书签 分享 收藏 举报 版权申诉 / 22

各向异性导电性粘接剂组合物、各向异性导电性薄膜、电路构件的连接结构、以及被覆粒子的制造方法.pdf

  • 上传人:32
  • 文档编号:811751
  • 上传时间:2018-03-13
  • 格式:PDF
  • 页数:22
  • 大小:1.22MB
  • 摘要
    申请专利号:

    CN200780035602.9

    申请日:

    2007.09.20

    公开号:

    CN101517831A

    公开日:

    2009.08.26

    当前法律状态:

    授权

    有效性:

    有权

    法律详情:

    授权|||实质审查的生效|||公开

    IPC分类号:

    H01R11/01; C09J9/02; C09J11/04; C09J201/00; H01B1/20; H01B5/00; H01B13/00; H01L21/60; H05K1/14; H05K3/32; H05K3/36

    主分类号:

    H01R11/01

    申请人:

    日立化成工业株式会社

    发明人:

    高根信明

    地址:

    日本东京都

    优先权:

    2006.9.26 JP 260927/2006

    专利代理机构:

    北京银龙知识产权代理有限公司

    代理人:

    钟 晶

    PDF完整版下载: PDF下载
    内容摘要

    本发明的各向异性导电性粘接剂组合物为用于将在第一基板的主面上形成有第一电路电极的第一电路构件和在第二基板的主面上形成有第二电路电极的第二电路构件,以使上述第一电路电极和上述第二电路电极相对配设的状态连接的各向异性导电性粘接剂组合物,其中,含有粘接剂和被覆粒子,所述被覆粒子的导电粒子的至少部分表面被覆着含有高分子电解质以及无机氧化物微粒的绝缘性材料。

    权利要求书

    1.  一种各向异性导电性粘接剂组合物,其为用于将在第一基板的主面上形成有第一电路电极的第一电路构件以及在第二基板的主面上形成有第二电路电极的第二电路构件,以使所述第一电路电极和所述第二电路电极相对配置的状态进行连接的各向异性导电性粘接剂组合物,其特征在于,
    含有粘接剂和被覆粒子,所述被覆粒子是将导电粒子的表面的至少一部分用具有高分子电解质以及无机氧化物微粒的绝缘性材料进行被覆而成的。

    2.
      根据权利要求1所记载的各向异性导电性粘接剂组合物,其特征在于,
    所述被覆粒子通过使所述高分子电解质与所述无机氧化物微粒交替地静电吸附在所述导电粒子的表面的至少一部分上而形成。

    3.
      根据权利要求1或2所记载的各向异性导电性粘接剂组合物,其特征在于,
    所述无机氧化物微粒是由氧化物构成的,所述氧化物包含从硅、铝、锆、钛、铌、锌、锡、铈以及镁组成的组中选出的至少一种元素。

    4.
      根据权利要求1~3任意一项所记载的各向异性导电性粘接剂组合物,其特征在于,
    所述无机氧化物微粒的平均粒径是在20~500nm的范围内。

    5.
      根据权利要求1~4任意一项所记载的各向异性导电性粘接剂组合物,其特征在于,
    所述高分子电解质是不具有碱金属离子、碱土金属离子以及卤化物离子的物质。

    6.
      一种各向异性导电性薄膜,其特征在于,其是将权利要求1~5中的任意一项所记载的各向异性导电性粘接剂组合物形成为薄膜状而成的。

    7.
      一种电路构件的连接结构,其特征在于,将在第一基板的主面上形成有第一电路电极的第一电路构件以及在第二基板的主面上形成有第二电路电极的第二电路构件,通过设置于所述第一和第二电路构件之间的、由根据权利要求1~5的任意一项所记载的各向异性导电性粘接剂组合物的固化物构成的电路连接构件,以所述第一电路电极与第二电路电极相对置的同时电连接的方式进行连接。

    8.
      根据权利要求7所记载的电路构件的连接结构,其特征在于,
    在所述第一电路构件中,所述第一基板是玻璃基板,并且,所述第一电路电极是金属电极电路;
    在所述第二电路构件中,所述第二基板是有机质绝缘基板。

    9.
      根据权利要求7所记载的电路构件的连接结构,其特征在于,在所述第一电路构件中,所述第一基板是半导体芯片;
    所述第二电路构件中,所述第二基板是玻璃基板,并且,所述第二电路电极是金属电极电路。

    10.
      一种被覆粒子的制造方法,其是将导电粒子的表面的至少一部分用绝缘性材料被覆的被覆粒子制造方法,其特征在于,
    具有交替地反复进行第1步骤和第2步骤的吸附工序,所述第1步骤是使所述导电粒子分散于具有高分子电解质的溶液,使该导电粒子的表面的至少一部分吸附所述高分子电解质,之后进行洗涤,
    所述第2步骤是使吸附了所述高分子电解质的所述导电粒子分散于具有无机氧化物微粒的分散液,使所述导电粒子以及所述高分子电解质的表面的至少一部分吸附所述无机氧化物微粒,之后进行洗涤。

    说明书

    各向异性导电性粘接剂组合物、各向异性导电性薄膜、电路构件的连接结构、以及被覆粒子的制造方法
    技术领域
    本发明涉及各向异性导电性粘接剂组合物、各向异性导电性薄膜、电路构件的连接结构、以及被覆粒子的制造方法,更详细而言,涉及在电路基板之间或IC芯片等电子构件与布线基板的连接中所使用的各向异性导电性粘接剂组合物、使用其的各向异性导电性薄膜、电路构件的连接结构、以及被覆粒子的制造方法。
    背景技术
    在将电路基板之间或IC芯片等电子构件与电路基板进行电连接时,使用将导电粒子分散到粘接剂组合物中而形成的各向异性导电性粘接剂组合物。即,通过将该各向异性导电粘接剂组合物配设到上述那样的相互对置的电路构件的电极间并进行加热和加压,由此对电极间进行连接,能够使加压方向上具有导电性,并能进行对置的电极间的电连接和电路构件之间的固定(例如参考专利文献1和2)。
    另外,在液晶显示用玻璃面板中,通过COG(Chip-On-Glass,玻璃衬底芯片)安装或COF(Chip-On-Flex,软膜复晶接合技术)安装等安装液晶驱动用IC。COG安装中,使用含有导电粒子的各向异性导电性粘接剂组合物,将液晶驱动用IC直接接合在玻璃面板上。COF安装中,将液晶驱动用IC接合在具有金属布线的挠性带(flexible tape)上,再使用含有导电粒子的各向异性导电性粘接剂组合物将它们接合在玻璃面板上。
    但是,随着近年液晶显示的高精细化,作为IC芯片的电路电极的金凸点持续窄节距化、窄面积化,其它电子构件也不断高精细化,因此,存在各向异性导电性粘接剂组合物中的导电粒子流到相邻的电路电极间而容易发生短路的问题。
    作为解决该问题的方法,开发出如下方法:通过在电路连接构件的至少单面上形成绝缘性的粘接层来防止COG安装或COF安装中的接合品质降低的方法(例如参考专利文献3)、用绝缘性的覆膜被覆导电粒子的全部表面的方法(例如参考专利文献4)。另外,还提出使用导电粒子的部分表面被绝缘性微粒被覆的被覆粒子的方法(例如参考专利文献5、6)。另外,作为这类绝缘性被覆的方法,提出了交替层叠聚阴离子薄膜和聚阳离子薄膜的高分子电解质薄膜的方法(例如参考专利文献7)。
    专利文献1:日本专利第3581618号公报
    专利文献2:日本专利第3679618号公报
    专利文献3:日本特开平8-279371号公报
    专利文献4:日本专利第2794009号公报
    专利文献5:日本特开2005-197089号公报
    专利文献6:国际公开WO2003/025955号小册子
    专利文献7:日本特开2003-317827号公报
    发明内容
    发明要解决的课题
    但是,上述专利文献3中记载的、在电路连接构件的单面上形成绝缘性的粘接层的方法,在例如凸点面积为3000μm2以下、为获得稳定的连接电阻而增加导电粒子数的情况下,相邻的电路电极间的绝缘性方面还存在改良的余地。另外,上述专利文献4中记载的、用绝缘性的覆膜被覆导电粒子的全部表面的方法,存在对置的电路电极间的连接电阻升高、无法获得稳定的电阻的问题。进而,上述专利文献5中记载的、使用通过绝缘性微粒被覆导电粒子的表面的一部分的被覆粒子的情况下,也残留着反复进行可靠性试验时电阻值升高的问题。另外,上述专利文献6中记载的被覆粒子的形成方法需要向导电粒子上以及绝缘粒子上导入官能团的步骤,另外由于与各自的官能团之间的相互作用弱,存在绝缘粒子难以在导电粒子上聚集、生产率差,并且绝缘性产生不均的问题。另外,上述专利文献7中记载的被覆粒子的形成方法,虽能够均匀无缺陷地被覆导电粒子的表面,但存在对置的电路电极间的连接电阻升高、无法获得稳定的电阻的问题。
    本发明是鉴于上述现有技术存在的课题而进行的,目的在于提供即使连接节距变成窄节距的情况下,也能通过已分散的导电粒子的聚集来充分抑制相邻的电路电极间发生短路,能够获得优异的长期连接可靠性的各向异性导电性粘接剂组合物;使用其的各向异性导电性薄膜、电路构件的连接结构、以及被覆粒子的制造方法。
    用于解决课题的手段
    为了达到上述目的,本发明提供一种各向异性导电性粘接剂组合物,其为用于将在第一基板的主面上形成有第一电路电极的第一电路构件和在第二基板的主面上形成有第二电路电极的第二电路构件,以使上述第一电路电极和上述第二电路电极相对配设的状态进行连接的各向异性导电性粘接剂组合物,其中,含有粘接剂和被覆粒子,所述被覆粒子的导电粒子的至少部分表面被覆着含有高分子电解质以及无机氧化物微粒的绝缘性材料。
    根据本发明的各向异性导电性粘接剂组合物,由于将上述被覆粒子用作导电性材料,以代替通常的导电粒子,因此,在连接节距变成窄节距的情况下(例如相邻的电极间的间隔为15μm以下的狭间隔的情况下),即使被覆粒子聚集,也能通过包含高分子电解质和无机氧化物微粒的绝缘性材料所形成的覆膜来保持导电粒子间的绝缘性,能充分抑制电极间发生短路。另外,在对置的电极间,通过连接电路构件之间时的压力而获得加压方向的导电性,确保电连接。将无机氧化物微粒用作绝缘性材料的话,由于连接工序中的加压、加热而引起的变形、变形的回复少,因此能够抑制连接部分的电阻升高及此后的电阻值上升,能够获得优异的长期连接可靠性。另外,由于绝缘性材料含有高分子电解质,因此不需要将官能团导入导电粒子或绝缘粒子表面的步骤,能够以高生产率进行制造,并且绝缘性方面也不易产生偏差。
    另外,在本发明的各向异性导电性粘接剂组合物中,上述被覆粒子优选为上述高分子电解质和上述无机氧化物微粒交替地静电吸附在上述导电粒子的至少部分表面上的粒子。通过使高分子电解质吸附在导电粒子的表面上,静电引力作用于高分子电解质和无机氧化物微粒之间,因此,能够使无机氧化物微粒选择性吸附到导电粒子表面。认为这是由于无机氧化物微粒表面具有羟基等极性基。
    另外,在本发明的各向异性导电性粘接剂组合物中,上述无机氧化物微粒优选由包含选自硅、铝、锆、钛、铌、锌、锡、铈以及镁所组成的组中的至少一种元素的氧化物构成。由此,能够以化学上、热学上稳定的绝缘性粒子的形式发挥作用。
    另外,在本发明的各向异性导电性粘接剂组合物中,上述无机氧化物微粒的平均粒径优选在20~500nm的范围内。通过使无机氧化物微粒的平均粒径在上述范围内,能够充分确保相邻的电极间的绝缘性,同时,能够充分确保连接时加压方向的导电性。
    进而,在本发明的各向异性导电性粘接剂组合物中,上述高分子电解质优选不含碱金属离子、碱土金属离子以及卤化物离子。由此,能够充分抑制电迁移和腐蚀的发生。
    本发明还提供一种将上述本发明的各向异性导电性粘接剂组合物形成为薄膜状的各向异性导电性薄膜。
    由于该各向异性导电性薄膜使用了上述本发明的各向异性导电性粘接剂组合物,因此即使在连接节距变成窄节距的情况下,也能通过已分散的导电粒子的聚集来充分抑制相邻的电路电极间发生短路,能够获得优异的长期连接可靠性。另外,该各向异性导电性薄膜为薄膜状,因此容易处理。
    本发明还提供一种电路构件的连接结构,其如下形成:在第一基板的主面上形成有第一电路电极的第一电路构件和在第二基板的主面上形成有第二电路电极的第二电路构件,通过被设于上述第一电路构件以及第二电路构件之间的、由上述本发明的各向异性导电性粘接剂组合物的固化物形成的电路连接构件连接,以使上述第一电路电极和上述第二电路电极对置,同时进行电连接。
    该电路构件的连接结构中,电路连接构件由上述本发明的各向异性导电性粘接剂组合物的固化物形成,因此,即使在连接节距变成窄节距的情况下,也能够通过已分散的导电粒子的聚集而充分抑制相邻的电路电极间发生短路,能够获得优异的长期连接可靠性。
    在此,优选:在上述第一电路构件中,上述第一基板为玻璃基板,且上述第一电路电极为金属电极电路;在上述第二电路构件中,上述第二基板为有机绝缘基板。由此,能容易地进行富有弯曲性的有机绝缘基板和玻璃基板的连接。
    另外,优选:在上述第一电路构件中,上述第一基板为半导体芯片,在上述第二电路构件中,上述第二基板为玻璃基板,且上述第二电路电极为金属电极电路。由此,能容易地将半导体芯片直接安装在玻璃基板上。
    本发明进而提供一种被覆粒子的制造方法,其为导电粒子的至少部分表面被绝缘性材料被覆的被覆粒子的制造方法,所述方法包含吸附工序,所述吸附工序交替地反复进行下述第一步和第二步:所述第一步为将上述导电粒子分散于含有上述高分子电解质的溶液中,使上述高分子电解质吸附到该导电粒子的至少部分表面后,进行洗涤;所述第二步为使吸附有上述高分子电解质的上述导电粒子分散于含有无机氧化物微粒的分散液中,使上述无机氧化物微粒吸附到上述导电粒子以及上述高分子电解质的至少部分表面后,进行洗涤。
    根据该被覆粒子的制造方法,能够高效地制造上述本发明的各向异性导电性粘接剂组合物中所使用的被覆粒子。
    发明效果
    根据本发明,能够提供即使在连接节距变成窄节距的情况下也能通过已分散的导电粒子的聚集而充分抑制相邻的电路电极间发生短路、能获得优异的长期连接可靠性的各向异性导电性粘接剂组合物;使用其的各向异性导电性薄膜、电路构件的连接结构、以及被覆粒子的制造方法。
    附图说明
    图1是示意本发明的被覆粒子的一个例子的外观图。
    图2是表示本发明的被覆粒子的制造方法的一实施方式的工序图。
    图3是表示本发明的各向异性导电性薄膜的优选的一实施方式的剖面示意图。
    图4是表示本发明的电路构件的连接结构的优选的一实施方式的剖面示意图。
    符号说明
    1...被覆粒子、2...粘接剂、6...导电粒子、7...高分子电解质、8...无机氧化物微粒、9...绝缘性材料、10...第一电路构件、11...第一基板、12...第一电路电极、20...第二电路构件、21...第二基板、22...第二电路电极、100...各向异性导电性薄膜、100a...电路连接构件、200...电路构件的连接结构。
    具体实施方式
    下面,对本发明的优选实施方式进行详细说明,必要时将同时参照附图。予以说明,附图中相同或相应部分带有同一附图标记,将省略重复的说明。
    本发明的各向异性导电性粘接剂组合物为用于将在第一基板的主面上形成有第一电路电极的第一电路构件和在第二基板的主面上形成有第二电路电极的第二电路构件,以使上述第一电路电极和上述第二电路电极相对配设的状态进行连接的各向异性导电性粘接剂组合物,其中,含有粘接剂和被覆粒子,所述被覆粒子的导电粒子的至少部分表面被覆着含有高分子电解质以及无机氧化物微粒的绝缘性材料。
    作为构成本发明的各向异性导电性粘接剂组合物的粘接剂,可使用例如热反应性树脂和固化剂的混合物。作为优选使用的粘接剂,可举出环氧树脂与潜在性固化剂的混合物。作为潜在性固化剂,可列举咪唑系、酰肼系、三氟化硼-胺络合物、锍盐、胺化酰亚胺(aminimide)、多胺的盐、双氰胺等。此外,作为粘接剂,可使用自由基反应性树脂和有机过氧化物的混合物、通过紫外线等能量线的照射而固化的光固化性树脂。
    作为上述环氧树脂,可将由环氧氯丙烷和双酚A或F、AD等衍生的双酚型环氧树脂、由环氧氯丙烷和苯酚酚醛清漆或甲酚酚醛清漆衍生的环氧酚醛清漆树脂、具有含萘环的骨架的萘系环氧树脂、缩水甘油胺、缩水甘油醚、联苯、脂环式等1分子内具有2个以上缩水甘油基的各种环氧化合物等单独使用或将2种以上混合使用。从防止电迁移的观点出发,这些环氧树脂优选使用将杂质离子(Na+、Cl-等)、水解性氯等降低到300ppm以下的高纯度产品。
    为了降低粘接后的应力或为了提高粘接性,可以在各向异性导电性粘接剂组合物中混合丁二烯橡胶、丙烯酸橡胶、苯乙烯-丁二烯-苯乙烯橡胶、腈-丁二烯橡胶、硅橡胶等。另外,作为各向异性导电性粘接剂组合物,可以使用糊状或薄膜状的组合物。为了将各向异性导电性粘接剂组合物制成薄膜状,配合苯氧树脂、聚酯树脂、聚酰胺树脂等热塑性树脂作为薄膜形成性高分子是有效的。这些薄膜形成性高分子对缓和反应性树脂固化时的应力也有效。尤其是在薄膜形成性高分子具有羟基等官能团的情况下,为了提高粘接性而更优选。薄膜形成如下进行,即将至少包含这些中的环氧树脂、丙烯酸橡胶、潜在性固化剂的粘接剂组合物溶解或分散在有机溶剂中,由此液状化,将其涂布到剥离性基材上,在固化剂的活性温度以下除去溶剂而形成薄膜。此时为了提高材料的溶解性,所使用的溶剂优选为芳香族烃系和含氧系的混合溶剂。
    构成本发明的各向异性导电性粘接剂组合物的被覆粒子为导电粒子的至少部分表面被覆着含有高分子电解质以及无机氧化物微粒的绝缘性材料的粒子。这里,图1是示意表示本发明的被覆粒子的一个例子的外观图。如图1所示,被覆粒子1具有如下的结构,即,具有导电粒子6的至少部分表面被覆着含有高分子电解质7和无机氧化物微粒8的绝缘性材料9的结构。予以说明,本发明中,导电粒子6至少部分表面被覆着的状态是指:用显微镜确认时,如图1所示那样,在大粒径的粒子上沾着小粒径的粒子的状态。
    本发明中,构成被覆粒子1的导电粒子6为包含例如Au、Ag、Ni、Cu或焊锡等金属的粒子,更优选为在由聚苯乙烯等高分子形成的球状的核材表面上形成有Au、Ag、Ni、Cu、焊锡等的导电层的粒子。另外,导电粒子6也可以是在具有导电性的粒子的表面上形成有Su、Au、焊锡等的表面层的粒子。
    导电粒子6的粒径需要比使用各向异性导电性粘接剂组合物而连接的电路构件的电极的最小的间隔还小,且在电极的高度存在偏差的情况下,优选比其高度的偏差更大。导电粒子6的平均粒径优选为1~10μm,更优选为2~4μm。平均粒径小于1μm的话,存在粒子难以分级的趋势,超过10μm的话,在窄节距的电极间连接中,存在容易发生短路的趋势。
    本发明中的被覆粒子1,为上述导电粒子6的表面被由含有高分子电解质7以及无机氧化物微粒8的绝缘性材料9所形成的绝缘性覆膜被覆的粒子。这里,作为绝缘性材料9,优选由高分子电解质7和无机氧化物微粒8交替层叠而成的材料。
    作为被覆粒子1的具体制造方法,优选使用包含吸附工序的方法,所述吸附工序交替地反复进行下述第一步和第二步:(1)第一步为将导电粒子6分散于含有高分子电解质7的高分子电解质溶液中,使高分子电解质7吸附到该导电粒子6的至少部分表面后,进行洗涤(冲洗);(2)第二步为使吸附有高分子电解质7的导电粒子6分散于含有无机氧化物微粒8的分散液中,使无机氧化物微粒8吸附到导电粒子6以及高分子电解质7的至少部分表面后,进行洗涤(冲洗)。
    在上述吸附工序中,第一步以及第二步可至少各进行一次,也可以交替地进行两次以上。在反复进行两次以上第一步以及第二步的情况下,可以使经第一次的第一步以及第二步后的吸附有高分子电解质7以及无机氧化物微粒8的导电粒子6,再通过第一步以及第二步吸附高分子电解质7以及无机氧化物微粒8。通过该包含交替地反复进行该第一步以及第二步的吸附工序,能够高效地制造导电粒子6的表面被覆着由高分子电解质7和无机氧化物微粒8交替层叠而成的绝缘性材料9的被覆粒子1。这里,图2是表示本发明的被覆粒子1的制造方法的一实施方式的工序图。如图2的(a)~(c)所示那样,通过第一步使高分子电解质7吸附到导电粒子6的至少部分表面,通过第二步,使无机氧化物微粒8吸附到导电粒子6以及高分子电解质7的至少部分表面,由此能够获得被覆粒子1。
    这种方法被称为交替层叠法(Layer-by-Layer assembly)。交替层叠法是G.Decher等于1992年提出的形成有机薄膜的方法(Thin Solid Films,210/211,p831(1992))。该方法是如下的方法,即,通过将基材交替地浸渍到具有正电荷的聚合物电解质(聚阳离子)和具有负电荷的聚合物电解质(聚阴离子)的水溶液中,将通过静电引力吸附到基板上的聚阴离子和聚阴离子的组合进行层叠而获得复合膜(交替层叠膜)。
    交替层叠法中,通过静电引力形成在基材上的材料的电荷和溶液中具有相反电荷的材料相互吸引,由此进行膜生长,因此随着吸附的推进而发生电荷的中和的话,则不会继续发生吸附。因此,只要达到某个饱和点,膜厚将不会在该厚度基础上继续增加。Lvov等报道了将交替层叠法应用于微粒,使用二氧化硅、二氧化钛和氧化铈各微粒的分散液,通过交替层叠法层叠具有与微粒的表面电荷相反的电荷的高分子电解质的方法(Langmuir、Vol.13、(1997)p6195-6203)。使用该方法的话,通过交替层叠具有负的表面电荷的二氧化硅微粒和作为具有与其相反的电荷的聚阳离子的聚二烯丙基二甲基氯化铵(PDDA)或聚乙烯亚胺(PEI)等,能够形成交替层叠有二氧化硅微粒和高分子电解质而成的微粒层叠薄膜。
    将导电粒子6浸渍于高分子电解质溶液或无机氧化物微粒的分散液后,在浸渍于具有相反电荷的微粒分散液或高分子电解质溶液之前,优选通过仅用溶剂进行冲洗以洗掉过量的高分子电解质溶液或无机氧化物微粒的分散液。作为这种冲洗中所使用的溶剂,有水、醇、丙酮等,但从除去过量的高分子电解质溶液或无机氧化物微粒的分散液的观点出发,通常使用比电阻值为18MΩ·cm以上的离子交换水(所谓的超纯水)。吸附在导电粒子6上的高分子电解质7以及无机氧化物微粒8相互间以及与导电粒子6表面发生静电吸附,因此,在该冲洗工序中不会剥离。进而,通过无机氧化物微粒8表面的极性基(主要是羟基)的极化而与导电粒子6表面的例如金属或部分金属氧化物发生静电相互作用(引力)。另外,在相反电荷的溶液中,为了防止带入未发生吸附的高分子电解质7或无机氧化物微粒8,优选进行冲洗。在不进行该冲洗的情况下,由于带入而使溶液内阳离子、阴离子混杂,有时引起高分子电解质7和无机氧化物微粒8的聚集、沉淀。
    作为高分子电解质7,可使用在水溶液中电离、主链或侧链具有带有电荷的官能团高分子(聚阴离子或聚阳离子)。这种情况下,作为聚阴离子,通常为具有磺酸、硫酸、羧酸等能带负电荷的官能团的物质,可使用例如聚苯乙烯磺酸(PSS)、聚乙烯硫酸(PVS)、葡聚糖硫酸酯、硫酸软骨素、聚丙烯酸(PAA)、聚甲基丙烯酸(PMA)、聚马来酸、聚富马酸等。另外,作为聚阳离子,通常为具有季铵基、氨基等能带正电荷的官能团的物质,可使用例如聚乙烯亚胺(PEI)、聚烯丙基胺盐酸盐(PAH)、聚二烯丙基二甲基氯化铵(PDDA)、聚乙烯吡啶(PVP)、聚赖氨酸、聚丙烯酰胺、以及含有这些中的至少1种以上的共聚物等。
    这些高分子电解质7之中,为了避免电迁移和腐蚀的发生,优选不含碱金属(Li、Na、K、Rb、Cs)离子、碱土金属(Ca、Sr、Ba、Ra)离子、以及卤化物离子(氟离子、氯离子、溴离子、碘离子)。
    这些高分子电解质7中任意一种都为水溶性或在水和有机溶剂的混合液中可溶的物质。高分子电解质7的分子量由于所使用的高分子电解质7的种类而不能一概而论,但通常优选300~200000左右。予以说明,溶液中的高分子电解质7的浓度通常优选为0.01~10质量%左右。另外,高分子电解质溶液的pH没有特别限定。
    本发明中使用的高分子电解质溶液通常为将高分子电解质7溶解在水或水和水溶性有机溶剂的混合溶剂中而形成的溶液。作为可使用的水溶性有机溶剂,可列举出例如甲醇、乙醇、丙醇、丙酮、二甲基甲酰胺、乙腈等。
    通过使用这些高分子电解质7,能在导电粒子6的表面均匀、无缺陷地形成高分子电解质薄膜,即使电路电极间隔为窄节距也能充分确保绝缘性,应该进行电连接的对置的电极间连接电阻低,能获得良好的电连接。
    作为无机氧化物微粒8,优选由含有选自硅、铝、锆、钛、铌、锌、锡、铈以及镁所组成的组中的至少一种元素的氧化物构成,这些微粒可单独使用或将二种以上混合使用。此外,这些中,控制了粒径的水分散胶态二氧化硅(SiO2)由于绝缘性优异而最优选。作为这样的无机氧化物微粒8的市售品,可列举例如snowtex、snowtexUP(以上为日产化学工业公司制)、クオ一トロンPL系列(扶桑化学工业公司制)等。从获得充分的绝缘可靠性的观点出发,期望分散溶液中的碱金属离子以及碱土金属离子的合计浓度为100ppm以下。另外,优选使用通过金属烷氧基化合物的水解反应即所谓的溶胶凝胶法制造的无机氧化物微粒。
    无机氧化物微粒8的大小方面,优选通过利用BET法进行的比表面积换算法或通过X射线小角散射法测得的平均粒径为20nm~500nm。无机氧化物微粒8的平均粒径小于20nm的话,吸附在导电粒子6上的无机氧化物微粒8无法充分发挥绝缘膜的作用,存在容易发生部分短路的趋势。另一方面,平均粒径超过500nm的话,存在连接时加压方向的导电性不充分的趋势。
    另外,各向异性导电性粘接剂组合物中的被覆粒子1的含量方面,以各向异性导电性粘接剂组合物中的固体成分的总体积为基准优选为0.1~30体积%,更优选为0.2~15体积%。该含量小于0.1体积%的话,存在导电性降低的趋势,超过30体积%的话,存在绝缘性降低的趋势。
    本发明的各向异性导电性粘接剂组合物中,除上述被覆粒子1之外,还可以混入、分散有无机填充材料。无机填充材料没有特别限制,可列举出例如熔融二氧化硅、结晶二氧化硅、硅酸钙、氧化铝、碳酸钙等的粉体。无机填充材料的配合量方面,优选相对于100质量份粘接剂为10~200质量份。对于降低各向异性导电性粘接剂组合物的热膨胀系数来说,无机填充材料的配合量越大越有效,但配合过多的量的话,存在由于粘接性和在连接部的粘接剂的排除性降低而容易发生导通不良的趋势,配合量过少的话,则无法充分降低热膨胀系数,因此,配合量更优选相对于100质量份粘接剂为20~90质量份。另外,从防止连接部的导通不良的观点出发,无机填充材料的平均粒径优选为3μm以下。另外,从防止连接时树脂流动性降低以及芯片钝化膜破损的观点出发,期望使用球状填料。无机填充材料也可以与被覆粒子1一起使用,另外,使用各向异性导电性粘接剂组合物来形成各向异性导电性薄膜并将粘接剂层多层化的情况下,也可以将无机填充材料混入、分散到不使用被覆粒子1的层中。
    图3是表示本发明的各向异性导电性薄膜(电路连接用粘接薄膜)的优选的一实施方式的剖面示意图。图3中所示的各向异性导电性薄膜100是将含有被覆粒子1和粘接剂2的各向异性导电性粘接剂组合物形成为薄膜状而成的。
    各向异性导电性薄膜100可通过将例如液状的各向异性导电性粘接剂组合物通过辊涂机等涂布到脱模性薄膜上,干燥后,从脱模性薄膜剥离而获得。作为脱模性薄膜优选使用经表面处理而具有脱模性的PET薄膜等。
    另外,各向异性导电性薄膜100中,还可以将粘接剂层多层化。例如,为了赋予各向异性导电性,可以制成:将含有被覆粒子的粘接剂层和不含被覆粒子及导电粒子的粘接剂层层压而成的二层结构的各向异性导电性薄膜;在含有被覆粒子的粘接剂层两侧层压不含被覆粒子、导电粒子的粘接剂层而成的三层结构的各向异性导电性薄膜。这些多层结构的各向异性导电性薄膜能够在连接电极上高效捕获导电粒子,因此对窄节距连接有利。另外,考虑到与电路构件的粘接性,还可以对对置的电路构件分别层压粘接性优异的粘接薄膜,然后再进行电路构件之间的连接。
    图4是表示本发明的电路构件的连接结构的优选的一实施方式的剖面示意图。图4中所示的电路构件的连接结构200是具有第一基板11以及形成在其主面上的第一电路电极12的第一电路构件10、与具有第二基板21以及形成在其主面上的第二电路电极22的第二电路构件20,通过由上述本发明的各向异性导电性粘接剂组合物或各向异性导电性薄膜100固化后的固化物形成的、形成在第一电路构件10和第二电路构件20之间的电路连接构件100a进行连接而成的结构。在电路构件的连接结构200中,第一电路电极12和第二电路电极22对置且进行电连接。
    电路连接构件100a是由本发明的各向异性导电性粘接剂组合物或各向异性导电性薄膜100固化后的固化物形成的,含有上述粘接剂2的固化物2a以及分散于其中的被覆粒子1。并且,第一电路电极12和第二电路电极22通过被覆粒子1进行电连接。
    作为第一电路构件10和第二电路构件20,只要是形成有以电连接为必需的电极即可,此外没有特别限制。具体可列举出液晶显示器中使用的由ITO等形成电极的玻璃基板或塑料基板、印刷布线板、陶瓷布线板、挠性布线板、半导体硅芯片等,根据需要还可以将这些组合使用。这样,在本实施方式中,可以使用以印刷布线板和聚酰亚胺等有机物所形成的材质为主,以及铜、铝等金属或ITO(indium tin oxide,氧化铟锡)、氮化硅(SiNx)、二氧化硅(SiO2)等无机材质这样的具有多种多样的表面状态的电路构件。
    电路构件的连接结构200例如可通过如下方法获得,即,依次层叠第一电路构件10、上述本发明的各向异性导电性薄膜100和第二电路构件20并使第一电路电极11和第二电路电极21对置,然后加热以及加压,将第一电路构件10和第二电路构件20连接以使第一电路电极11和第二电路电极21进行电连接。
    在该方法中,首先,在将形成于剥离性基材上的各向异性导电性薄膜100贴合到第二电路构件20上的状态进行加热以及加压,将各向异性导电性薄膜100暂时粘接,将剥离性基材(脱模性薄膜)剥离后,设置第一电路构件10同时对准电路电极,能够制备出依次层叠第二电路构件20、各向异性导电性薄膜100以及第一电路构件10的层叠体。
    对上述层叠体进行加热以及加压的条件,可根据各向异性导电性薄膜100中的粘接剂2的固化性等适当进行调整,以使各向异性导电性薄膜固化、获得充分的粘接强度。
    实施例
    下面,通过实施例对本发明进行更具体的说明,但本发明不限于这些实施例。
    [实施例1]
    (被覆粒子的制备)
    在树脂粒子(平均粒径3μm的聚苯乙烯系球状树脂粒子、Merck Chime公司生产,商品名:Estapor L300)的表面上,通过化学镀镍形成厚90nm的镍覆膜,再在该镍覆膜上通过置换镀金形成厚30nm的金覆膜,由此获得作为导电粒子的被覆金属膜的导电树脂粒子。
    接着,用以下方法通过被覆绝缘性材料来被覆获得的导电粒子的表面。使用属于阳离子性聚合物的聚乙烯亚胺作为高分子电解质,使用二氧化硅作为无机氧化物微粒。首先,用超纯水(18MΩ·cm)稀释聚乙烯亚胺水溶液(浓度为30质量%,日本触媒公司制,商品名:epomin P1000),调整至浓度为0.3质量%。另外,胶态二氧化硅分散液(浓度为20质量%,扶桑化学工业公司制,商品名:クオ一トロンPL-13、平均粒径130nm)也用超纯水(18MΩ·cm)稀释,调整至浓度为0.1质量%。予以说明,该胶态二氧化硅分散液中的二氧化硅微粒的表面电位(ζ电位)为-20mV。
    将2g上述导电粒子加入到200g上述聚乙烯亚胺水溶液(浓度为0.3质量%)中,搅拌15分钟,由此制备导电粒子的表面吸附有聚乙烯亚胺的高分子电解质被覆粒子。然后,用孔径1μm的膜滤器(密理博公司制)滤出高分子电解质被覆粒子,将其在膜滤器上用200g超纯水洗涤2次,从而除去未吸附的聚乙烯亚胺。接着,将从膜滤器回收的高分子电解质被覆粒子加入到200g上述胶态二氧化硅分散液(浓度为0.1质量%)中,搅拌15分钟,由此制备在高分子电解质被覆粒子的表面吸附有二氧化硅微粒的被覆粒子。然后,用与上述同样的孔径1μm的膜滤器滤出被覆粒子,将其在膜滤器上用200g超纯水洗涤2次,从而除去未吸附的胶态二氧化硅微粒。进而,为了除去水,用200g异丙醇洗涤被覆粒子。然后,将从膜滤器回收的被覆粒子在80℃的烘箱内保存1小时,蒸发掉异丙醇。这样,获得在导电粒子的表面交替吸附有作为绝缘性材料的聚乙烯亚胺和平均粒径130nm的胶态二氧化硅的被覆粒子。
    (各向异性导电性粘接剂组合物的制备)
    按照以下步骤制备粘接剂溶液。首先,将100g苯氧树脂(联合碳化物公司生产,商品名:PKHC)、75g丙烯酸橡胶(40质量份丙烯酸丁酯、30质量份丙烯酸乙酯、30质量份丙烯腈以及3质量份甲基丙烯酸缩水甘油酯的共聚物,重均分子量:85万)溶解于400g醋酸乙酯,得到固体成分为30质量%的树脂溶液。接着,将300g含有微胶囊型潜在性固化剂的液状环氧树脂(环氧当量185、旭化成エポキシ株式会社生产,商品名:ノバキユアHX-3941)加入上述树脂溶液中并搅拌,由此制备粘接剂溶液。
    接着,将上述被覆粒子分散到上述粘接剂溶液中,并使被覆粒子相对于100体积份该粘接剂溶液中的固体成分为9体积份,由此得到各向异性导电性粘接剂组合物的溶液。
    (各向异性导电性薄膜的制备)
    用辊涂机将获得的溶液涂布到隔板(经硅酮处理的聚对苯二甲酸乙二酯薄膜,厚40μm)上,90℃下干燥10分钟,形成厚25μm的各向异性导电性粘接剂层。由此,得到各向异性导电性薄膜。
    (电路构件的连接结构的制备)
    按照以下所示的步骤将带金凸点(面积:30×90μm、间隔:10μm、高:15μm、凸点数:362)的芯片(1.7×1.7mm、厚:0.5μm)和带Al电路的玻璃基板(厚:0.7mm)进行连接。首先,将上述各向异性导电性薄膜(2×19mm)通过在80℃、0.98MPa(10kgf/cm2)的条件下加热以及加压而粘贴到带Al电路的玻璃基板上,然后,从各向异性导电性薄膜剥离隔板,进行芯片的金凸点和Al电路的对准。
    接着,在190℃、40g/凸点、10秒钟的条件下,从芯片上方进行加热以及加压,进行正式连接。由此制备电路构件的连接结构。在获得的电路构件的连接结构中,连接电阻最高为每1凸点100mΩ,平均为30mΩ,相邻的凸点间的绝缘电阻均为1×108Ω以上。另外,这些值在进行1000个循环的热冲击试验后也没有变化,可确认其显示良好的长期连接可靠性,所述热冲击试验为在-40℃下保持30分钟后,升温到100℃,然后在100℃下保持30分钟。
    [比较例1]
    使用表面未被绝缘性材料被覆的与实施例1相同的被覆金属膜的导电树脂粒子作为导电粒子,以代替被覆粒子,除此之外,与实施例1同样制备各向异性导电性薄膜。
    接着,使用制备的各向异性导电性薄膜,按照以下所示的步骤将带金凸点(面积:40×90μm、间隔:10μm、高:15μm、凸点数:362)的芯片(1.7×1.7mm、厚:0.5μm)与带Al电路的玻璃基板(厚:0.7mm)进行连接。
    首先,将各向异性导电性薄膜(2×19mm)在80℃、0.98MPa(10kgf/cm2)的条件下进行加热以及加压,从而将其粘贴到带Al电路的玻璃基板上,然后,从各向异性导电性薄膜剥离隔板,进行芯片的金凸点和Al电路的对准。
    接着,在190℃、40g/凸点、10秒钟的条件下,从芯片上方进行加热以及加压,进行正式连接。由此,制备电路构件的连接结构。在获得的电路构件的连接结构中,连接电阻为每1凸点最高130mΩ,平均为80mΩ,但不能充分确保相邻的凸点间的绝缘性,在部分凸点间随着导电粒子的聚集而发生了短路。
    本发明的各向异性导电性粘接剂组合物,由于使用导电粒子的表面被高分子电解质薄膜以及无机氧化物微粒均匀被覆的被覆粒子,因此,在相邻的电极间的间隔为15μm以下的窄间隔中,即使被覆粒子聚集也能通过含有高分子电解质和无机氧化物微粒的绝缘性覆膜来抑制导电粒子间发生短路,能提高窄节距连接性。另外,薄膜状的粘接剂处理性方面也优异。
    因此,本发明的各向异性导电性粘接剂组合物,由于在连接(1)LCD、等离子显示器或有机EL面板和TAB或FPC、(2)TAB和FPC、(3)LCD、等离子显示器或有机EL面板和IC芯片、(4)IC芯片和印刷基板等时,仅在加压方向上进行电连接,能适当进行使用,连接可靠性也优异。
    产业上的可利用性
    如上述说明那样,根据本发明能够提供即使在节距变成窄节距的情况下也能通过已分散的导电粒子的聚集来充分抑制相邻的电路电极间发生短路、能获得优异的长期连接可靠性的各向异性导电性粘接剂组合物、使用其的各向异性导电性薄膜、电路构件的连接结构、以及被覆粒子的制造方法。

    关 键  词:
    各向异性 导电性 粘接剂 组合 薄膜 电路 构件 连接 结构 以及 被覆 粒子 制造 方法
      专利查询网所有文档均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    0条评论

    还可以输入200字符

    暂无评论,赶快抢占沙发吧。

    关于本文
    本文标题:各向异性导电性粘接剂组合物、各向异性导电性薄膜、电路构件的连接结构、以及被覆粒子的制造方法.pdf
    链接地址:https://www.zhuanlichaxun.net/p-811751.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
    经营许可证编号:粤ICP备2021068784号-1