《电介体瓷器及层叠陶瓷电容器.pdf》由会员分享,可在线阅读,更多相关《电介体瓷器及层叠陶瓷电容器.pdf(20页完整版)》请在专利查询网上搜索。
一种电介体瓷器,其具有:具有芯壳结构且以钛酸钡为主成分的晶粒和在该晶粒之间存在的晶界相,分别以规定的比例含有钒、镁及稀土类元素及锰,将居里温度设为8090的范围,由此能够得到高介电常数且相对介电常数的温度特性的稳定性优越,并且,绝缘阻抗的电压依赖性小的电介体瓷器。 。
CN200880009615.3
2008.03.26
CN101641305A
2010.02.03
授权
有权
授权|||实质审查的生效|||公开
C04B35/46; H01B3/12; H01G4/12; H01G4/30
C04B35/46
京瓷株式会社
山崎洋一; 大铃英之; 藤冈芳博; 福田大辅
日本京都府
2007.3.27 JP 082905/2007
中科专利商标代理有限责任公司
朱 丹
一种电介体瓷器,其具有:具有芯壳结构且以钛酸钡为主成分的晶粒和在该晶粒之间存在的晶界相,分别以规定的比例含有钒、镁及稀土类元素及锰,将居里温度设为80~90℃的范围,由此能够得到高介电常数且相对介电常数的温度特性的稳定性优越,并且,绝缘阻抗的电压依赖性小的电介体瓷器。
1. 一种电介体瓷器,其特征在于,具有:具有芯壳结构且以钛酸钡为主成分的晶粒和在该晶粒之间存在的晶界相,相对于构成所述钛酸钡的钡100摩尔,以V2O5换算的情况下含有0.1~0.2摩尔的钒,以MgO换算的情况下含有0.55~0.75摩尔的镁,以RE2O3换算的情况下含有0.55~0.75摩尔选自钇、镝、钬、铒及铽中的至少一种稀土类元素RE,以MnO换算的情况下含有0.25~0.6摩尔的锰,居里温度为80~90℃。2. 根据权利要求1所述的电介体瓷器,其特征在于,相对于构成所述钛酸钡的钡100摩尔,以MnO换算的情况下含有0.25~0.35摩尔的所述锰。3. 根据权利要求1或2所述的电介体瓷器,其特征在于,所述晶粒的平均粒径为0.25~0.35μm。4. 一种层叠陶瓷电容器,其特征在于,包括含有权利要求1~3中任一项所述的电介体瓷器的电介体层及内部电极层的层叠体。
电介体瓷器及层叠陶瓷电容器 技术领域 本发明涉及利用以钛酸钡为主成分的晶粒构成的电介体瓷器、和将其用作电介体层的层叠陶瓷电容器。 背景技术 近年来,移动电话等移动设备的普及、或作为计算机等的主要部件的半导体元件的高速、高频化正在紧张。因此,对于搭载在这样的电子设备的层叠陶瓷电容器,小型、高电容化的要求逐渐提高,构成层叠陶瓷电容器的电介体层寻求薄层化和高层叠化。 还有,作为构成层叠陶瓷电容器的电介体层用电介体瓷器,从以往开始,使用以钛酸钡为主成分的电介体材料。近年来,向该钛酸钡的粉末中添加镁或稀土类元素等氧化物粉末,在以钛酸钡为主成分的晶粒的表面附近进而使镁或稀土类元素固溶的所谓的芯壳结构的晶粒作为电介体瓷器的结构材料开发,并作为层叠陶瓷电容器来实用化(例如,参照专利文献1)。 在此,晶粒的芯壳结构是指作为晶粒的中心部的芯部、和作为外壳部的壳部形成在物理、化学上具有不同的相的结构。在以钛酸钡为主成分的晶粒的情况下,是指芯部被具有正方晶系的结晶结构的钛酸钡占据,壳部被具有立方晶系的结晶结构的钛酸钡占据的状态。 【专利文献1】日本特开2001-220224号公报 然而,在包括如上所述的芯壳结构的晶粒的电介体瓷器中,相对介电常数的提高及相对介电常数的温度特性的稳定性优越。但向电介体瓷器施加直流电压,导致在增加所述直流电压时的绝缘阻抗的降低(以下称为绝缘阻抗的电压依赖性)变大的问题。 还有,将包括芯壳结构的晶粒的电介体瓷器作为电介体层具备的层叠陶瓷电容器由于电介体瓷器中的如上所述的绝缘阻抗的电压依赖性,难以提高高温负荷试验中的寿命特性。 发明内容 从而,本发明的目的在于提供高介电常数且相对介电常数的温度特性的稳定性优越,并且,绝缘阻抗的电压依赖性小的电介体瓷器、和高温负荷试验中的寿命特性优越的层叠陶瓷电容器。 本发明的电介体瓷器是一种电介体瓷器,其特征在于,具有:具有芯壳结构并以钛酸钡为主成分的晶粒和在该晶粒之间存在的晶界相,相对于构成所述钛酸钡的钡100摩尔,以V2O5换算的情况下含有0.1~0.2摩尔的钒,以MgO换算的情况下含有0.55~0.75摩尔的镁,以RE2O3换算的情况下含有0.55~0.75摩尔选自钇、镝、钬、铒及铽的至少一种稀土类元素(RE),以MnO换算的情况下含有0.25~0.6摩尔的锰,居里温度为80~90℃。 另外,优选在上述电介体瓷器中,相对于构成所述钛酸钡的钡100摩尔,以MnO换算的情况下含有0.25~0.35摩尔的所述锰。 另外,优选在所述电介体瓷器中,所述晶粒的平均粒径为0.25~0.35μm。 本发明的层叠陶瓷电容器,其特征在于,包括含有上述电介体瓷器的电介体层和内部电极层的层叠体。 根据本发明的电介体瓷器可知,相对于钛酸钡,分别以规定的比例含有钒、镁、稀土类元素及锰,并且,将电介体瓷器的晶粒形成为芯壳结构,居里温度设为80~90℃的范围,由此能够得到高介电常数,且相对介电常数的温度变化率小,而且,施加了电压时的绝缘阻抗的降低小(即绝缘阻抗的电压依赖性小)的电介体瓷器。 另外,对于本发明的电介体瓷器,以氧化物换算的情况下含有0.25~0.35摩尔的锰时,能够得到绝缘阻抗的电压依赖性几乎没有的电介体瓷器。 对于本发明的电介体瓷器,进而将以钛酸钡为主成分的晶粒的平均粒径设为0.25~0.35μm时,能够得到在施加的直流电压的规定的范围中显示绝缘性增加的倾向的电介体瓷器。 另外,根据本发明的层叠陶瓷电容器可知,作为电介体层,适用上述电介体瓷器,由此即使薄层化电介体层,也能够确保高的绝缘性。因此,能够得到在高温负荷试验中寿命特性优越的层叠陶瓷电容器。 附图说明 图1(a)是表示本发明的电介体瓷器的一实施方式中的以钛酸钡为主成分的芯壳结构的晶粒的剖面示意图,(b)是用于说明(a)剖面中的稀土类元素或镁的浓度变化的示意图。 图2是表示本发明的层叠陶瓷电容器的一实施方式的纵向剖面图。 具体实施方式 本发明的电介体瓷器具有:基本上具有芯壳结构,并以钛酸钡为主成分的晶粒和在该晶粒之间存在的晶界相。还有,本发明的电介体瓷器分别以规定的比例含有钒、镁、选自钇、镝、钬、铒及铽的至少一种稀土类元素、和锰。 本发明中的具有芯壳结构的晶粒如图1(a)、(b)所示,包括:以钛酸钡为主成分的芯部1;在该芯部1的周围形成的以钛酸钡为主成分的壳部3。 另外,在晶粒中固溶有钒、镁、稀土类元素及锰。观察在晶粒中含有的各元素的固溶状态可知,在壳部3中,镁或稀土类元素的浓度梯度比芯部1变高。 另外,从图1(b)可知,例如,从晶粒的最表面SS向芯部1侧的稀土类元素或镁的浓度变化,比从芯部1的表面S向芯部1的中心部C的稀土类元素或镁的浓度变化大。 在构成本发明的电介体瓷器的芯壳结构的晶粒中,壳部3是指:稀土类元素或镁的浓度变化以晶粒的最表面SS为最高浓度,从该最表面SS到内部之间以0.05原子%/nm以上的比例变化的部分。另一方面,芯部1是指:稀土类元素或镁的浓度变化比壳部3小(即在内部中小于0.05原子%/nm)的部分。 还有,该测定是使用附设有元素分析设备的透过电子显微镜装置来测定。在这种情况下,通过从晶粒的表面侧到中心部C之间以规定的间隔使用能量分散型分析器(EDS)来进行元素分析,求出稀土类元素或镁的浓度变化。 本发明的电介体瓷器的组成如下所述,即:相对于形成该电介体瓷器的晶粒中含有的钡100摩尔,以V2O5换算的情况下含有0.1~0.2摩尔的钒,以MgO换算的情况下含有0.55~0.75摩尔的镁,以RE2O3换算的情况下含有0.55~0.75摩尔选自钇、镝、钬、铒及铽的至少一种稀土类元素(RE),以MnO换算的情况下含有0.25~0.6摩尔的锰。 另外,在本发明的电介体瓷器中,居里温度为80~90℃。还有,本发明中的居里温度是测定了相对介电常数的温度特性的范围(-60~150℃)中相对介电常数最大的温度。 在上述组成及居里温度的范围的情况下,能够将室温(25℃)下的相对介电常数设为3800以上,另外,相对介电常数的温度特性满足X5R(-55~85℃的温度范围中,对25℃的相对介电常数的变化率为±15%以内)。进而,在上述组成及居里温度的范围的情况下,具有以下优点,即:能够将向每单位厚度(1μm)施加的直流电压的值设为12.5V时的绝缘阻抗设为1010Ω以上。 即,在本发明的电介体瓷器中,在钛酸钡中固溶包括钒、镁、锰、和选自钇、镝、钬、铒及铽的至少一种稀土类元素的成分的一部分或全部,并且,将由以固溶有这些成分的钛酸钡为主成分的晶粒形成的电介体瓷器的居里温度设为80~90℃(即居里温度向室温侧转变)。 由此,相对于居里温度在125℃附近的包括以钛酸钡为主成分的芯壳结构的晶粒的以往的电介体瓷器,实现高介电常数。另外,在本发明的电介体瓷器中,在具有芯壳结构的晶粒中,与以往相比,芯部1的比例减少,壳部3的体积比例增加。其结果,能够得到具有高绝缘阻抗的电介体瓷器。这是因为,在形成芯部1的钛酸钡中镁或稀土类元素的固溶量少,因此,形成为在晶粒中含有大量氧缺位等缺陷的状态。即,施加了直流电压的情况下,在构成电介体瓷器的晶粒的内部,氧缺位等容易成为运输电荷的载体,成为使电介体瓷器的绝缘性降低的原因。 在本发明的电介体瓷器中,通过减少晶粒的内部中的芯部1的比例,减少形成芯部1的钛酸钡引起的氧缺位等载体密度。另外,含有大量稀土类元素或镁,氧缺位少的壳部3的比例提高。因此,认为能够得到高的绝缘性。 但是,相对于钡100摩尔的钒的含量在以V2O5换算的情况下少于0.1摩尔,或多于0.2摩尔的情况下,另外相对于钡100摩尔的镁的含量在以MgO换算的情况下少于0.55摩尔或多于0.75摩尔的情况下,另外,相对于钡100摩尔的特定的稀土类元素RE(选自钇、镝、钬、铒及铽的至少一种)的含量在以RE2O3换算的情况下少于0.55或多于0.75摩尔的情况下,另外,相对于钡100摩尔的锰的含量在以MnO换算的情况下少于0.25摩尔的情况下,每单位厚度的直流电压12.5V下的绝缘阻抗均低于1010Ω。另外,相对于钡100摩尔的锰的含量在以MnO换算的情况下多于0.6摩尔的情况下,相对介电常数降低。因此,相对于钡100摩尔,以V2O5换算的情况下含有0.1~0.2摩尔的钒,以MgO换算的情况下含有0.55~0.75摩尔的镁,以RE2O3换算的情况下含有0.55~0.75摩尔的特定的稀土类元素RE(选自钇、镝、钬、铒及铽的至少一种),以MnO换算的情况下含有0.25~0.6摩尔的锰。 另外,作为优选的电介体瓷器的组成,相对于钡100摩尔,以V2O5换算的情况下含有0.1~0.2摩尔的钒,以MgO换算的情况下含有0.55~0.75摩尔的镁,以RE2O3换算的情况下含有0.55~0.75摩尔的特定的稀土类元素RE(选自钇、镝、钬、铒及铽的至少一种),以MnO换算的情况下含有0.25~0.35摩尔的锰为佳。具有该范围的组成的电介体瓷器在将向每单位厚度施加的直流电压的值设为3.15V到12.5V,评价绝缘阻抗时,几乎没有绝缘阻抗的降低。还有,作为稀土类元素,从得到高的相对介电常数,且绝缘阻抗高的方面来说,尤其优选钇。 另外,在本发明的电介体瓷器中,居里温度为80~90℃。即,锰的含量变多,居里温度低于80℃的情况下,相对介电常数降低。另一方面,居里温度高于90℃的情况下,向电介体瓷器的每单位厚度(1μm)施加的直流电压设为3.15V及12.5V时的绝缘阻抗低于1010Ω。 还有,如上所述,在本发明中,通过形成为晶粒中的芯部1的比例少,壳部3的比例多的结构,能够将居里温度设为80~90℃,由此形成为相对介电常数高且绝缘阻抗高的物质。 即,向作为主成分的钛酸钡中固溶镁、锰及稀土类元素等添加成分得到的具有芯壳结构的以往的电介体瓷器显示纯粹的钛酸钡的居里温度(125℃)附近的居里温度。相对于此,本发明的电介体瓷器如后所述,伴随以钛酸钡为主成分的晶粒的大的粒生长的同时,钒、镁、锰、和选自钇、镝、钬、铒及铽的至少一种稀土类元素固溶。因此,本发明的电介体瓷器能够维持芯壳结构的同时,能够将居里温度设为80~90℃。 本发明的电介体瓷器中的晶粒的平均粒径从能够实现高介电常数化的观点来说大也可,但为了减小静电电容的不均,优选0.5μm以下。更优选期望晶粒的平均粒径为0.25~0.35μm。若晶粒的平均粒径为0.25~0.35μm,则能够得到在向电介体瓷器的每单位厚度(1μm)施加的直流电压设为3.15V到12.5V时,显示绝缘阻抗在这期间增加的倾向(正的变化)的高绝缘性的电介体瓷器。 其次,说明制造本发明的电介体瓷器的方法。 首先,作为原料粉末,配制向纯度99%以上的钛酸钡粉末中作为添加剂添加V2O5粉末和MgO粉末、以及选自Y2O3粉末、Dy2O3粉末、Ho2O3粉末、Er2O3粉末及Te2O3粉末的至少一种稀土类元素的氧化物粉末及MnCO3粉末并混合的物质。 在这种情况下,钛酸钡粉末的平均粒径优选0.05~0.15μm。若钛酸钡粉末的平均粒径为0.05μm以上,则在晶粒中容易形成芯壳结构,因此,能够增加芯部1的比例。其结果,实现相对介电常数的提高。另一方面,若钛酸钡粉末的平均粒径为0.15μm以下,则能够使上述添加剂容易地固溶至晶粒的内部,另外,如后所述,提高烧成前后的从钛酸钡粉末向晶粒的粒生长的比率。 另外,关于作为添加剂的各粉末即选自Y2O3粉末、Dy2O3粉末、Ho2O3粉末、Er2O3粉末及Te2O3粉末的至少一种稀土类元素的氧化物粉末、V2O5粉末、MgO粉末及MnCO3粉末,也优选使用平均粒径与钛酸钡粉末相等或其以下的粉末。 这些原料粉末相对于构成钛酸钡粉末的钡100摩尔,以0.1~0.2摩尔的V2O5粉末配合,以0.55~0.75摩尔的比例配合MgO粉末,以0.55~0.75摩尔的比例配合稀土类元素的氧化物粉末,将MnCO3粉末作为MnO以0.25~0.6摩尔的比例添加。 其次,向所述原料粉末中进而作为烧结助剂添加玻璃粉末,向其中添加有机载色剂,使用球磨机来混合。然后,成形为规定的形状,将得到的成形体脱脂后,在还原气氛中烧成。 烧成温度从促进向钛酸钡粉末的添加剂的固溶,控制晶粒的粒生长的理由来说,优选1100~1150℃。 在本发明中,优选通过使用微粒的钛酸钡粉末,向其中添加规定量的上述添加剂,在上述温度下烧成,使含有各种添加剂的钛酸钡粉末的平均粒径在烧成前后为两倍以上。通过使烧成后的晶粒的平均粒径成含有各种添加剂的钛酸钡粉末的平均粒径的两倍以上地进行烧成,晶粒中的添加剂成分的固溶提高,其结果,芯部1的体积比例减少,壳部3的体积比例增加。 另外,在本发明中,优选在烧成后,再次在弱还原气氛中进行热处理。该热处理是为了再次氧化在还原气氛中的烧成中还原的电介体瓷器,恢复在烧成时还原而降低的绝缘阻抗而进行。为了抑制晶粒的进一步的粒生长,同时,提高再次氧化,该热处理时的温度优选900~1100℃。 这样能够形成在晶粒中高绝缘性的壳部3的体积比例增加,显示80~90℃以下的居里温度的电介体瓷器。 本发明的层叠陶瓷电容器如图2所示,在电容器主体10的两端部设置有外部电极3。该电容器主体10包括电介体层5和内部电极层7交替地层叠的层叠体10A。还有,重要的是电介体层5是用上述本发明的电介体瓷器形成的。这样的本发明的层叠陶瓷电容器在薄层化电介体层5的情况下也能够确保高的绝缘性,高温负荷试验中的寿命特性优越。 从小型高电容化的方面来说,优选电介体层5的厚度为3μm以下,优选为2.5μm以下。进而,为了抑制静电电容的不均,稳定化电容温度特性,电介体层5的厚度期望为1μm以上。 内部电极层7从高层叠化也能够抑制制造成本的方面来说,期望包括镍(Ni)或铜(Cu)等贱金属。尤其,从实现与电介体层1的同时烧成的方面来说,更期望镍(Ni)。 例如,烧接Cu或Cu和Ni的合金糊剂来形成外部电极3。 其次,说明层叠陶瓷电容器的制造方法。 例如,向上述原材料粉末中添加有机载色剂,配制陶瓷浆料,使用该陶瓷浆料,利用刮板法或模涂法等片成形法,形成陶瓷印刷电路基板。在这种情况下,陶瓷印刷电路基板的厚度从用于电介体瓷器的高电容化的薄层化、高绝缘性的维持方面来说优选1~4μm。 其次,向得到的陶瓷印刷电路基板的主面上印刷矩形状的内部电极图案而形成。作为成为内部电极图案的导体糊剂,适合Ni、Cu或这些的合金粉末。 其次,重叠期望张数的形成有内部电极图案的陶瓷印刷电路基板,在其上下以使上下层成为相同张数的方式重叠多张未形成有内部电极图案的陶瓷印刷电路基板,由此形成片层叠体。在这种情况下,片层叠体中的内部电极图案通常在长边方向上各错开一半图案。 其次,使内部电极图案的端部露出地将所得到的片层叠体切断为格子状,由此形成电容器主体成形体。根据这样的层叠方法可知,内部电极图案交替地露出在切断后的电容器主体成形体的端面。 其次,对于电容器主体成形体脱脂后,实施与上述电介体瓷器相同的烧成条件及弱还原气氛中的热处理。由此制作电容器主体。在该电容器主体的对置的端部涂敷外部电极糊剂,进行烧接,形成外部电极。为了提高安装性,在该外部电极的表面形成镀敷膜也无妨。 【实施例】 首先,准备钛酸钡粉末(以下称为BT粉末)、MgO粉末、Y2O3粉末、Dy2O3粉末、Ho2O3粉末、Er2O3粉末、Tb2O3粉末、MnCO3粉末及V2O5粉末,以表1及表2所示的比例混合这些各种粉末,配制原料粉末。这些各种原料粉末使用纯度为99.9%的粉末。 还有,BT粉末的平均粒径如表1及表2所示。MgO粉末、Y2O3粉末、Dy2O3粉末、Ho2O3粉末、Er2O3粉末、Tb2O3粉末、MnCO3粉末及V2O5粉末使用平均粒径为0.1μm的粉末。BT粉末的Ba/Ti之比为1.005。烧结助剂使用包括SiO2:55摩尔%、BaO:20摩尔%、CaO:15摩尔%、Li2O:10摩尔%的组成的玻璃粉末。玻璃粉末的添加量相对于BT粉末100质量份为1质量份。 其次,将上述原料粉末投入甲苯及乙醇的混合溶媒中,使用直径5mm的氧化锆球,进行湿式混合。 其次,向湿式混合的粉末中添加聚乙烯醇缩丁醛树脂及甲苯和乙醇的混合溶媒,同样使用直径5mm的氧化锆球,进行湿式混合,由此配制陶瓷浆料。利用刮板法,制作厚度2.5μm的陶瓷印刷电路基板。 其次,在该陶瓷印刷电路基板的上表面形成多个以Ni为主成分的矩形状的内部电极图案。在内部电极图案中使用的导体糊剂是向平均粒径为0.3μm的Ni粉末中将作为共通材料使用于印刷电路基板的BT粉末相对于Ni粉末100质量份添加30质量份而成的。 其次,层叠360张印刷有内部电极图案的陶瓷印刷电路基板,在其上下面分别层叠20张未印刷内部电极图案的陶瓷印刷电路基板。然后,使用压力机,在温度60℃、压力107Pa、时间10分钟的条件下一并层叠,切断为规定的尺寸,得到层叠成形体。 对层叠成形体在10℃/小时的升温速度下、大气中、300℃/小时的条件下实施脱粘合剂处理。其次,将从500℃的升温速度设为300℃/小时,在氢-氮气氛中,在1100~1145℃下烧成2小时。接着,以300℃/小时的降温速度冷却至1000℃,在氮气氛中,在1000℃下再次实施4小时氧化处理后,以300℃/小时的降温速度冷却,制作电容器主体。该电容器主体的大小0.95(mm)×0.48(mm)×0.48(mm),电介体层的厚度为2μm,内部电极层的一层的有效面积为0.3mm2。还有,有效面积是指:分别露出在电容器主体的不同的端面地沿层叠方向交替地形成的内部电极层之间的重叠的面积。 其次,用滚筒抛光(バレル研磨)得到的电容器主体后,在电容器主体的两端部涂敷含有Cu粉末和玻璃的外部电极糊剂,在850℃下进行烧接,由此形成外部电极。然后,使用电解滚筒处理机,在该外部电极的表面依次进行Ni镀敷及Sn镀敷,制作层叠陶瓷电容器。 关于得到的层叠陶瓷电容器,进行以下的评价。 在以下的评价中,在不特别限定的情况下,将试料数设为10个,求出其平均值而进行。 相对介电常数是在温度25℃、频率1.0kHz、测定电压1Vrms的测定条件下测定静电电容,由电介体层的厚度和内部电极层的有效面积求出。另外,就相对介电常数的温度特性来说,在温度-55~85℃的范围中测定静电电容。此时,将在测定了相对介电常数的温度特性的范围中相对介电常数最大的温度设为居里温度。 通过直流电压6.3V(每单位厚度上为3.15V)及25V(每单位厚度上为12.5V),评价绝缘阻抗。 高温负荷试验在温度85℃下,施加电压9.45V及12.6V的条件下进行,将1000小时为止没有不合格的情况评价为“○”。就高温负荷试验中的试料数来说,各试料设为20个。 另外,利用扫描型电子显微镜(SEM)求出构成电介体层的晶粒的平均粒径。具体来说,蚀刻抛光面,任意选择20个电子显微镜照片内的晶粒,利用拦截法,求出各晶粒的最大直径,算出这些平均值。另外,通过得到的晶粒的平均粒径,评价电介体粉末的粒生长率即相对于使用的BT粉末的平均粒径的构成烧结后的电介体瓷器的晶粒的平均粒径之比。 另外,利用ICP(Inductively Coupled Plasma)分析或原子吸光分析来进行各试料(电介体瓷器)的组成分析。具体来说,使得到的试料与硼酸及碳酸钠一同熔融,使其熔融物溶解于盐酸中,首先,利用原子吸光分析,进行含在电介体瓷器的元素的定性分析。 其次,关于特定的各元素,将稀释标准液的液体作为标准试料,利用ICP发光光谱分析来定量化。另外,将各元素的价数设为周期表中所示的价数,求出氧量。 将调合组成和烧成温度示出在表1、2中,将烧结体(电介体瓷器)中的各元素的组成示出在表3、4中,将特性的结果示出在表5、6中。 还有,关于制作的各试料(电介体瓷器),使用附设有元素分析设备的透过电子显微镜,测定构成电介体瓷器的晶粒中的稀土类元素(RE)的浓度分布的结果,在任一个试料中,晶粒的壳部中的稀土类元素的浓度梯度均为0.05原子%/nm以上,芯部中的相同元素的浓度梯度均小于0.05原子%,壳部的稀土类元素的浓度梯度比芯部高,具有芯壳结构。 在此,晶粒中的稀土类元素(RE)的浓度求出为将电子射线的点尺寸设成3nm而检测的Ba、Ti、V、Mg、RE及Mn的总量作为100%时比例。另外,就稀土类元素(RE)的浓度梯度来说,在从晶粒的晶界附近(壳部)划向中心(芯部)的直线上,从晶界以5~10nm的间隔测定浓度,将各测定点中的稀土类元素的浓度作为纵轴,将从晶粒的晶界附近朝向中心的距离作为横轴而绘制,对于这些绘制点,使用最小二乘法,形成为近似直线的图表,将在该图表上浓度梯度大幅度变化的点作为边界,分为壳部侧和芯部侧,由壳部及芯部中的直线的斜率求出各浓度梯度。 【表1】 *标记表示本发明的范围外的试料。 【表2】 *标记表示本发明的范围外的试料。 【表3】 *标记表示本发明的范围外的试料。 【表4】 *标记表示本发明的范围外的试料。 【表5】 *标记表示本发明的范围外的试料。 **:○:满足X5R的情况 ×:不满足X5R的情况 ***:○:满足85℃、9.45V、1000小时的情况 ×:不满足左列条件的情况 ****:○:满足85℃、12.6V、1000小时的情况 ×:不满足左列条件的情况 【表6】 *标记表示本发明的范围外的试料。 **:○:满足X5R的情况 ×:不满足X5R的情况 ***:○:满足85℃、9.45V、1000小时的情况 ×:不满足左列条件的情况 ****:○:满足85℃、12.6V、1000小时的情况 ×:不满足左列条件的情况 从表1~6的结果明确可知,将在瓷器中以规定量含有钒、镁、锰及稀土类元素(选自钇、镝、钬、铒及铽的至少一种),居里温度为80~90℃的电介体瓷器用作电介体层的试料No.2~4、8~10、16~18、24~28、30~34及38~43中,将施加电压设为6.3V及25V时的相对于直流电压的增加的绝缘阻抗的降低小,25V下的绝缘阻抗显示1010Ω以上,相对介电常数为3800以上。在这些试料中,作为烧成前的BT粉末的平均粒径、和烧成后的晶粒的平均粒径的变化率的烧成前后的粒生长率均为225%以上。另外,关于这些将本发明的电介体瓷器作为电介体层的层叠陶瓷电容器,在温度85℃、施加电压9.45V的条件下进行了高温负荷试验的结果,经过1000小时后,不合格也均为零。 另外,在将锰的含量设为0.25~0.35摩尔的试料No.2~4、8~10、16~18、24~25、30~34及38~43中,均无相对于直流电压的增加的绝缘阻抗的降低。另外,这些试料满足温度85℃、施加电压12.6V、1000小时的条件的高温负荷试验。 进而,在晶粒的平均粒径为0.25~0.35μm的试料No.2~3、9~10、24~25、31~32及38~41中,均得到显示相对于直流电压的增加的绝缘阻抗的变化增加的倾向,绝缘阻抗优越的电介体瓷器。 相对于此,在本发明的范围外的试料No.1、5~7、11~15及19~23中,将施加电压设为6.3V及25V时的相对于直流电压的增加的绝缘阻抗显示降低的倾向,且直流电压25V下的绝缘阻抗低于1010Ω。 另外,含有0.8摩尔的锰的试料No.29中,居里温度为76℃,静电电容为3600,比本发明的电介体瓷器低。 另外,作为烧成前的BT粉末的平均粒径和烧成后的晶粒的平均粒径的变化率的烧成前后的粒生长率为105%~120%,居里温度为100℃~125℃的试料No.35~37中,相对介电常数为2900~3200。另外,关于这些试料No.35~37,相对于直流电压的增加的绝缘阻抗显示降低的倾向,直流电压25V下的绝缘阻抗低于1010Ω。 另外,在本发明的范围外的试料中,温度85℃、施加电压9.45V的条件的高温负荷试验的寿命不满足1000小时。 以上,详细说明了本发明所述的电介体瓷器及层叠陶瓷电容器,但本发明的范围不局限于这些说明,可以在不牺牲本发明的宗旨的范围内适当地变更或改善。
下载文档到电脑,查找使用更方便
30 金币 0人已下载
还可以输入200字符
暂无评论,赶快抢占沙发吧。
copyright@ 2017-2018 zhuanlichaxun.net网站版权所有经营许可证编号:粤ICP备2021068784号-1