书签 分享 收藏 举报 版权申诉 / 19

用于控制提供给变速器的输入转矩的方法.pdf

  • 上传人:000****221
  • 文档编号:791770
  • 上传时间:2018-03-11
  • 格式:PDF
  • 页数:19
  • 大小:1,020.16KB
  • 摘要
    申请专利号:

    CN200810209890.1

    申请日:

    2008.10.31

    公开号:

    CN101570183A

    公开日:

    2009.11.04

    当前法律状态:

    授权

    有效性:

    有权

    法律详情:

    授权|||实质审查的生效|||公开

    IPC分类号:

    B60W20/00; B60W10/06; B60W10/08; F16H59/14; B60W10/10

    主分类号:

    B60W20/00

    申请人:

    通用汽车环球科技运作公司

    发明人:

    A·H·希普; W·布伦森; B·吴; B·R·梅德马

    地址:

    美国密执安州

    优先权:

    2007.11.2 US 60/984928; 2008.9.29 US 12/239870

    专利代理机构:

    中国专利代理(香港)有限公司

    代理人:

    杨 楷;杨松龄

    PDF完整版下载: PDF下载
    内容摘要

    一种用于控制提供给变速器的输入转矩的方法,包括在第一允许转矩值范围内执行第一迭代搜索,以确定基于第一成本值的第一转矩值。所述第一成本值基于在第一时刻测量的第一组动力系测量值。基于第二转矩值和在第一时刻测量的第一组动力系测量值计算第二成本值。第二转矩值使用在第一时刻前的第二时刻测量的第二组动力系测量值被确定。基于第一成本值和第二成本值选择第一转矩值和第二转矩值中的一个。

    权利要求书

    1.  一种控制提供给变速器的输入转矩的方法,所述方法包括:
    在第一允许转矩值范围内执行第一迭代搜索,以基于第一成本值确定第一转矩值,第一成本值基于在第一时刻测量的第一组动力系测量值;
    基于第二转矩值和在第一时刻测量的第一组动力系测量值计算第二成本值,第二转矩值使用在第二时刻测量的第二组动力系测量值被确定,第二时刻在所述第一时刻之前;以及
    基于第一成本值和第二成本值选择第一转矩值和第二转矩值中的一个。

    2.
      如权利要求1所述的方法,还包含控制发动机的操作,以获得所选择的输入转矩。

    3.
      如权利要求1所述的方法,其中,第一迭代搜索函数包括一维搜索函数。

    4.
      如权利要求1所述的方法,其中,第一迭代搜索函数包含黄金分割搜索函数。

    5.
      如权利要求1所述的方法,还包含在微处理器中执行第一搜索函数,其中在经过25毫秒或更少的时段里执行第一搜索函数。

    6.
      如权利要求1所述的方法,其中,第一搜索函数执行少于10次迭代步骤。

    7.
      如权利要求6所述的方法,其中,在第9次迭代步骤时,转矩候选值误差水平少于+/-6牛·米。

    8.
      如权利要求1所述的方法,其中,在第一和第二转矩值中所选择的一个为第一转矩值。

    9.
      如权利要求1所述的方法,还包含基于在第一和第二转矩值中所选择的一个计算第一马达转矩值和第二马达转矩值。

    10.
      如权利要求1所述的方法,其中,第一成本值是当执行第一迭代搜索时计算的最低成本值。

    11.
      如权利要求1所述的方法,其中,第一允许转矩值范围基于在第一时刻测量的发动机工况测量值。

    12.
      如权利要求11所述的方法,还包含确定第二转矩值是否在第一允许转矩值范围内。

    13、
      如权利要求11所述的方法,其中,所述发动机工况测量值基于发动机速度测量值。

    14、
      如权利要求1所述的方法,其中,在第一时刻测量的第一组动力系测量值包括从包括驱动性水平测量值、燃料经济性水平测量值,排放水平测量值以及电池充电水平测量值的组中选择的动力系测量值。

    15、
      如权利要求1所述的方法,其中,第一时刻在所述第二时刻之后25毫秒或小于25毫秒。

    16、
      如权利要求1所述的方法,其中,选择第一转矩值和第二转矩值中的一个包含基于在第一时刻测量的第一组动力系测量值,选择与最小成本值相关的第一和第二转矩值中的一个。

    17、
      一种控制提供给变速器的输入转矩的方法,所述方法包含:
    基于第一时刻的第一成本值迭代确定第一转矩值,以及基于第二时刻的第二成本值迭代确定第二转矩值;
    基于第一转矩值计算第二时刻的第三成本值;以及
    基于在第二时刻更低的成本值选择第一转矩值或第二转矩值中的一个。

    18、
      如权利要求17所述的方法,还包含控制发动机的操作,以获得所选择的第一和第二转矩值中的一个。

    19、
      如权利要求17所述的方法,其中,第一成本值基于一组动力系测量值。

    20、
      一种控制提供给变速器的输入转矩的方法,所述方法包含:
    在第一允许转矩值范围内执行第一迭代搜索,以确定与第一成本值相关的第一转矩值,所述第一允许转矩值范围基于在第一时刻测量的第一发动机工况测量值,所述第一成本值基于在第一时刻测量的第一组动力系测量值;
    在第二允许转矩值范围内执行第二迭代搜索,以确定与第二成本值相关的第二转矩值,所述第二允许转矩值范围基于在第二时刻测量的第二发动机工况测量值,所述第二成本值基于在第二时刻测量的第二组动力系测量值;
    使用第一转矩值计算第三成本值,所述第三成本值基于第二组动力系测量值;
    基于第二成本值和第三成本值选择第一转矩值或第二转矩值;以及
    控制发动机的操作以获得所选择的第一和第二转矩值中的一个。

    说明书

    用于控制提供给变速器的输入转矩的方法
    相关申请的交叉引用
    本申请要求2007年11月2日申请的序列号为NO.60/984,928的美国临时申请的权益,因此该申请作为参考合并在此。
    技术领域
    本发明涉及混合动力车辆转矩控制系统。
    背景技术
    该部分的说明仅提供与本发明相关的背景信息,并且可能不构成现有技术。
    公知的动力系结构包括多个转矩生成装置,其包括内燃机和电机,该电机通过变速器装置将转矩传递至输出元件。一个典型动力系包括双模式,复合分离,机电变速器,其利用输入元件以及输出元件,输入元件接收来自主动力源(优选地为内燃机)的驱动转矩。输出元件可操作地连接至机动车传动系统,用于将牵引转矩传送至传动系统。电机,可操作为马达或发电机,产生至变速器的输入转矩,而与内燃机的输入转矩无关。电机可以将通过车辆传动系统传递的车辆动能转换为能够存储在电能存储装置中的电能。控制系统监控来自车辆和操作者的各种输入,并且提供动力系的操作控制,包括控制变速器操作范围状态与换档,控制转矩生成装置,以及调整在电能存储装置和电机之间的电功率交换,以管理变速器的输出,该输出包括转矩与转速。
    发明内容
    一种用于控制提供给变速器的输入转矩的方法,包括:在第一允许转矩值范围内执行第一迭代搜索,以基于第一成本值确定第一转矩值。第一成本值基于在第一时刻测量的第一组动力系测量值。基于第二转矩值和在第一时刻测量的第一组动力系测量值计算第二成本值。第二转矩值使用在第一时刻前的第二时刻测量的第二组动力系测量值被确定。然后,基于第一成本值和第二成本值选择第一转矩值和第二转矩值中的一个。
    附图说明
    参照附图,通过例子,现描述一个或多个实施例,其中:
    图1为根据本发明的典型动力系的示意图;
    图2为根据本发明的控制系统和动力系的典型结构示意图;
    图3是根据本发明的典型实施例的控制提供到混合动力车辆变速器的输入转矩的方法的流程图;以及
    图4是根据本发明的典型实施例的迭代搜索的图解表示。
    具体实施方式
    现参照附图,其中的表示仅用于图示说明特定典型实施例,而不局限于此,图1与2描绘了典型机电混合动力系。图1描绘了根据本发明的典型机电混合动力系,其包括双模式,复合分离,机电混合动力变速器10,该变速器操作地连接至发动机14及第一与第二电机(‘MG-A’)56与(‘MG-B’)72。发动机14及第一与第二电机56与72每个均产生能够传递至变速器10的功率。由发动机14及第一与第二电机56与72产生的,并且传递至变速器10的功率被描述为输入转矩(在此分别称之为TI,TA和TB)和速度(在此分别称之为NI,NA和NB)。
    典型发动机14包括多缸内燃机,其以几种状态选择性地操作,从而经由输入轴12将转矩传递至变速器10,并且其可以是点燃式或压燃式发动机。发动机14包括操作性地连接至变速器10的输入轴12的曲轴(未示出)。转速传感器11监控输入轴12的转速。由于将例如液压泵(未示出)和/或转矩管理装置(未示出)的转矩消耗元件设置在发动机14与变速器10之间的输入轴12上,包括转速与输出转矩的来自发动机14的功率输出可以不同于传递到变速器10的输入速度NI与输入转矩TI
    典型变速器10包括三个行星齿轮组24,26与28,以及四个可选择性地接合的转矩传递装置,即离合器C1 70,C2 62,C3 73以及C4 75。如在此使用的,离合器指任何类型的摩擦转矩传递装置,其包括例如,单个或复合片式离合器或离合器组件,带式离合器,以及制动器。液压控制电路42,优选地由变速器控制模块(此后称为‘TCM’)17控制,该液压控制电路可操作控制离合器状态。离合器C2 62与C4 75优选地包括液压应用的旋转摩擦离合器。离合器C1 70与C3 73优选地包括液压控制的固定装置,该固定装置选择性地固定至变速箱68。每个离合器C1 70,C2 62,C3 73以及C4 75均优选为液压应用的,经由液压控制电路42选择性地接收加压的液压流体。
    第一与第二电机56与72优选地包括三相AC电机以及各自的解析器80与82,每个电机包括定子(未示出)与转子(未示出)。每个电机的电机转子固定至变速箱68的外部,并且包括定子铁心,该定子铁心具有从其中延伸出来的绕成线圈的电绕组。第一电机56的转子支撑于毂衬齿轮上,该齿轮经由第二行星齿轮组26操作地连接至轴60。第二电机72的转子固定地连接至套轴毂66。
    每个解析器80与82优选地包括可变磁阻装置,该可变磁阻装置包括解析器定子(未示出)与解析器转子(未示出)。解析器80与82适当地定位,并且装配在第一与第二电机56与72的相应的一个上。解析器80和80各自的定子分别操作地连接至相应的第一与第二电机56与72的一个定子上。解析器转子分别操作地连接至相应的第一与第二电机56与72的转子。每个解析器80与82信号地并且操作地连接至变速器功率变换器控制模块(以下称为‘TPIM’)19,并且每个感应与监控解析器转子相对于解析器定子的旋转位置,因此监控第一与第二电机56与72各自的旋转位置。此外,编译来自解析器80与82的信号输出,以分别提供第一与第二电机56与72的转速,即,NA与NB
    变速器10包括输出元件64,例如轴,输出元件可操作地连接至车辆(未示出)的传动系统90,以提供输出功率给车轮93(图1示出了其中之一)。输出转速NO与输出转矩TO表征输出功率。变速器输出速度传感器84监控输出元件64的转速与旋转方向。每个车轮93优选地装配有适宜于监控轮速VSS-WHL的传感器94,传感器94的输出由图2中描绘的分布式控制模块系统的控制模块监控,以确定用于制动控制,牵引控制,以及车辆加速管理的车速,绝对与相对轮速。
    来自发动机14及第一与第二电机56与72的输入转矩(分别为TI,TA,以及TB)由于燃料或存储在电能存储装置(以下称为‘ESD’)74中的电势进行能量转化而生成。ESD 74为经由直流传递导体27高压DC连接到TPIM 19。传递导体27包括接触器开关38。当接触器开关38闭合,在正常操作下,电流可以在ESD 74与TPIM 19之间流动。当接触器开关38断开时,中断在ESD 74与TPIM19之间的电流。响应于第一与第二电机56与72的转矩指令以实现输入转矩TA与TB,TPIM 19通过传递导体29将电功率传递至第一电机56,并且从第一电机56获得电功率,TPIM 19同样地通过传递导体31将电功率传递至第二电机72,并且从第二电机72获得电功率。根据ESD 74是充电还是放电,电流传递至ESD74或从ESD 74输出。
    TPIM 19包括一对功率变换器(未示出),以及各自的马达控制模块(未示出),该马达控制模块配置为接收转矩指令,并且根据指令控制变换器状态,用于提供马达驱动或再生功能,以达到输入转矩TA与TB。功率变换器包括公知的互补三相功率电子装置,并且每个均包括多个绝缘栅双极晶体管(未示出),该绝缘栅双极晶体管通过高频率切换,用于将ESD 74的DC功率转换为AC功率,为相应的第一与第二电机56与72供电。绝缘栅双极晶体管形成配置得接收控制指令的开关型电源。每个三相电机的每一相均典型地存在一对绝缘栅双极晶体管。控制绝缘栅双极晶体管的状态,以提供电机驱动机械动功率生成或电功率再生功能。三相变换器经由相应传递导体29和31接收或提供DC电功率,并且将其转换为三相AC功率或从AC功率转换而来,该AC功率传导至第一与第二电机56与72或从第一与第二电机56与72传导而来,以作为马达或发电机运行。
    图2为该分布式控制模块系统的示意性框图。以下提到的组件包括总车辆控制结构的的子系统,并且提供图1中描绘的典型动力系的协调系统控制。该分布式控制模块系统综合相关信息与输入,并且执行算法控制各种执行器,以实现控制目标,包括关于燃料经济性,排放,性能,操纵性以及包含ESD 74的电池以及第一与第二电机56与72的硬件的保护的目标。分布式控制模块系统包括发动机控制模块(以下称为‘ECM’)23,TCM 17,电池组控制模块(以下称为‘BPCM’)21,以及TPIM 19。混合动力控制模块(以下称为‘HCP’)5提供ECM 23,TCM 17,BPCM 21与TPIM 19的监督控制以及协调。用户界面(‘UI’)13优选地可操作地连接至多个装置,通过该用户界面,车辆操作者控制或指挥机电混合动力系的运行。所述装置包括从其中操作者转矩请求被确定的加速踏板113(‘AP’),,操作者制动踏板112(‘BP’),变速器档位选择器114(‘PRNDL’),以及车速巡航控制(未示出)。变速器档位选择器114可以具有离散数量的操作者可选择位置,包括输出元件64的旋转方向,以获得前进与后退方向之一。
    前述控制模块经由局域网(以下称为‘LAN’)总线6与其他控制模块,传感器,以及执行器相通信。LAN总线6允许介于各个控制模块之间的运行参数状态和执行器指令信号的结构化通信。使用的特定通信协议为专用的。LAN总线6与适当的协议提供上述控制模块与其他提供例如防抱死制动,牵引控制,以及车辆稳定性功能的控制模块之间的鲁棒通信及多控制模块交接。多路通信总线可用于提高通信速度,并且提供一定级别的信号冗余与完整性。单个控制模块之间的通信还可以使用直接链路实现,例如串行外围接口(‘SPI’)总线(未示出)。
    HCP 5提供动力系的监督控制,用于协调ECM 23,TCM 17,TPIM19以及BPCM 21的操作。基于来自用户界面13以及包括ESD74的动力系的各种输入信号,HCP 5产生各种指令,包括:操作者转矩请求(‘TO_REQ’),到传动系统90的指令输出转矩(‘TCMD’),发动机输入转矩指令,变速器10的转矩传递离合器C1 70,C2 62,C3 73,C4 75的离合器转矩;以及第一与第二电机56与72各自的转矩指令。TCM17可操作地连接至液压控制电路42,并提供包括监控各种压力传感装置(未示出)和产生及传输控制信号到不同电磁线圈(未示出),从而控制压力开关和包含在液压控制电路42中的控制阀的各种功能。
    ECM 23可操作地连接至发动机14,并且通过多条离散的线路从传感器获取数据并控制发动机14的执行器,为了简化起见,多条分离的线路以总的双向接口电缆35示出。ECM 23从HCP 5接收发动机输入转矩指令。ECM 23基于监控的发动机速度与载荷即时确定在该时间点处提供给变速器10的实际发动机输入转矩TI,,实际发动机输入转矩TI传送给HCP 5。ECM 23监控来自转速传感器11的输入,以确定输入轴12的发动机输入速度,该速度转化为变速器输入速度NI。ECM 23监控来自传感器(未示出)的输入,以确定其他发动机运行参数的状态,其中包括,例如,歧管压力,发动机冷却液温度,环境空气温度以及环境压力。可以例如由歧管压力,或可替换地,由监控加速踏板113的操作者输入而确定发动机载荷。ECM 23产生并传输指令信号,以控制发动机执行器,包括,例如,燃料喷射器,点火模块,以及节气门控制模块,这些均未示出。
    TCM 17可操作地连接至变速器10,并且监控来自传感器(未示出)的输入,以确定变速器操作参数的状态。TCM 17产生并传输指令信号,以控制变速器10,包括控制液压控制电路42。从TCM 17至HCP 5的输入包括每个离合器,即,C1 70,C2 62,C3 73,以及C4 75的估计的离合器转矩以及输出元件64的输出转速NO。为了控制目的,可使用其他执行器与传感器将来自TCM 17的附加信息提供至HCP 5。TCM 17监控来自压力开关(未示出)的输入,并且选择性地致动压力控制电磁线圈(未示出),切换液压控制电路42的电磁线圈(未示出),以选择性地致动各个离合器C1 70,C2 62,C3 73,以及C4 75,从而实现如下文所述的各种变速器操作范围状态。
    BPCM 21信号地连接至传感器(未示出),以监控ESD 74,包括电流与电压参数的状态,以将表示ESD 74的电池的参数状态的信息提供至HCP 5。电池的参数状态优选地包括电池充电状态,电池电压,电池温度,以及可用电池功率(称之为PBAT_MIN至PBAT_MAX的范围)。
    每个控制模块ECM 23,TCM 17,TPIM19和BPCM 21优选地为通用数字计算机,其包括:微处理器或中央处理单元;存储介质,其包括只读存储器(‘ROM’),随机存取存储器(‘RAM’),电可编程只读存储器(‘EPROM’);高速时钟;模数(‘A/D’)与数模(‘D/A’)电路;输入/输出电路与装置(‘I/O’);以及合适的信号调节与缓冲电路。每个控制模块均具有一套控制算法,包括存储在存储介质之一中的常驻程序指令以及标定,并且被执行以提供每个计算机的各自功能。控制模块之间的信息传递优选地使用LAN总线6与串行外围接口总线实现。在预设循环过程中执行控制算法,以使得每个算法在每个循环中执行至少一次。存储在非易失存储装置中的算法由中央处理单元中的一个执行,以监控来自传感装置的输入,并且执行控制与诊断程序,以使用预设标定来控制执行器的操作。以规则时间间隔执行循环,例如在动力系的实时运行过程中每隔3.125,6.25,12.5,25以及100毫秒。可替换地,响应于事件的发生而执行算法。
    典型的动力系选择性地以几种操作范围状态之一运行,这些操作范围状态可根据发动机状态与变速器状态描述,其中发动机状态包括发动机运行状态(‘ON’)与发动机停机状态(‘OFF’)之一,变速器状态包括多个固定档位与连续可变操作模式,以下参照表1描述。
    表1

    表中描述了每个变速器操作范围状态并且显示对于每个操作范围状态都应用了哪些特定离合器C1 70,C2 62,C3 73以及C4 75。第一连续可变模式,即EVT模式I,或者MI通过仅应用离合器C170而选择,以“固定”第三行星齿轮组28的外部齿轮元件。发动机状态可以为运行状态(‘MI_Eng_On’)或者停机状态(‘MI_Eng_Off’)之一。第二连续变化模式,即EVT模式II,或者MII通过仅应用离合器C2 62而选择,以将轴60连接至第三行星齿轮组28的行星架。发动机状态可以为运行状态(‘MII_Eng_On’)或者停机状态(‘MII_Eng_Off’)之一。为了实现该描述,当发动机状态为停机状态时,发动机输入速度等于每分钟零转(‘RPM’),即发动机曲轴不旋转。固定档位操作提供变速器10的输入-输出速度的固定比率操作,即获得NI/NO。通过应用离合器C1 70和C4 75而选择第一固定档位操作(‘FG1’)。通过应用离合器C1 70和C2 62而选择第二固定档位操作(‘FG2’)。通过应用离合器C2 62和C4 75而选择第三固定档位操作(‘FG3’)。通过应用离合器C2 62和C3 73而选择第四固定档位操作(‘FG4’)。由于行星齿轮24,26及28中的传动比降低,输入-输出速度的固定比率操作随着增加的固定档位操作而增加。第一与第二电机56与72各自的转速NA和NB分别取决于由离合器限定出的机构的内部转动,并且与输入轴12处测量的输入速度成比例。
    响应于经由加速踏板113与制动踏板112,并通过用户界面13获取的操作者输入,HCP 5及一个或更多其他控制模块确定指令输出转矩,TCMD,以满足操作者转矩请求,TO_REQ,其将在输出元件64实现,并且传递至传动系统90。最终车辆加速度受到其它因素的影响,包括,例如路面载荷,路面坡度,以及车辆重量。变速器10的操作范围状态是由基于不同的动力系统操作特征确定。这包括操作者转矩请求,其通过加速踏板113和制动踏板112被传输到前述的用户界面13。操作范围状态可以基于动力系转矩请求被预测,该请求通过在电能产生模式或转矩产生模式中操作第一与第二电机56和72的指令被产生。操作范围状态可以通过最优化算法或者程序被确定,其基于操作者的功率需求、电池充电状态、发动机14和第一与第二电机56和72的能量效率确定优选系统效率。
    HCP5使用下面描述的控制输入转矩的方法的结果,管理来自发动机14和第一与第二电机56和72的输入转矩,由此系统效率被优化,以管理燃料经济性和电池充电。HCP5监控转矩生成装置,并确定实现满足操作者转矩请求的期望输出转矩所需的来自变速器10的功率输出。从以上描述显而易见,ESD74和第一与第二电机56和72可电操作地连接,用于其间的功率流。另外,发动机14,第一与第二电机56和72,以及机电变速器10机械可操作地连接,用以在其间传递功率,产生到输出元件64的功率流。
    参考图3,现在描述一种用于控制提供给变速器10的输入转矩TI的方法300。作为在这里使用的,搜索循环将与时刻“N”,“N+1”,和“N-1”相关。搜索循环N涉及由HCP5在时刻N执行的搜索循环。搜索循环N-1涉及紧接在搜索循环N前被执行的搜索循环。搜索循环N+1涉及紧接在搜索循环N之后被执行的搜索循环。每个搜索循环包括通过“n”标记的多次迭代。另外,“j”代表在搜索循环内的从1到n范围内的特定迭代。
    该方法确定“优选转矩值”。这里使用的对于搜索进程N的术语“优选转矩值”指定了搜索循环N的转矩候选值中与最低成本相关的转矩值,或者在搜索循环N-1期间确定的优选转矩值T(N-1)OPT
    对搜索循环N-1,HCP 5设定与最小成本相关的转矩值为优选输入值T(N-1)OPT(320),HCP 5基于优选转矩值T(N-1)OPT控制发动机转矩(322)。在设置与最小成本相关的转矩候选值为优选转矩值(320)中以及在基于T(N-1)OPT控制输入转矩(322)中被HCP 5使用的流程,参考以下搜索循环N的步骤316和318更详细地描述。
    此外,当T(N-1)OPT被确定时,T(N-1)OPT被发送到HCP存储介质(未示出)的缓冲区。该缓冲区存储优选转矩值T(N-1)OPT以在搜索循环N中使用。
    步骤302,304,310,312,314,316,318与324为搜索循环N的步骤。
    HCP 5确定允许转矩范围(302)TN_MIN到TN_MAX。最小和最大允许转矩值TN_MIN和TN_MAX基于发动机14的当前操作工况以及环境条件。例如,发动机速度能被测量并被使用来确定最小和最大允许转矩值TN_MIN和TN_MAX
    最小和最大允许转矩值TN_MIN和TN_MAX包括与特定发动机配置相关的实际约束,并且基于所使用的特定发动机的操作特征,所述发动机具有与例如最大转矩输出和燃烧稳定性相关的限制。
    HCP 5在允许转矩范围TN_MIN到TN_MAX内执行迭代搜索,以寻找搜索结果转矩值TN_SEARCH(304)。迭代搜索利用搜索引擎(未示出)。该搜索引擎使用黄金分割搜索确定转矩候选值。黄金分割搜索引擎将从TN_MIN到TN_MAX的允许转矩范围划分为黄金分割部分,其中较小的黄金分割部分对较大的黄金分割部分的比率是以确定第一转矩候选值(TNj),其中j=1以及第二转矩候选值(TNj),其中j=2。
    第一与第二转矩候选值TNj输入到成本估计(324)中。成本确定函数f(TNj,yN)基于一组动力系测量值确定了与转矩候选值TNj与输入值yN相关的成本PNj。具体而言,输入值yN基于在搜索进程N时刻所测得的该组动力系测量值。因此,成本PNj作为函数f(TNj,yN)确定。
    成本PNj表示动力系统总损失。在实施例中,成本确定函数通常基于值yN确定成本,值yN基于与燃料经济性、排放和电池寿命相关的一组动力系测量值。另外,更低的操作成本通常与在一个操作点更低的电池功率使用,以及更低的排放相关,并考虑动力系的当前操作范围状态。在一实施例中,动力系统总损失包括总系统功率损失和成本补偿,其可能与控制电池充电状态有关。动力系统总损失包括基于电气系统损失(例如线路阻抗,开关以及电磁线圈损失)的项,以及热损失。其它损失包括电机功率损失和内部电池功率损失。在另一实施例中,其它动力系测量值也可能在确定操作成本中被考虑,包括与由于ESD 74的放电深度引起的电池寿命,以及电池充电状态的效果相关的动力系测量值。操作成本相对于特定的动力系/车辆应用被确定。
    成本估计(324)从迭代搜索(304)中分离,使得搜索引擎基于成本估计324的输出来选择转矩候选值。函数f(TNj,yN)的结果被送回迭代搜索304,搜索引擎使用该结果来进一步进行黄金分割以产生黄金子分割,来确定在j=3时的新的转矩候选值TNj
    迭代搜索304和成本估计304继续以迭代确定转矩候选值TNj,直到进行选定的迭代次数。具体而言,搜索引擎迭代搜索9次。搜索结果转矩值TN_SEARCH与在迭代搜索中确定的最低成本相关。与在第9次迭代步骤中的转矩候选值相关的误差水平优选为不超过+/-6牛·米。
    在替代实施例中,搜索引擎执行其它数目的迭代。例如,在一个替代实施例中,搜索引擎执行15次迭代。而且,在其它替代实施例中,搜索引擎在一个过程时间段执行迭代或执行迭代直到达到选定的搜索误差水平。
    在替代的典型实施例里,其它的搜索函数能被利用。其它一维搜索函数能被利用,例如斐波纳契搜索函数和类似搜索函数。
    与来自成本估计f(TN_SEARCH,yN)的搜索结果转矩值TN_SEARCH相关的成本被在步骤314中利用,其中它与在当前动力系测量中估计的在在前搜索进程N-1的优选转矩成本相比较,其将在下文进一步详述。
    基于在时间N的发动机工况,HCP 5确定来自在在前搜索进程的优选转矩值T(N-1)OPT是否在允许转矩值的范围内(310)。具体而言,HCP 5确定优选转矩值T(N-1)OPT是否在从TN_MIN到TN_MAX的允许转矩范围内。
    如果T(N-1)OPT在从TN_MIN到TN MAX的允许转矩范围内,那么HCP 5前进到步骤312。如果T(N-1)OPT不在从TN_MIN到TN_MAX的范围内,那么HCP 5前进到步骤316。
    成本函数326被用来基于优选转矩值T(N-1)OPT计算成本PN(312)以及基于该组动力系测量值yN计算输入转矩。基于该组动力系测量值yN的输入转矩是基于在时刻N测量的该组动力系测量值。结果,成本利用f(T(N-1)OPT,yN)计算。
    HCP 5比较通过f(TN_SEARCH,yN)与f(T(N-1)OPT,yN)计算的转矩成本,确定在搜索结果转矩值TN_SEARCH与在前循环的优选转矩值T(N-1)OPT中哪个具有与其相关的最低成本(314)。
    优选转矩值TOPT被设为搜索结果转矩值TN_SEARCH或在前循环的优选转矩值T(N-1)OPT(316)。具体而言,如果在前循环的优选转矩值T(N-1)OPT不在从TN_MIN到TN_MAX的允许转矩范围内(步骤310),那么优选转矩值TOPT被设为搜索结果转矩值TN_SEARCH。如果在前循环的优选转矩值T(N-1)OPT在从TN_MIN到TN_MAX的允许转矩范围内,那么优选转矩值TOPT基于具有与其相关的最低成本的转矩值,被设为搜索结果转矩值TN_SEARCH或在前循环的优选转矩值T(N-1)OPT,其在步骤314中被确定。
    方法300在图4中进行了图解表示。具体而言,图4表示了图500和图510。图500图示了搜索循环N-1的迭代搜索,其中转矩值在x-轴上被描述,成本值在y-轴上被描述。图510图示了搜索循环N-1的迭代搜索,其中转矩值在x-轴上被描述,时刻N-1处的成本值在y-轴上被描述。
    图500包括转矩候选值502与优选转矩值T(N-1)OPT 504。图510表示转矩候选值512和搜索结果转矩值TN_SEARCH514。此外,图510表示相对于在时刻N的成本估计值的优选转矩值T(N-1)OPT 504。结果,图510图示了方法300的成本比较步骤314,其中,与在时刻N的最低成本函数相关的转矩值TN_SEARCH或T(N-1)OPT基于最低成本值被确定。
    再次参考图3,HCP5控制输入转矩(318)。具体而言,HCP 5设定输入转矩TI为优选转矩值TNOPT,以及HCP 5输入输入转矩TI到系统方程函数,从中确定第一电机56电机转矩TA和第二电机72电机转矩TB的状态值。在第一电机56电机转矩TA和第二电机72电机转矩TB之间的转矩关系通过如下的公式1和2被定义:
    TB=d11d12d13d14*T1TATON·I---(1)]]>
    TA=g11g12g13g14*T1TBTON·I---(2)]]>
    其中,输入转矩TI从发动机14产生,变速器输出转矩TO,即,请求输出转矩TO_REQ是轴64的输出,TA和TB是第一电机56和第二电机72的操作转矩,代表变速器输入速度NI的时间变化率,以及d11,d12,d13,d14与g11,g12,g13,g14都是对于每个特定应用的固定档位确定的已知标量值。
    HCP 5利用方法300迅速确定由于迭代搜索304和成本估计324的分离的输入转矩TI值。具体而言,迭代搜索304迅速地确定转矩候选值,并将每个候选值提供给成本估计324,使得成本估计在每个迭代步骤中仅仅必须求解一个未知变量。利用方法300,HCP 5在小于25毫秒里确定输入转矩值TI
    当确定优选转矩值TOPT时,通过比较用于在前循环的优选转矩值T(N-1)OPT和搜索结果转矩值TN_SEARCH的成本,方法300在期望时提供了保持在前循环优选转矩值T(N-1)OPT的稳定性,由此减少优选转矩值TOPT的变化。另外,通过比较用于在前循环的优选转矩值T(N-1)OPT和搜索结果转矩值TN_SEARCH的成本,方法300能够减少与从TN_MIN到TN_MAX的允许转矩范围内局部最小值相关的搜索失败的可能性。
    已经特别参考优选实施例及对其的修改描述了本发明。在阅读与理解说明书后,可以对其他内容作进一步的修改与替换。因此,其意图为本发明并不被限定为作为最佳模式的公开的,预期用于实施本发明的特定实施例,而是旨在包括所有这样进入到附加的权利要求范围之内的所有实施例。

    关 键  词:
    用于 控制 提供给 变速器 输入 转矩 方法
      专利查询网所有文档均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    0条评论

    还可以输入200字符

    暂无评论,赶快抢占沙发吧。

    关于本文
    本文标题:用于控制提供给变速器的输入转矩的方法.pdf
    链接地址:https://www.zhuanlichaxun.net/p-791770.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
    经营许可证编号:粤ICP备2021068784号-1