《超声波图像处理装置.pdf》由会员分享,可在线阅读,更多相关《超声波图像处理装置.pdf(16页完整版)》请在专利查询网上搜索。
1、(10)授权公告号 CN 101489488 B (45)授权公告日 2011.11.23 CN 101489488 B *CN101489488B* (21)申请号 200780027577.X (22)申请日 2007.06.19 197564/2006 2006.07.20 JP A61B 8/00(2006.01) (73)专利权人 株式会社日立医药 地址 日本东京都 (72)发明人 东隆 增井裕也 梅村晋一郎 (74)专利代理机构 中科专利商标代理有限责任 公司 11021 代理人 朱丹 CN 1493258 A,2004.05.05, 全文 . JP 特表平11-501841 A,。
2、1999.02.16,全文. JP 特开平 7-51270 A,1995.02.28, 全文 . JP 特开2004-267584 A,2004.09.30,全文. (54) 发明名称 超声波图像处理装置 (57) 摘要 按照对原始数据实施噪声去除 ( 平滑化 ) 处 理后去除高频噪声成分、 并对此平滑化图像实施 边缘增强处理后再次去除噪声成分这样的顺序执 行非线性处理。 并且, 最后进行与原始图像加权合 成处理。 (30)优先权数据 (85)PCT申请进入国家阶段日 2009.01.20 (86)PCT申请的申请数据 PCT/JP2007/062291 2007.06.19 (87)PCT申。
3、请的公布数据 WO2008/010375 JA 2008.01.24 (51)Int.Cl. (56)对比文件 审查员 谢楠 (19)中华人民共和国国家知识产权局 (12)发明专利 权利要求书 2 页 说明书 6 页 附图 7 页 CN 101489488 B1/2 页 2 1. 一种超声波图像处理装置, 包括 : 照射机构, 对被检测体照射超声波 ; 检测机构, 检测来自上述被检测体的超声波信号 ; 第 1 处理机构, 根据上述检测机构的检测结果, 形成第 1 图像数据 ; 第 2 处理机构, 从上述第 1 图像数据中去除噪声成分, 形成第 2 图像数据 ; 第 3 处理机构, 对上述第 2。
4、 图像数据进行边缘增强处理, 形成第 3 图像数据 ; 第 4 处理机构, 从上述第 3 图像数据中去除噪声成分, 形成第 4 图像数据 ; 以及 第 5 处理机构, 对上述第 1 图像数据和上述第 4 图像数据进行加法处理或乘法处理。 2. 根据权利要求 1 所述的超声波图像处理装置, 其特征在于, 上述第 5 处理机构, 对上述第 1 图像数据和上述第 4 图像数据进行加权后进行加法运 算或乘法运算, 形成第 5 图像数据。 3. 根据权利要求 1 所述的超声波图像处理装置, 其特征在于, 上述第 4 处理机构去除由上述第 3 处理机构增强的噪声成分。 4. 根据权利要求 2 所述的超声波。
5、图像处理装置, 其特征在于, 上述第 5 处理机构的加权, 形成校正图像并设定上述校正图像内的噪声区域, 求解出上述噪声区域中的辉度分布的标准偏差和平均值, 通过用上述平均值去除上述 标准偏差, 计算出上述加权的比率下的变化系数, 计算上述变化系数为最小值的比率, 使用上述变化系数为最小值的比率进行加权。 5. 根据权利要求 1 所述的超声波图像处理装置, 其特征在于, 上述第 2 处理机构和 / 或上述第 4 处理机构包括相似度滤波器、 加权平均滤波器、 方向 依赖型滤波器及形态学滤波器中的至少一个滤波器。 6. 根据权利要求 1 所述的超声波图像处理装置, 其特征在于, 上述第3处理机构,。
6、 对于上述第2图像数据, 应用不同的滤波器长或不同的滤波器成分 值的微分滤波器形成多个图像数据, 基于上述多个图像数据按每一像素位置进行最大值处 理, 形成由最大值辉度的像素数据构成的合成图像, 作为上述第 3 图像数据。 7. 根据权利要求 1 所述的超声波图像处理装置, 其特征在于, 上述第3处理机构, 对上述第2图像数据, 应用对于照射上述超声波的深度方向具有较 强的微分效果、 并且对于与深度方向垂直的方向微分效果较弱的微分滤波器。 8. 一种超声波图像处理装置, 其特征在于, 包括 : 照射机构, 对被检测体照射超声波 ; 检测机构, 检测来自上述被检测体的超声波信号 ; 根据上述检测。
7、机构的检测结果形成图像数据的机构 ; 对于上述图像数据并列进行边缘增强处理、 连续性增强处理和噪声去除处理的机构 ; 对作为上述边缘增强处理、 连续性增强处理和噪声去除处理的处理结果而得到的 3 种 图像进行加权合成并求出合成图像的机构 ; 以及 加权合成上述合成图像和上述图像数据的机构。 9. 根据权利要求 8 所述的超声波图像处理装置, 其特征在于, 对上述 3 种图像进行加权合成并求出合成图像的机构, 形成校正图像, 由上述 3 种图像通过改变合成比率, 形成多个合成图像, 权 利 要 求 书 CN 101489488 B2/2 页 3 针对上述多个合成图像的每一个合成图像和上述校正图像。
8、, 求解有关各像素的辉度的 差分的平方和, 求解上述平方和为最小值的上述合成比率, 用于上述 3 种图像的加权合成中。 10. 根据权利要求 2 所述的超声波图像处理装置, 其特征在于, 还包括显示器和上述加权的比率输入机构, 上述显示器排列显示上述第 4 图像数据和 上述第 5 图像数据这 2 个图像数据, 上述加权的比率输入机构变更上述加权的比率。 11. 根据权利要求 10 所述的超声波图像处理装置, 其特征在于, 上述显示器显示根据由上述加权的比率输入机构变更的上述加权的比率而形成的上 述第 5 图像数据。 权 利 要 求 书 CN 101489488 B1/6 页 4 超声波图像处理。
9、装置 0001 本申请要求 2006 年 7 月 20 日申请的日本专利申请第 2006-1975645 号的优先权, 在本申请中参照其内容并引用。 技术领域 0002 本发明是涉及利用超声波进行生物体内成像的超声波摄像方法及超声波摄像装 置的技术。 背景技术 0003 用于医疗诊断的超声波摄像装置 (B 模式 ), 通过向生物体发射超声波并接收声阻 抗在空间上变化的、 从生物体内的部位反射的回波信号, 由发送接收的时间差来推定反射 源的位置, 将回波信号强度转换为辉度进行图像化。已知在超声波断层像中会发生被称为 斑纹的固有人造物 (artifact)( 虚像 ), 为了改善画质就必须减少斑纹。
10、的影响。但是, 由于 考虑到在斑纹模式中反映出对生物医学组织的密度等诊断有用的特性, 所以希望一面去除 斑纹以外的人造物, 一面以诊断者 ( 操作者 ) 易于看见的等级来显示斑纹。 0004 作为使斑纹最小化的方法, 过去例如 中所述, 已有一种形成生物体 内组织的纹理平滑图像和构造增强图像、 并加权合成 2 个图像数据的方法。由于斑纹的 分布遵从瑞利概率密度 (Rayleigh probabilitydensity) 的性质, 所以采用根据统计的 相似度进行加权平均处理的相似度滤波器来产生纹理平滑图像。此外, 使用微分滤波器 (differential filter) 等高通滤波器来形成构造。
11、增强图像。 0005 此外, 例如 中所述, 作为不使边缘的分辨率劣化、 减少噪声的方法, 已有一种以平滑图像和原始图像的差分作为高频图像、 对它们进行动态范围压缩后与平滑 图像或原始图像进行加法运算的方法。 0006 并且, 例如, 作为一面加强边缘一面减少噪声的方法, 已有如下方法, 该方法形成 清晰度增强图像、 平滑化图像和边缘检测图像, 并由这些图像计算边缘部分被去除的噪声 数据, 由清晰度增强图像减去噪声数据并产生合成图像。 0007 专利文献 1 : JP 特开 2004-129773 号公报 0008 专利文献 2 : JP 特开 2000-163570 号公报 发明内容 000。
12、9 在上述背景技术中, 依然存在如下未解决的问题。在作为 例示的方 法中, 对通过构造增强处理增强的噪声成分仅进行加权加法运算的线性处理, 不能充分减 少噪声成分。此外, 在作为 例示的方法中, 虽然减少了噪声, 但无法获得边缘 的增强效果。 并且, 在一面增强边缘一面减少噪声的方法中, 在边缘被误检测为噪声的情况 下, 存在边缘部分显著劣化、 或具有斑纹模式的信息消失这种问题。 0010 在本发明中, 关于通过超声波照射得到的数据, 将实施了高频噪声成分去除、 此后 的边缘增强处理以及再此后的高频噪声成分去除的图像数据和原始的数据进行加法运算, 说 明 书 CN 101489488 B2/6。
13、 页 5 从而得到合成图像。 0011 例如, 按照对原始数据实施平滑化处理后去除高频噪声成分、 对此平滑化图像实 施边缘增强处理后再次去除噪声成分这样的顺序逐步实施非线性处理。并且, 最后进行与 原始图像的加权合成处理。 0012 根据本发明, 通过逐步实施非线性处理就能兼顾边缘增强效果和噪声去除效果, 此外, 通过原始图像的合成就能保持具有斑纹模式的信息。 0013 基于涉及附图的以下本发明的实施例的记载, 本发明的其他目的、 特征及优点将 会更明了。 附图说明 0014 图 1 表示本发明的超声波图像处理方法的系统结构例。 0015 图 2A 表示本发明的超声波图像处理方法的处理例。 0。
14、016 图 2B 表示本发明的超声波图像处理方法的处理例。 0017 图 2C 表示本发明的超声波图像处理方法的处理例。 0018 图 2D 表示本发明的超声波图像处理方法的处理例。 0019 图 2E 表示本发明的超声波图像处理方法的处理例。 0020 图 2F 表示本发明的超声波图像处理方法的处理例。 0021 图 3 表示本发明的超声波图像处理方法的处理顺序。 0022 图 4 表示本发明的合成比率的设定例。 0023 图 5 表示本发明的合成比率设定的处理顺序。 0024 图 6 表示本发明的相同区域提取的处理顺序。 0025 图 7 表示本发明的边缘增强处理的处理顺序。 0026 图。
15、 8 表示本发明的并列处理的处理顺序。 0027 图 9 表示本发明的并列处理中的合成比率的设定例。 0028 图 10 表示本发明的并列处理中的合成比率的处理顺序。 0029 图 11 表示本发明的超声波图像处理方法的功能块。 具体实施方式 0030 图 1 中示出了超声波图像处理方法的系统结构例。超声波元件按一维排列的超声 波探头 1 向生物体发射超声波射束 ( 超声波脉冲 ), 接收从生物体反射的回波信号 ( 接收 信号 )。在控制系统 4 的控制下, 具有与发射焦点对应的延迟时间的发射信号由发射射束 形成装置 3 输出, 通过收发转换开关 5 传送给超声波探头 1。在生物体内被反射或散。
16、射并 返回超声波探头 1 的超声波射束, 由超声波探头 1 转换为电信号, 通过收发转换开关 5 作为 接收信号传送给接收射束形成装置 6。接收射束形成装置 6 是一种混合相位偏差 90 度的 2 个接收信号的复合射束形成装置, 其在控制系统 4 的控制下, 进行按照接收计时调整延迟 时间的动态聚焦, 并输出实部和虚部的 RF 信号。此 RF 信号经包络线检波单元 7 检波后转 换为视频信号, 输入给扫描变换器8并转换为图像数据(B模式图像数据)。 在此, 从扫描变 换器 8 输出的、 基于来自被检测体的超声波信号得到的图像数据 ( 原始图像 ) 被传送到处 理单元 10, 通过信号处理被加工。
17、成已进行噪声去除和边缘增强的图像。加工过的图像在合 说 明 书 CN 101489488 B3/6 页 6 成单元 12 与原始图像进行加权合成, 传送给显示单元 13 并进行显示。在参数设定单元 11 中, 进行用于处理单元中的信号处理的参数和合成单元中的合成比率的设定。这些参数由 操作者 ( 诊断者 ) 从用户界面 2 进行输入。用户界面 2 具备输入旋钮, 其能够按照诊断目 标的对象 ( 血管中的血栓轮廓的构造、 肝脏的肝硬化进行程度的纹理模式、 内脏器官中的 肿瘤组织的构造和纹理模式两方面, 等 ), 设定使加工图像和原始图像哪一个优先。例如, 图像的显示方法排列加工过的图像和合成过的。
18、图像这 2 个图像数据, 并在显示器中进行显 示, 如果操作者改变了设定合成比率的输入旋钮 ( 比率输入机构 ), 则更新并显示对应的合 成图像。 另一方面, 如果改变了设定噪声去除或边缘增强的处理参数的输入旋钮, 则更新对 应的加工图像的显示, 同时还同步更新并显示由此加工图像合成的合成图像。 0031 图 2A-2F 中示出了处理单元 10 及合成单元 12 中的超声波图像处理方法的处理 例。首先对原始图像 ( 图 2A) 实施噪声去除处理, 求出噪声去除图像 ( 图 2B)。接着, 为了 提高构造的可见度, 进行边缘增强处理, 获得边缘增强图像(图2C)。 此时, 由于会增强残留 在噪声。
19、去除图像(图2B)中的噪声成分, 所以进一步应用噪声去除处理, 将其转换为噪声去 除图像 ( 图 2D)。由于此噪声去除图像 ( 图 2D) 丧失了原始图像所具有的斑纹模式信息, 所 以最后以适合的合成比率合成 ( 加法运算或乘法运算 ) 原始图像, 从而获得合成图像 ( 图 2F)。图 2E 表示以适合的加法比率进行处理后的原始图像。再有, 噪声去除处理也可以是 平滑化处理。在超声波断层像中产生的斑纹噪声, 例如 所述, 其概率密度函 数遵从瑞利分布是已知的。作为电噪声与一般的高斯分布型噪声比较时, 瑞利分布呈现出 虽然特别大的噪声成分少的频率但也会产生的特性。由此, 难于通过 1 次噪声去。
20、除处理进 行完全去除, 一部分残留的噪声成分通过增强处理会被增强。 因此, 应用再次噪声去除处理 的方法就会有效。 此外, 由于斑纹模式具有对生物医学组织的密度等的诊断有用的信息, 所 以并不是完全消除, 而是以最终看得见的等级控制动态范围并实施合成处理。 0032 图 11 中示出了实施图 2A- 图 2F 的处理例的功能块。原始图像由图像输入装置 (8) 输入, 顺序经过第 1 噪声去除处理单元 (22)、 边缘增强处理单元 (23)、 第 2 噪声去除处 理单元 (24) 进行加工。加工过的图像在合成处理单元 (25) 与原始图像进行合成, 在图像 输出装置 (13) 中进行显示。再有,。
21、 各处理单元的处理参数由操作者在参数设定单元 (11) 加以设定。 0033 图 3 中示出了超声波图像处理方法的处理顺序。首先, 输入原始图像 ( 步骤 51), 接着, 进行第 1 噪声去除处理 ( 步骤 52)。作为用于噪声去除处理的滤波器, 使用相似度 滤波器 (similarity filter)、 加权平均滤波器 (weighted average filter)、 方向依赖型 (directional adaptive) 滤波器、 或形态学滤波器 (morphology filter)。例如, 在 中记载了一种相似度滤波器。此外, 最普通的加权平均滤波器是一种在加权范围内 设定固。
22、定的加权值并实施移动平均(moving average)处理的滤波器, 虽然边缘构造的保持 能力差, 但能进行高速处理。方向依赖型滤波器是一种例如 JP 特开 2001-14461 号公报中 所公开的方式的滤波器, 其在各像素的处理范围内判定一维方向的浓度变化最小的方向, 仅进行此方向平滑化处理。虽然二维的噪声减少能力差一些, 但在构造的连接性增强方面 优良。形态学滤波器是一种例如 所述的方式的滤波器, 其虽然比加权平均滤 波器计算时间长, 但边缘构造的保持能力优良。按照诊断目标 ( 关注生物体构造和斑纹模 式的哪一个、 或者是否需要实时性 ) 选择使用的滤波器, 或组合多个加以使用也很有效。。
23、 说 明 书 CN 101489488 B4/6 页 7 0034 第 1 噪声去除处理后, 实施边缘增强处理 ( 步骤 53)。在边缘增强处理中, 考虑性 能和运算速度, 希望使用例如空间微分滤波器 (spatialdifferential filter)( 例如 中所述的二阶微分型、 或 JP 特开 2001-285641 号公报中使所述的二阶微分型的 符号反转的模糊掩膜(unsharp mask)型)。 虽然在超声波图像中对于射束照射方向可保障 相同的辨析率, 但由于例如在扇形射束照射的情况下半径方向的辨析率不一样, 所以实施 插值 (interpolation) 处理成为含误差的推定值。
24、。因此, 应用对于照射超声波的深度方向 具有较强的微分效果、 对于与深度方向垂直的方向微分效果较弱的滤波器, 由此, 能够获得 所含误差少的边缘增强图像。作为具体实例, 可列举对于深度方向设定 -1 3 -1t(t 表示 转置, transposition)、 对半径方向设定 1 1 1 的加权的滤波器。此滤波器的效果, 对深 度方向相当于二阶差分, 对半径方向为单纯的平均处理。 再有, 滤波器值和滤波器长不限于 此例的值, 可根据对象进行调整。 0035 对边缘增强图像还实施第2噪声去除处理(步骤54)。 在处理滤波器中, 可使用与 平滑化滤波器同样的滤波器。最后, 通过按适合的比率对噪声去。
25、除图像和原始图像进行加 法计算或乘法计算来进行合成处理, 求出合成图像 ( 步骤 55)。 0036 说明一种使用校正图像 (calibration image) 决定适合的合成比率的方法。如果 校正图像是可以事先处理的话, 则例如应用复合成像法 ( 通过使用不同的使用频率和照射 角度获取多个超声波图像后合成图像, 来保持边缘成分并能够减少噪声成分 ) 形成校正图 像。设校正图像为 Tij 的辉度, 从 Tij 中减去固定值 a 倍的原始图像的辉度 Oij, 求解参照 用图像的辉度 Rij。在此, i 和 j 表示直角坐标系中的像素的号码。 0037 式 1 0038 Rij Tij-aOij。
26、 (1) 0039 如果设参照用图像Rij为作为图2D的噪声去除图像的目标的图像, 则希望能形成 针对 Rij 中仅存在斑纹模式的相同区域时尽可能去除噪声的画质。因此, 关于相同区域内 的像素辉度分布计算标准偏差和平均值, 采用平均值去除标准偏差所得到的值即变化系数 定量地表示去除噪声的程度。变化系数越小, 越表示去除噪声后光滑的画质。图 4 中示出 了相对于比率 a 的变化系数的变化例。在此例中, 判断为变化系数为最小的 a 0.67 是最 佳的比率。 0040 图 5 中示出了合成比率设定的处理顺序。最初, 按固定的增幅使合成比率变化, 计 算相同区域的平均值和标准偏差(步骤61)。 接着。
27、, 由计算出的平均值和标准偏差求出变化 系数 ( 步骤 62)。然后, 参照比率和变化系数的对应, 决定变化系数为最小值的比率作为在 合成处理中使用的比率 ( 标准 63)。 0041 在此, 图6中示出了相同区域的提取顺序。 预先细分割对象图像设定候选区域Ai。 在此, i表示细分割的候选的号码。 在候选的小区域不相同、 含有不同的构造的情况下, 辉度 分布的标准偏差增大且变化系数变大。 即, 如果变化系数是某个数值以上的话, 则判定为不 是相同区域。因此, 作为最初的处理, 设定相同区域的阈值 ( 步骤 71)。接着, 候选区域的号 码i从第1个起开始(步骤72、 73), 直到至少i超出。
28、所有候选数为止都重复判定处理, 如果 即使 i 为所有候选数也不能判定的话, 则再次设定相同区域的阈值并进行处理 ( 步骤 74)。 i 不到候选数的判定处理为, 计算 Ai 区域的平均值 m 和标准偏差 ( 步骤 75), 调查变化系 数即 /m 和阈值的大小关系 ( 步骤 76), 如果阈值比 /m 大则判定为不是相同区域, 并变 说 明 书 CN 101489488 B5/6 页 8 更为接着的第 i+1 个的候选重复进行处理, 如果阈值比 /m 小则选择决定 Ai 区域作为相 同区域, 并结束处理 ( 步骤 77)。 0042 接着, 图 7 中示出了图 3 所示的边缘增强处理单元的处。
29、理顺序。在此, 输入图 3 的 第 1 噪声去除处理后的图像作为边缘增强处理的原始图像 ( 步骤 81)。首先, 设定多个与 原始图像的血管和肝脏等的要关注的构造的尺寸相同程度的、 不同的尺寸 ( 长度 ) 的微分 滤波器 ( 步骤 82)。然后, 将各微分滤波器应用于原始图像, 形成多个处理图像 ( 步骤 83)。 最后, 关于多个图像的各像素进行最大值处理, 形成由最大值辉度的像素构成的合成图像, 并结束处理(步骤84)。 由于关注的构造的尺寸在空间上变化, 所以用固定尺寸的微分滤波 器进行最佳增强有困难, 通过由基于多个尺寸的滤波器的输出结果合成最大值的处理, 就 能够得到适应的匹配滤波。
30、器的效果。再有, 代替滤波器尺寸使滤波器成分值变化的设定也 是有效的。 0043 虽然以上说明的图 3 的超声波图像处理方法是一种逐步应用非线性处理的方法, 但也可以是并列处理的方法。图 8 中示出了本发明的并列处理的处理顺序。对原始图像 (91) 分别应用噪声去除处理 (92)、 边缘增强处理 (93)、 及连续性增强处理 (94)。在此, 噪 声去除处理和边缘增强处理的方式可适用与图 3 的超声波图像处理方法中的各处理相同 的方式。但是, 特别地, 为了连续性增强处理而并列使用图 3 中用于噪声去除处理的方向依 赖型滤波器。像这样, 对应对诊断有用的 3 种特性分别实施处理, 以适当的比率。
31、对处理结果 进行加法 ( 或乘法 ) 运算 (95) 得到合成图像 (96)。最后, 与图 3 的处理方法相同, 对此合 成图像实施与原始图像的合成处理。 0044 下面说明并列处理中合成 3 种图像的比率的设定方法。对校正图像使用由图 5 的处理顺序决定的比率, 对原始图像进行了减法运算的差分图像为并列处理中的校正图像 Cij。在此, i 和 j 表示直角坐标系中的像素的号码, 设图像尺寸为 MN。另一方面, 以各自 的加权系数 c1、 c2、 c3 对噪声去除图像 Dij、 边缘增强图像 Eij 和连续性增强图像 Lij 进行 加权加法计算求解基于并列处理的合成图像。此时, 关于校正图像 。
32、Cij 和基于并列处理的 合成图像的各像素辉度的差分的平方和变得最小, 是加权系数的最佳组合。用下式定义此 价值函数 (cost function)g。 0045 式 2 0046 0047 在此, c1、 c2 及 c3 满足下式。 0048 式 3 0049 c1+c2+c3 1 (3) 0050 g 变得最小是与各加权系数有关的偏微分为 0 的情形, 关注 c1、 c2 时为下式。再 有, c3 是按式 (3) 由 c1 和 c2 确定的系数, 所以省略。 0051 式 4 说 明 书 CN 101489488 B6/6 页 9 0052 0053 由式 (2) 及式 (4), 导出 c。
33、2 和 c1 满足下式的关系。 0054 式 5 0055 0056 基于式 (5) 的 c1 和 c2 的关系, 在图 9 中示出设定合成比率 c1 及 c2 的例子。如 果设横轴的变量为 c1, 则将 c1 代入式 (5) 求出 c2, 由于 c3 可由求出的 c2 和式 (3) 决定, 所以使用这些 c1 c3 就能够由式 (2) 计算价值量 g。然后, 求使 c1 变化时的 g, 设定 g 变 得最小的 c1 c3 即可。 0057 图 10 示出了并列处理中的合成比率的处理顺序。首先, 以固定的增幅使 c1 变化, 按照上述的计算来计算价值量 g( 步骤 101)。接着, 决定 g 。
34、变得最小的 c1( 步骤 102)。最 后, 由 c1 计算 c2, 进一步计算 c3, 并结束处理。 0058 虽然针对实施例进行了上述说明, 但本发明不限于此, 本领域技术人员应该清楚, 在本发明的精神和附加的权利要求书的范围内, 能够进行各种变更及修改。 0059 工业实用性 0060 本发明除了适用于超声波图像处理装置外, 还可适用于实施图像处理的所有装 置, 一面增强边缘一面减少噪声就能够合成容易分辨的图像。 说 明 书 CN 101489488 B1/7 页 10 图 1 图 2A 图 2B 说 明 书 附 图 CN 101489488 B2/7 页 11 图 2C 图 2D 图 2E 图 2F 说 明 书 附 图 CN 101489488 B3/7 页 12 图 3 说 明 书 附 图 CN 101489488 B4/7 页 13 图 4 图 5 说 明 书 附 图 CN 101489488 B5/7 页 14 图 6 图 7 说 明 书 附 图 CN 101489488 B6/7 页 15 图 8 图 9 说 明 书 附 图 CN 101489488 B7/7 页 16 图 10 图 11 说 明 书 附 图 。