化叔丁基)六氢化对苯二甲酸酯。这些过氧化酯可单独一种或组合两种以上使用。
    作为过氧化缩酮,例如可以举出1,1-双(过氧化叔己基)-3,3,5-三甲基环己烷、1,1-双(过氧化叔己基)环己烷、1,1-双(过氧化叔丁基)-3,3,5-三甲基环己烷、1,1-双(过氧化叔丁基)环十二烷和2,2-双(过氧化叔丁基)癸烷。这些过氧化缩酮可单独一种或组合两种以上使用。
    作为氢过氧化物,例如可以举出二异丙基苯氢过氧化物和异丙基苯氢过氧化物。这些氢过氧化物可单独一种或组合两种以上使用。
    作为过氧化硅烷,例如可以举出过氧化叔丁基三甲基硅烷、过氧化双(叔丁基)二甲基硅烷、过氧化叔丁基三乙烯基硅烷、过氧化双(叔丁基)二乙烯基硅烷、过氧化三(叔丁基)乙烯基硅烷、过氧化叔丁基三烯丙基硅烷、过氧化双(叔丁基)二烯丙基硅烷和过氧化三(叔丁基)烯丙基硅烷。这些过氧化硅烷可单独一种或组合两种以上使用。
    使用这些有机过氧化物时,可进一步组合分解促进剂、抑制剂等使用。此外,这些有机过氧化物如果是用聚氨酯类、聚酯类高分子物质等被覆进行微胶囊化的过氧化物时,可使用时间延长,因而优选。
    此外,作为偶氮化合物,例如可以举出2,2′-偶氮双-2,4-二甲基戊腈、1,1′-偶氮双(1-乙酰氧基-1-苯基乙烷)、2,2′-偶氮二异丁腈、2,2′-偶氮双(2-甲基丁腈)、二甲基-2,2′-偶氮二异丁腈、4,4′-偶氮双(4-氰基戊酸)和1,1′-偶氮双(1-环己烷腈)。这些偶氮化合物可单独一种或组合两种以上使用。
    通常,相对于膜形成材料和自由基聚合性化合物的合计100质量份,自由基聚合引发剂的配合比例优选为0.05~20质量份,更优选为0.1~10质量份。自由基聚合引发剂的配合比例不到0.05质量份时,转化率降低,所以会有很难使膜状电路连接材料固化的倾向。自由基聚合引发剂的配合比例超出20质量份时,会有可使用时间变短的倾向。另外,自由基聚合引发剂的配合比例可根据作为目的的连接温度、连接时间、贮存期等适当设定。例如,连接时间为25秒以下时,为了得到充分的转化率,自由基聚合引发剂的配合比例相对于膜形成材料和自由基聚合性化合物的合计100质量份,优选为2~10质量份,更优选为4~8质量份。
    含异氰酸酯基的化合物只要是分子中具有异氰酸酯基的化合物即可,没有特别限定。作为含异氰酸酯基的化合物,例如可以举出对甲苯磺酰基异氰酸酯、十八烷基异氰酸酯、(甲基)丙烯酰基异氰酸酯、γ-三异氰酸酯丙基三乙氧基硅烷等单异氰酸酯化合物;2,4-甲苯二异氰酸酯、2,6-甲苯二异氰酸酯、苯二亚甲基二异氰酸酯、六亚甲基二异氰酸酯、异佛尔酮二异氰酸酯、二苯基甲烷-4,4-二异氰酸酯等二异氰酸酯化合物;通过各种聚醚型多元醇、聚酯型多元醇、聚酰胺等与异氰酸酯化合物的反应得到的在末端具有异氰酸酯基的化合物。二异氰酸酯化合物可作为市售品得到,例如,可使用日本聚氨酯工业社制的商品名“克劳诺(コロネ一ト)L”、“米劳诺(ミリオネ一ト)MR”、“克劳诺EH”、“克劳诺HL”等。此外,从更进一步提高对被粘接体的粘接性的观点考虑,含异氰酸酯基的化合物优选在末端具有羟基、硝基、羧基等反应性高的极性基团。进而,含异氰酸酯基的化合物具有三甲氧基硅烷基、三乙氧基硅烷基等烷氧基硅烷基时,这些基团与被粘接体表面的吸附水形成化学键,可牢固地粘接,因而更优选。
    相对于膜形成材料和自由基聚合性化合物的合计100质量份,上述含异氰酸酯基的化合物的含量为0.09~5质量份,优选为0.1~5质量份,更优选为0.5~3质量份。含异氰酸酯基的化合物的含量不到0.09质量份时,很难得到充分的粘接性;超出5质量份时,可使用时间倾向于变短。
    此外,本发明的膜状电路连接材料的粘接剂成分优选含有含氟有机化合物。含氟有机化合物只要是分子中具有氟的化合物即可,可以是公知的含氟有机化合物,也可以是上述膜形成材料或自由基聚合性化合物具有氟原子。具体地,例如可以举出含氟聚乙烯醇缩丁醛树脂、含氟聚乙烯醇缩甲醛树脂、含氟聚酰亚胺树脂、含氟聚酰胺树脂、含氟聚酰胺酰亚胺树脂、含氟聚酯树脂、含氟酚醛树脂、含氟环氧树脂、含氟苯氧基树脂、含氟聚氨酯树脂、含氟聚酯型聚氨酯树脂、含氟聚芳酯树脂、含氟苯乙烯树脂、含氟有机硅树脂、含氟丙烯酸类橡胶、含氟腈橡胶、含氟NBR、含氟SBS等。这些含氟有机化合物可单独一种或混合两种以上使用。膜状电路连接材料含有这些含氟有机化合物时,无论对何种电路部件的材质均体现出更好的粘接性,转印性随时间的变化得到抑制,转印性也优异。
    从固化时的应力缓和性优异,粘接性更进一步提高的观点考虑,含氟有机化合物的重均分子量优选5000~1000000,更优选20000~200000。含氟有机化合物的重均分子量不到5000时,会有膜形成性能不充分的倾向,重均分子量超出1000000时,会有与其它成分的相溶性变差的倾向。
    进而,为了使应力缓和优异,本发明的膜状电路连接材料可含有丙烯酸类橡胶。作为丙烯酸类橡胶,可使用将丙烯酸、(甲基)丙烯酸酯或丙烯腈中的至少一种丙烯酸类单体聚合得到的聚合物或共聚物。丙烯酸类橡胶也可为将上述单体和具有缩水甘油醚基的(甲基)丙烯酸缩水甘油酯共聚合得到的共聚物。从提高膜状电路连接材料的凝聚力的角度,丙烯酸类橡胶的重均分子量优选为200000以上。
    本发明的膜状电路连接材料中,除了上述成分以外,还可根据使用目的添加其它材料作为粘接剂成分。例如,膜状电路连接材料中也可适当地添加偶联剂、密合力提高剂、流平剂等粘接助剂。由此,可付与更好的粘接性、处理性。
    从粘接性提高的角度考虑,偶联剂可优选使用含酮亚胺、乙烯基、丙烯基、氨基、环氧基和异氰酸酯基的物质。具体地,作为具有丙烯基的硅烷偶联剂可以举出(3-甲基丙烯酰氧丙基)三甲氧基硅烷、(3-丙烯酰氧丙基)三甲氧基硅烷、(3-甲基丙烯酰氧丙基)二甲氧基甲基硅烷、(3-丙烯酰氧丙基)二甲氧基甲基硅烷,作为含氨基的硅烷偶联剂可以举出N-β(氨基乙基)γ-氨基丙基三甲氧基硅烷、N-β(氨基乙基)γ-氨基丙基甲基二甲氧基硅烷、γ-氨基丙基三乙氧基硅烷、N-苯基-γ-氨基丙基三甲氧基硅烷。作为含酮亚胺的硅烷偶联剂可以举出使上述具有氨基的硅烷偶联剂与丙酮、甲基乙基酮、甲基异丁酮等酮化合物发生反应得到的硅烷偶联剂。此外,作为含环氧基的硅烷偶联剂可以举出γ-缩水甘油氧基丙基三甲氧基硅烷、γ-缩水甘油氧基丙基三乙氧基硅烷、γ-缩水甘油氧基丙基-甲基二甲氧基硅烷、γ-缩水甘油氧基丙基-甲基二乙氧基硅烷。
    相对于电路连接材料中其它配料的合计100质量份,偶联剂的配合比例优选0.1~20质量份。偶联剂的配合比例不到0.1质量份时,会有得不到实质的添加效果的倾向。此外,偶联剂的配合比例超出20质量份时,在支撑基材上形成由电路连接材料制成的粘接层时的粘接层的膜形成性能倾向于降低,膜厚强度也倾向于降低。
    本发明的膜状电路连接材料,即使不含有导电性粒子,也能够在连接时通过相对的电路电极之间的直接接触进行连接。但是,膜状电路连接材料含有导电性粒子时,能够得到更稳定的电路电极之间的连接,因而优选。
    在本发明中,根据需要所含有的导电性粒子只要具有可得到电连接的导电性,则没有特别限制。作为导电性粒子,例如可以举出Au、Ag、Ni、Cu和焊锡等的金属粒子以及碳。此外,导电性粒子也可以是用一层或两层以上的层被覆作为核的粒子,其最外层具有导电性的粒子。此时,从获得更优异的贮存期的观点考虑,就最外层而言,与Ni、Cu等过渡金属相比,优选以Au、Ag和/或铂族金属等贵金属为主成分,更优选由这些贵金属中的至少一种形成。这些贵金属之中,最优选Au。
    导电性粒子也可进一步用以贵金属为主成分的层对作为核的以过渡金属为主成分的粒子或者被覆核的以过渡金属为主成分的层的表面进行被覆而形成。此外,导电性粒子也可以是将以非导电性的玻璃、陶瓷、塑料等为主成分的绝缘性粒子作为核,在该核的表面上用以上述金属或碳为主成分的层进行被覆而形成的粒子。
    导电性粒子为用导电层对绝缘性粒子的核进行被覆而形成的粒子时,优选绝缘性粒子以塑料为主成分,最外层以贵金属为主成分。由此,膜状电路连接材料中的导电性粒子可以针对加热和加压而发生良好的变形。而且,在连接电路等时,与导电性粒子的电路电极、接线端子的接触面积增加。因此,可进一步提高膜状电路连接材料的连接可靠性。根据相同的观点,导电性粒子优选包含以上述加热发生熔融的金属为主成分的粒子。
    导电性粒子为用导电层对绝缘性粒子的核进行被覆而形成的粒子时,为了得到更好的导电性,导电层的厚度优选为(10nm)以上。此外,导电性粒子为进一步用以贵金属为主成分的层对作为核的以过渡金属为主成分的粒子或者被覆核的以过渡金属为主成分的层的表面进行被覆而形成的粒子时,作为最外层以上述贵金属为主成分的层的厚度优选为(30nm)以上。此厚度小于时,最外层容易破裂。结果是,露出的过渡金属与粘接剂成分接触,通过过渡金属的氧化还原作用而容易产生游离自由基,所以会有贮存期容易减少的倾向。另一方面,上述导电层的厚度太厚时,因为那些效果也达到饱和,所以其厚度优选设定在1μm以下。
    膜状电路连接材料含有导电性粒子时,导电性粒子的配合比例没有特别限制,但相对于膜状电路连接材料中的粘接剂成分100体积份,优选为0.1~30体积份,更优选为0.1~10体积份。该值不到0.1体积份时,会有很难得到良好的导电性的倾向,超出30体积份时,会有容易发生电路等的短路的倾向。另外,导电性粒子的配合比例(体积份)可根据使23℃时的膜状电路连接材料固化之前的各成分的体积来确定。各成分的体积可根据以下方法求得,利用比重由重量换算为体积的方法,或将该成分放入装有很好地润湿但不溶解或溶胀该成分的适当的溶剂(水、醇等)的量筒等容器内,通过增加的体积计算出其体积的方法。此外,将电路连接材料分为两层以上,分为含有自由基聚合引发剂的层和含有导电性粒子的层时,可提高贮存期。
    本发明中的膜状电路连接材料也可含有橡胶。由此,可提高应力的缓和和粘接性。橡胶微粒只要是其平均粒径为所配合的导电性粒子平均粒径的2倍以下,而且其在室温(25℃)下的储存弹性模量也为导电性粒子和电路连接材料在室温下的储存弹性模量的1/2以下的物质即可。特别是橡胶微粒的材质为聚硅氧烷、丙烯酸乳胶、SBR、NBR、聚丁二烯橡胶的微粒可适于单独或混合两种以上使用。三维交联的这些橡胶微粒的耐溶剂性优异,并容易分散在膜状电路连接材料中。
    用上述成分构成的膜状电路连接材料,是在连接电路部件时,电路连接材料中的粘接剂成分熔融流动,连接相对的电路部件后,固化并保持连接的物质。因此,膜状电路连接材料的流动性为重要因素。
    例如,将厚度为35μm、5mm×5mm的电路连接材料夹在厚度为0.7mm、15mm×15mm的玻璃板之间,在150℃、2MPa的条件下加热并加压10秒时,用初期面积(A)和加热加压后的面积(B)表示的流动性(B)/(A)的值优选为1.3~3.0,更优选为1.5~2.5。(B)/(A)的值不到1.3时,会有流动性差,得不到良好的电路部件的连接的倾向。另一方面,(B)/(A)的值超出3.0时,容易产生气泡,会有连接可靠性变差的倾向。
    从高温高湿时的连接电阻的稳定化和保持连接可靠性的观点考虑,膜状电路连接材料固化后在40℃时的弹性模量优选为100~3000MPa,更优选为500~2000MPa。
    进而,为了控制固化速度和付与储存稳定性,该膜状电路连接材料中可添加稳定剂。进而膜状电路连接材料中也可配合填充剂、软化剂、促进剂、防老化剂、着色剂、阻燃剂、触变剂、酚醛树脂、三聚氰胺树脂等。
    膜状电路连接材料含有填充材料(filler)时,可提高连接可靠性等,因而优选。填充材料为具有绝缘性的材料,只要其最大直径小于导电性粒子的平均粒径,则可使用。相对于粘接剂成分100体积份,填充材料的配合比例优选为5~60体积份。填充材料的配合比例超出60体积份时,会有可靠性提高的效果饱和的倾向,不到5体积份时,会有填充剂的添加效果变小的倾向。
    本发明的膜状电路连接材料通过将包含上述各成分的电路连接材料形成为膜状而得到。该膜状电路连接材料可如下得到:将向电路连接材料加入溶剂等而得到的混合液涂布到支撑基材上而得到,或者使无纺布等基材含浸有上述混合液并搭载在支撑基材上,除去溶剂等而得到。
    所使用的支撑基材优选薄片状或膜状。此外,支撑基材也可为层叠两层以上而成的形状。作为支撑基材,可以举出聚对苯二甲酸乙二醇酯(PET)膜、定向聚丙烯(OPP)膜、聚乙烯(PE)膜和聚酰亚胺膜。这些膜之中,从尺寸精度的提高和成本降低的角度考虑,优选PET膜。
    上述的膜状电路连接材料也可用作热膨胀系数相异的不同种被粘接体的电路连接材料。具体地,除了各向异性导电粘接剂膜、银膜等代表的膜状电路连接材料以外,也可用作CSP用弹性体、CSP用底层填充料、LOC胶带等代表的半导体元件粘接材料。
    (电路部件的连接结构)
    图1为表示本发明的电路部件连接结构的一个实施方式的简要截面图。图1所示的电路部件的连接结构1包括彼此相对的第一电路部件20和第二电路部件30,第一电路部件20和第二电路部件30之间设置有连接它们的电路连接部10。
    第一电路部件20具有第一电路基板21、在第一电路基板21的主面21a上形成的第一电路电极22。第二电路部件30具有第二电路基板31、在第二电路基板31的主面31a上形成的第二电路电极32。在第一电路基板21的主面21a上和/或第二电路基板31的主面31a上,根据情况也可形成绝缘层(未图示)。即,绝缘层形成在第一电路部件20和第二电路部件30中的至少一方与电路连接部10之间。
    作为第一和第二电路基板21、31,可以举出由半导体、玻璃、陶瓷等无机物、TCP、FPC、COF所代表的聚酰亚胺基材、聚碳酸酯、聚对苯二甲酸乙二醇酯、聚醚砜、环氧树脂、丙烯酸树脂等有机物、将这些无机物、有机物进行复合而成的材料制成的基板。从进一步提高与电路连接部10的粘接性的观点考虑,优选第一和第二电路基板中的至少一方是由包含选自聚对苯二甲酸乙二醇酯、聚醚砜、环氧树脂、丙烯酸树脂、聚酰亚胺树脂和玻璃组成的组中的至少一种物质的材料形成的基板。
    此外,形成绝缘层时,绝缘层优选为包含从氮化硅、有机硅树脂、聚酰亚胺树脂和丙烯酸树脂组成的组中选择的至少一种物质的层。由此,与不形成上述层相比,第一电路基板21和/或第二电路基板31与电路连接部10之间的粘接性更进一步提高。
    优选第一电路电极22和第二电路电极32中的至少一方的表面由包含选自金、银、锡、铂族金属和铟-锡氧化物组成的组中的至少一种物质的材料形成。由此,在维持同一电路部件20、30上相邻的电路电极22或32彼此之间的绝缘性,同时可更进一步减少相对的电路电极22和33之间的电阻值。
    作为第一和第二电路部件20、30的具体例,可以举出用于液晶显示器的形成有ITO等电路电极的玻璃基板或塑料基板、印刷配线板、陶瓷配线板、柔性配线板、半导体硅芯片等。根据需要,这些可组合使用。
    电路连接部10由含有导电性粒子的上述膜状电路连接材料的固化物形成。电路连接部10由电路连接材料中所含的粘接剂成分的固化物11和分散在粘接剂成分的固化物11内的导电性粒子7构成。电路连接部10中的导电性粒子7不仅配置在相对的第一电路电极22和第二电路电极32之间,也配置在主面21a、31a彼此之间。在电路部件的连接结构1中,导电性粒子7与第一和第二电路电极22、32二者直接接触。由此,第一和第二电路电极22、32通过导电性粒子7而被电连接。因此,在维持同一电路部件上相邻的电路电极间绝缘性的同时,可充分减少第一电路电极22和第二电路电极32之间的连接电阻。因此,可平稳地进行第一和第二电路电极22、32之间的电流流动,能够充分地发挥电路所具有的功能。另外,电路连接部10不含有导电性粒子7时,第一电路电极22和第二电路电极32通过直接接触实现电连接。
    由于电路连接部10如后所述由上述膜状电路连接材料的固化物构成,所以电路连接部10对第一电路部件20和第二电路部件30的粘接力非常高。
    (电路部件的连接结构的制造方法)
    图2为通过简要截面图表示本发明的电路部件连接结构的制造方法的一个实施方式的工序图。
    本实施方式中,首先,准备上述的第一电路部件20和膜状电路连接材料40。膜状电路连接材料40包括粘接剂成分5和导电性粒子7,所述粘接剂成分5含有膜形成材料、自由基聚合性化合物、经加热产生游离自由基的自由基聚合引发剂和含异氰酸酯基的化合物。
    另外,也可使用不含导电性粒子7的电路连接材料。此时,电路连接材料可称为NCP(Non Conductive Paste,非导电胶)。另一方面,包含导电性粒子7的电路连接材料可称为ACP(Anisotropic Conductive Paste,各向异性导电胶)。
    膜状电路连接材料40的厚度优选为5~50μm。膜状电路连接材料40的厚度不到5μm时,会有第一和第二电路电极22、32之间膜状电路连接材料40填充不足的倾向。另一方面,超出50μm时,会有很难确保第一和第二电路电极22、32之间的导通的倾向。
    接着,将膜状电路连接材料40放在第一电路部件20的形成有电路电极22的面上。之后,将膜状电路连接材料40沿着图2(a)的箭头A和B方向加压,使膜状电路连接材料40暂时连接于第一电路部件20(图2(b))。
    此时的压力只要在不损伤电路部件的范围内,则没有特别限制,但通常优选为0.1~30MPa。此外,也可边加热边加压,加热温度为膜状电路连接材料40基本上不固化的温度。加热温度通常优选为50~190℃。加热和加压优选进行0.5~120秒。
    接着,如图2(c)所示,按照使第二电路电极32向着第一电路部件20侧的方式,将第二电路部件30放在膜状电路连接材料40上。另外,膜状电路连接材料40紧贴在支撑基材(未图示)上设置时,剥离支撑基材后将第二电路部件30放在膜状电路连接材料40上。之后,加热膜状电路连接材料40的同时,沿着图2(c)的箭头A和B方向对全体加压。此外,即使膜状电路连接材料40以设置在支撑基材上的原状进行放置,也具有非常长的可使用时间,而且与电路部件保持非常高的粘接性。
    加热温度例如设定为90~200℃,连接时间例如设定为1秒~10分钟。这些条件可根据使用的用途、膜状电路连接材料、电路部件来适当选择,根据需要,也可进行后固化。例如,膜状电路连接材料含有自由基聚合性化合物时的加热温度为自由基聚合引发剂可产生自由基的温度。由此,自由基聚合引发剂产生自由基,引发自由基聚合性化合物的聚合。
    通过加热膜状电路连接材料40,在使第一电路电极22和第二电路电极32之间的距离非常小的状态下将膜状电路连接材料40固化,第一电路部件20和第二电路部件30通过电路连接部10而被牢固地连接。
    通过固化膜状电路连接材料40形成电路连接部10,得到图1所示的电路部件的连接结构1。另外,连接条件可根据使用的用途、膜状电路连接材料、电路部件来适当选择。
    根据本实施方式,在得到的电路部件的连接结构1中,能够使导电性粒子7与相对的第一和第二电路电极22、32二者接触,在维持同一电路部件上相邻的电路电极间的绝缘性的同时,可充分减少相对的第一和第二电路电极22、32之间的连接电阻。由于电路连接部10由上述膜状电路连接材料的固化物构成,所以电路连接部10对第一电路部件20和第二电路部件30的粘接力非常高。
    以上,对本发明的优选实施方式进行了说明,但本发明不限于此。本发明在不脱离其主旨的范围内可进行多种变形。
    实施例
    以下,基于实施例对本发明具体说明,但本发明并未限于此。
    (导电性粒子的制造)
    在聚苯乙烯粒子的表面上设置由镍形成的厚度为0.2μm的层,进而在该由镍形成的层的表面上设置由金形成的厚度为0.04μm的层。如此得到平均粒径为10μm的导电性粒子。
    (氨基甲酸酯型丙烯酸酯的调制)
    在50℃加热的同时,搅拌并混合重均分子量为800的聚己内酯二醇400质量份、丙烯酸-2-羟丙酯131质量份、催化剂二月桂酸二丁基锡0.5质量份以及阻聚剂氢醌单甲醚1.0质量份。接着,滴加异佛尔酮二异氰酸酯222质量份,进而边搅拌边升温至80℃进行氨基甲酸酯化反应。确认异氰酸酯基的转化率为99%以上后,降低温度,得到氨基甲酸酯型丙烯酸酯。
    (聚酯型聚氨酯树脂的调制)
    通过作为二羧酸的对苯二甲酸和作为二醇的丙二醇的反应得到聚酯型多元醇。将该聚酯型多元醇溶解于甲基乙基酮(MEK)中得到溶液。将制得的溶液加入具有搅拌机、温度计、冷凝器以及真空发生装置和氮气导管的带有加热器的不锈钢制高压釜中。接着,向上述高压釜中加入规定量的作为异氰酸酯的4,4′-二苯基甲烷二异氰酸酯,以相对聚酯型多元醇100质量份为0.02质量份的量加入催化剂二月桂酸二丁基锡,在75℃反应10个小时,冷却至40℃。进而,通过加入哌嗪反应30分钟进行增链后,用三乙胺中和。
    如果将上述反应后的溶液滴入纯水中,则溶剂和催化剂溶于水的同时,析出聚酯型聚氨酯树脂。之后,用真空干燥机干燥析出的聚酯型聚氨酯树脂。通过GPC分析测定聚酯型聚氨酯树脂的重均分子量为27000。另外,调制上述聚酯型聚氨酯树脂时,对苯二甲酸/丙二醇/4,4′-二苯基甲烷二异氰酸酯的配合摩尔比为1.0/1.3/0.25。
    (苯氧基树脂的调制)
    将苯氧基树脂(联合碳化物公司制,商品名“PKHC”,重均分子量:45000)50g溶解于甲苯(沸点110.6℃,SP值8.90)/乙酸乙酯(沸点77.1℃,SP值9.10)的质量比为50/50的混合溶剂中,形成固体成分为40质量%的溶液。
    (含氟聚酰亚胺树脂的调制)
    准备具有Dean-Stark循环冷却器、温度计、搅拌器的1000ml的可拆式烧瓶。向其中加入作为二胺化合物的聚氧丙烯二胺15.0mmol、2,2-双[4-(4-氨基苯氧基)苯基]六氟丙烷105.0mmol、作为非质子性极性溶剂的N-甲基-2-吡咯烷酮287g,在室温(25℃)下搅拌30分钟。接着,加入作为可与水共沸的芳香烃类有机溶剂的甲苯180g、作为四羧酸二酐的4,4′-六氟亚丙基双邻苯二甲酸二酐114.0mmol,升温至50℃,在该温度下搅拌1个小时后,进而升温至160℃并回流3个小时。如果确认理论量的水积存于水分定量接收器中,见不到水流出,则除去水分定量接收器中的水和甲苯,升温至180℃除去反应溶液中的甲苯,得到聚酰亚胺树脂的NMP溶液。
    将上述聚酰亚胺树脂的NMP溶液投入甲醇中,回收析出物后,粉碎、干燥得到含氟聚酰亚胺树脂。得到的含氟聚酰亚胺树脂的重均分子量为112000。将上述含氟聚酰亚胺树脂溶解于甲基乙基酮中直至为40质量%。
    用下述表2和表3所示的配合比(质量份:固体成分换算)调节实施例和比较例的电路连接材料,制造膜状电路连接材料。
    (实施例1)
    将作为膜形成材料的聚酯型聚氨酯树脂60质量份、作为自由基聚合性化合物的上述氨基甲酸酯型丙烯酸酯40质量份和磷酸酯型丙烯酸酯(共荣社油脂社制,商品名“P2M”)1质量份、作为含异氰酸酯基的化合物的甲基丙烯酰基异氰酸酯0.5质量份、作为自由基聚合引发剂的过氧化-2-乙基己酸叔己酯5质量份混合。接着,配合分散相对上述成分100体积份为3体积%的上述导电性粒子,调制成电路连接材料。接着,用涂布装置将该电路连接材料涂布在厚度为80μm的、一面进行了表面处理的PET膜上,得到涂膜。接着,通过将该涂膜在70℃热风干燥10分钟,得到厚度为20μm的的膜状电路连接材料。
    (实施例2)
    除了用六亚甲基二异氰酸酯0.5质量份代替甲基丙烯酰基异氰酸酯0.5质量份以外,进行与实施例1同样的操作,得到膜状电路连接材料。
    (实施例3)
    除了用γ-异氰酸酯丙基三乙氧基硅烷0.5质量份代替甲基丙烯酰基异氰酸酯0.5质量份以外,进行与实施例1同样的操作,得到膜状电路连接材料。
    (实施例4)
    除了用γ-异氰酸酯丙基三乙氧基硅烷0.1质量份代替甲基丙烯酰基异氰酸酯0.5质量份以外,进行与实施例1同样的操作,得到膜状电路连接材料。
    (实施例5)
    除了用γ-异氰酸酯丙基三乙氧基硅烷3质量份代替甲基丙烯酰基异氰酸酯0.5质量份以外,进行与实施例1同样的操作,得到膜状电路连接材料。
    (实施例6)
    除了用γ-异氰酸酯丙基三乙氧基硅烷5质量份代替甲基丙烯酰基异氰酸酯0.5质量份以外,进行与实施例1同样的操作,得到膜状电路连接材料。
    (实施例7)
    除了用苯氧基树脂60质量份代替聚酯型聚氨酯树脂60质量份以外,进行与实施例5同样的操作,得到膜状电路连接材料。
    (实施例8)
    除了用聚酯型聚氨酯树脂55质量份和含氟聚酰亚胺树脂5质量份代替聚酯型聚氨酯树脂60质量份以外,进行与实施例1同样的操作,得到膜状电路连接材料。
    (比较例1)
    除了未使用甲基丙烯酰基异氰酸酯以外,进行与实施例1同样的操作,得到膜状电路连接材料。
    (比较例2)
    除了用γ-异氰酸酯丙基三乙氧基硅烷0.05质量份代替甲基丙烯酰基异氰酸酯0.5质量份以外,进行与实施例1同样的操作,得到膜状电路连接材料。
    (比较例3)
    除了用γ-异氰酸酯丙基三乙氧基硅烷7.5质量份代替甲基丙烯酰基异氰酸酯0.5质量份以外,进行与实施例1同样的操作,得到膜状电路连接材料。
    表2

    表3

    <电路部件的连接结构的制造>
    准备三层柔性基板1(FPC基板1),该基板是将线宽50μm、间距100μm和厚度18μm的铜电路配线500根隔着粘接剂层形成在聚酰亚胺膜A(宇部兴产社制,商品名“Upilex”,厚度75μm)上而得到的。此外,准备两层柔性基板2(FPC基板2),该基板是将线宽50μm、间距100μm和厚度8μm的铜电路配线500根直接形成在聚酰亚胺膜B(宇部兴产社制,商品名“Upilex”,厚度25μm)上而得到的。进而,准备玻璃基板,该基板是将线宽50μm、间距100μm和厚度0.4μm的铬电路配线500根直接形成在玻璃(康宁公司制,商品名“#1737”)上而得到的。
    接着,在上述各FPC基板和玻璃基板之间配置如上所述得到的膜状电路连接材料。之后,使用热压合装置(加热方式:恒热型,东丽工程株式会社制)在160℃、3MPa的条件下沿着它们的层叠方向进行10秒钟的加热加压。如此制成电路部件的连接结构,其通过电路连接材料的固化物以宽2mm电连接FPC基板和玻璃基板。将这样制成的电路部件的连接结构作为初期特性评价用样品。
    [粘接性的评价]
    如下所示,通过测定如上所述制成的电路部件的连接结构中的电路间的连接电阻和粘接强度、以及观察电路部件的连接结构中的连接外观,来评价粘接性。另外,对于初期特性评价用样品,将连接电阻、粘接强度和连接外观全部良好的样品作为粘接性非常优异的电路部件的连接结构。
    <连接电阻的测定>
    用万用表(爱德万测试公司制,商品名:TR6848)测定连接电阻,并以邻接的电路间的电阻150点的平均值(x+3σ)表示。结果示于表4和5中。其中,表4为FPC1/玻璃基板连接样品的评价结果,表5为FPC2/玻璃基板连接样品的评价结果。
    <粘接强度的测定>
    粘接强度按照JIS-Z0237的90度剥离法测定。粘接强度的测定装置使用TENSILON UTM-4(剥离速度50mm/min,25℃,东洋BALDWIN公司制)。结果示于表4和5中。
    <连接外观的观察>
    将电路部件的连接结构放入85℃、相对湿度为85%RH的恒温恒湿试验装置内250个小时,进行耐湿试验。之后,从玻璃基板侧用显微镜观察粘接后即刻和耐湿试验后的外观。电路连接部和电路间间隙界面之间发生剥离时,电路间的绝缘性大大减低,因而判定为NG。结果示于表4和5中。
    [可使用时间的评价]
    将通过实施例和比较例得到的膜状电路连接材料分别放入真空包装材料中,在40℃放置5天后,与上述同样地制造电路部件的连接结构,作为可使用时间评价用样品。之后,对于可使用时间评价用样品,也同上述一样地评价粘接性。结果示于表4和5中。在粘接性的评价中,可使用时间评价用样品的各特性与初期特性评价用样品的各特性相比变化较小,维持初期特性时,判定为可使用时间长。
    表4

    表5

    由表4和5可知,初期的连接电阻不论是实施例还是比较例,均为1Ω左右。此外,初期的粘接强度不论是实施例还是比较例,均为7N/cm以上。特别是实施例5和6中,随着含异氰酸酯基的化合物的配合量增加,粘接强度变高。此外,实施例8中,通过使用含氟聚酰亚胺,FPC2/玻璃基板连接样品的粘接强度升高。
    使用实施例1~3、5~8和比较例3中得到的膜状电路连接材料时,均没有观察到剥离。另外,实施例4得到的电路连接材料由于含异氰酸酯基的化合物的量少,在耐湿试验后的FPC1/玻璃基板连接样品中观察到少量剥离,但属于在使用上没有问题的级别。与此相对,在不含有含异氰酸酯基的化合物的比较例1、含异氰酸酯基的化合物的配合量更少的比较例2中,耐湿试验后发生剥离。
    如上所述,实施例1~8和比较例3的粘接强度、连接电阻和连接外观的初期特性均良好,确认显示出非常高的粘接性。
    此外,使用在40℃放置5天后的膜状电路连接材料时,实施例1~8和比较例1、2中,均保持着与初期特性相同的粘接性,确认了可使用时间长。另一方面,含异氰酸酯基的化合物的配合量为7.5质量份的比较例3中,在40℃放置5天后的连接电阻上升至初期连接电阻的两倍以上,可知可使用时间短。
    由以上可知,实施例1~8的膜状电路连接材料与比较例1~3的膜状电路连接材料相比,显示出非常高的粘接性,而且具有非常长的可使用时间。由此,根据本发明的膜状电路连接材料,确认了不论对何种电路部件的材质,均显示出非常高的粘接性,而且具有非常长的可使用时间。
    此外可知,本发明的膜状电路连接材料不仅具有非常长的可使用时间,而且对于下述这样的电路部件具有特别良好的粘接性,所述电路部件是支撑电路电极的电路基板由包含选自聚对苯二甲酸乙二醇酯、聚醚砜、环氧树脂、丙烯酸树脂、聚酰亚胺树脂和玻璃中的至少一种物质的材料形成的电路部件、以及电路基板的表面涂布或附着有选自氮化硅、有机硅树脂、聚酰亚胺树脂和丙烯酸树脂中的至少一种材料的电路部件。
    产业上利用的可能性
    根据本发明,能够提供一种不论对何种电路部件的材质均显示出非常高的粘接性且可使用时间非常长的膜状电路连接材料以及使用这些膜状电路连接材料的电路部件的连接结构。

    关 键  词:
    电路 连接 材料 部件 结构
      专利查询网所有文档均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    0条评论

    还可以输入200字符

    暂无评论,赶快抢占沙发吧。

    关于本文
    本文标题:膜状电路连接材料及电路部件的连接结构.pdf
    链接地址:https://www.zhuanlichaxun.net/p-829743.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
    经营许可证编号:粤ICP备2021068784号-1