《两轮轮式机器人点镇定增量式智能控制方法.pdf》由会员分享,可在线阅读,更多相关《两轮轮式机器人点镇定增量式智能控制方法.pdf(25页完整版)》请在专利查询网上搜索。
1、10申请公布号CN102023569A43申请公布日20110420CN102023569ACN102023569A21申请号201010270270622申请日20100901G05B13/0420060171申请人重庆大学地址400044重庆市沙坪坝区沙正街174号72发明人王牛李楠杨祖元张琦74专利代理机构重庆博凯知识产权代理有限公司50212代理人张先芸54发明名称两轮轮式机器人点镇定增量式智能控制方法57摘要本发明提供了一种两轮轮式机器人点镇定增量式智能控制方法,该方法提出了一种包含任务适应级和运行控制级的增量式控制器,该增量式控制器在现有技术的基础上,将现有技术中作为比例控制器输出。
2、的期望轮速作为本发明增量式控制器中任务适应级输出的期望轮速适应值,解决了机器人的非完整约束问题导致的点镇定控制的稳定性问题;并增加了运行控制级对期望轮速适应值进行进一步的增量式轮速跟随控制,解决了因运动执行系统必然存在的加速度和速度约束限制所导致的点镇定控制的稳定性问题,在保证获得优良的机器人运动轨迹的同时,更有效提高机器人运动的快速性。51INTCL19中华人民共和国国家知识产权局12发明专利申请权利要求书3页说明书15页附图6页CN102023583A1/3页21两轮轮式机器人点镇定增量式智能控制方法,其特征在于,采用增量式控制器控制两轮轮式机器人的左轮期望轮速和右轮期望轮速;所述增量式控。
3、制器分为两级,分别为任务适应级和运行控制级;其具体包括如下控制步骤A获取当前控制周期时,机器人所在点与目标点的距离偏差EDK,以及机器人朝向与机器人由所在点面向目标点方向的角度偏差EK;K表示当前控制周期;B在任务适应级,根据距离偏差EDK和角度偏差EK,采用广义的比例控制,获得当前控制周期的左轮期望轮速适应值ULCK和右轮期望轮速适应值URCK;C在运行控制级,根据任务适应级获得的左轮期望轮速适应值ULCK和右轮期望轮速适应值URCK,采用增量式轮速跟随控制,获得当前控制周期的左轮期望轮速ULK和右轮期望轮速URK;其具体操作包括C1获取左轮轮速饱和增量ULMAX和左轮轮速饱和值ULMAX,。
4、以及右轮轮速饱和增量URMAX和右轮轮速饱和值URMAX;同时,设定减速控制距离常数D1,并获取当前控制周期的左轮实际轮速VLK和右轮实际轮速VRK;C2计算当前控制周期的期望轮速适应差EUKURCKULCK和实际轮速差EVKVRKVLK;进而求得当前控制周期的控制向差EKEUKEVK;C3按如下公式确定特征模态集C4按如下公式确定控制模态集权利要求书CN102023569ACN102023583A2/3页3并且,在控制模态5和6中,左轮期望轮速ULK还同时满足在控制模态11和12中,右轮期望轮速URK还同时满足C5特征模态集与控制模态集的关联关系为若J成立,则J;J1,2,13;即特征模态J。
5、与控制模态J按下标号一对一对应关联;根据该关联关系获得当前控制周期的左轮期望轮速ULK和右轮期望轮速URK;D增量式控制器在各个控制周期重复步骤AC,并输出期望轮速向量U,直至机权利要求书CN102023569ACN102023583A3/3页4器人到达目标点;其中,UL和UR分别为增量式控制器输出的左轮期望轮速和右轮期望轮速。2根据权利要求1所述的两轮轮式机器人点镇定增量式智能控制方法,其特征在于,所述步骤B中,任务适应级采用的广义的比例控制为经典比例控制。3根据权利要求1所述的两轮轮式机器人点镇定增量式智能控制方法,其特征在于,所述步骤B中,任务适应级采用的广义的比例控制为比例余弦控制。4。
6、根据权利要求1所述的两轮轮式机器人点镇定增量式智能控制方法,其特征在于,所述步骤B中,任务适应级采用的广义的比例控制为分段比例控制。5根据权利要求14中任一项所述的两轮轮式机器人点镇定增量式智能控制方法,其特征在于,在所述控制步骤D之后还包括E对增量式控制器输出的期望轮速向量U进行静差补偿,再用补偿后的左轮期望轮速和右轮期望轮速分别控制左轮电机系统和右轮电机系统;所述静差补偿的公式为即其中,U为静差补偿后的期望轮速向量;和分别为静差补偿后的左轮期望轮速和右轮期望轮速;L和R分别为左轮轮速反馈补偿系数和右轮轮速反馈补偿系数。权利要求书CN102023569ACN102023583A1/15页5两。
7、轮轮式机器人点镇定增量式智能控制方法技术领域0001本发明属于智能控制应用技术领域,尤其涉及一种对两轮轮式机器人的点镇定增量式智能控制方法。背景技术0002到定点的运动控制问题是两轮轮式机器人底层控制的基本问题,即点镇定问题。两轮轮式机器人的运动控制模型如图1所示,主要由控制器GC、左轮和右轮的双闭环轮速跟随电机系统模型GL和GR、以及运动模型GM四个模块构成;整个运动控制模型的输入向量为ED,ET,ED为机器人当前所在点X,Y与目标点XT,YT之间的距离偏差,E为机器人当前朝向与机器人由当前所在点面向目标点方向T之间的角度偏差E,;通常以逆时钟方向为正,顺时钟方向为负,T为转置符号;控制器G。
8、C根据输入向量ED,ET进行控制转换,输出机器人的左轮期望轮速UL和右轮期望轮速UR本文所述的“轮速”,是指“轮转动导致的轮整体的水平运动速度”,期望轮速向量UUR,ULT与输入向量ED,ET的控制关系由控制器GC具体采用的控制方法确定;左轮电机系统模型GL根据左轮期望轮速UL驱动左轮转动,右轮电机系统模型GR根据右轮期望轮速UR驱动右轮转动,从而得到实际的左轮轮速VL和右轮轮速VR,左轮电机系统模型GL和右轮电机系统模型GR的驱动关系分别由左轮电机系统和右轮电机系统自身的硬件构成和参数确定,即电机系统一经确定,电机系统模型驱动关系也随之固化确定;两轮轮式机器人运动是由于两个轮转动引起的机器人。
9、位置和机器人朝向合称机器人位姿变化,因此运动学模型GM完成两轮的实际轮速向量VVR,VLT到机器人位姿变化向量的转换,作为整个系统的输出向量。该运动控制模型用数学关系表示如下0003由输入向量得到期望轮速向量0004电机系统驱动输出的实际轮速向量0005机器人由其实际轮速获得线速度和角速度其中V为机器人的实际线速度,W为机器人的实际角速度;L为机器人左、右轮之间的轮距;0006机器人的位姿变化向量0007综上,两轮轮式机器人运动控制模型的整体控制关系为说明书CN102023569ACN102023583A2/15页600080009由于,左轮电机系统模型GL和右轮电机系统模型GR由机器人所采用。
10、的具体电机系统自身的硬件构成和参数固化确定,运动学模型GM由机器人左、右轮之间的轮距L确定,也就是说,两轮论式机器人的硬件系统确定后,GL、GR和GM三个模型即已固化不可变;因此,两轮轮式机器人的运动控制问题,最终实际着手于从输入向量ED,ET到期望轮速向量UR,ULT的控制转换问题,控制器GC具体采用的控制方法成为关键。又因为两轮轮式机器人存在非完整运动约束,使其包括点镇定控制在内的运动控制具有挑战性,尽管非完整系统是开环可控的,但通过设计可微或连续的时不变纯状态反馈控制律不能将其镇定到期望的位姿上。所以,对于非完整约束轮式移动机器人的运动控制问题,就主要集中在设计光滑或分段光滑的时变状态反。
11、馈控制方法和不连续的时不变状态反馈控制方法两方面上。0010实际机器人运动控制中,控制器GC常采用的是经典比例控制P控制及其基础上改进的比例余弦控制PCOS控制。P控制采用如下控制率00110012其中,UL为左轮期望轮速,UR为右轮期望轮速;D和为固定增益;ED为机器人当前所在点与目标点之间的距离偏差,E为机器人当前朝向与机器人由当前所在点面向目标点方向之间的角度偏差。对于经典比例控制在不考虑速度和加速度饱和限制在内的一些限制条件下,可以采用LYAPUNOV方程判定系统具有渐进稳定性,但是在固定增益D和的经典比例控制中,过大的增益会在大偏差情况下出现失控,而对于小偏差情况下又会出现爬行现象,。
12、而加上积分环节会降低系统稳定性,也不利于随动控制。图2为采用经典比例控制时,机器人由静止状态从点O位姿为POXO,YO,O0,0,0运动到点A位姿为PAXA,YA1000,2000的运动轨迹。按照理想的控制方式,其运动轨迹是由O点按近似直线到达A点,机器人启动后就应当尽快调整其运动方向,使之朝向点A运动。然而,由于机器人静止状态时面向X轴的正向,实验的结果表明,机器人实际的运动轨迹为其中,在段,机器人的运动方向始终朝向其静止状态的位姿方向O且几乎不变。产生这种情况的原因在于,虽然根比例控制算法的控制率,当存在角度偏差时可以得到不同的左、右控制轮速,但由于机器人启动时与目标点的距离偏差ED较大,。
13、并且左、右轮电机系统GL、GR存在轮速最大加速度AMAX的约束,导致左、右轮的轮速由零开始的加速段实际都只有按照最大加速度进行加速,从而使两轮的轮速实际上是基本相等的,这样就会出现段近似直线的运动由于两轮轮式机器人由两个电机系统驱动,但两个电机系统的最大加速度并非绝对一致,所以可能会有一定的偏离。这是一种由于加速度饱和导致的两轮轮式机器人运动方向失控,它不仅使机器人的运动轨迹变坏,也大大增加了到达A点的控制时间;更为严重的是,段的增加很容易导致目标点的发散,从而使得控制系统完全失控,机器人会一直处于直线运动状态。0013PCOS控制采用余弦项一定程度上解决了角度与速度的配合控制问题,其控制说明。
14、书CN102023569ACN102023583A3/15页7率如下00140015但采用单一比例余弦控制仍然难以解决单一经典比例控制存在的增益参数不适用于所有目标点的问题,同时,也没有深入考虑机器人运动执行系统的最大加速度对于控制过程的影响,依然不能根本性地解决上述的失控问题。0016文献“一种两轮轮式机器人点镇定智能控制实现”控制理论与应用,2010,274437443页,王牛、李祖枢中,笔者以实际ROBOCUP两轮轮式机器人为基础,在比例控制P控制、比例余弦控制PCOS控制的基础上,提出了一种分段比例控制器,讨论了控制器的稳定性,并在仿真和实际机器人系统实现,在一定程度上证实了控制的有效。
15、性。但该文中并没有深入研究机器人的加速度和速度限制对于机器人点镇定运动控制及其运动轨迹的影响,进而没有也涉及到在非完整运动约束和加速度和速度约束条件下的控制器设计问题。发明内容0017针对现有技术中存在的上述不足,本发明的目的在于提供一种两轮轮式机器人点镇定增量式智能控制方法,用以解决非完整运动约束、加速度和速度约束对两轮轮式机器人运动控制的影响,提高机器人运动的稳定性和快速性,并得到更良好的运动轨迹。0018本发明目的是这样实现的一种两轮轮式机器人点镇定增量式智能控制方法,采用增量式控制器控制两轮轮式机器人的左轮期望轮速和右轮期望轮速;所述增量式控制器分为两级,分别为任务适应级和运行控制级;。
16、其具体包括如下控制步骤0019A获取当前控制周期时,机器人所在点与目标点的距离偏差EDK,以及机器人朝向与机器人由所在点面向目标点方向的角度偏差EK;K表示当前控制周期。0020B在任务适应级,根据距离偏差EDK和角度偏差EK,采用广义的比例控制,获得当前控制周期的左轮期望轮速适应值ULCK和右轮期望轮速适应值URCK;所述广义的比例控制包括现有技术中常用的几种比例控制方法,如经典比例控制、比例余弦控制或分段比例控制,并将现有技术中获得的分别用于控制左轮、右轮电机系统的左轮、右轮期望轮速,作为本发明方法适应级的期望轮速适应值。实际上,在任务适应级,两轮轮式机器人的可控性操作已经能够实现,解决了。
17、其非完整约束问题;但是由轮速度、轮加速度限制导致的机器人失控问题依然存在,因此还需要运行控制级进行进一步的有效控制。0021C在运行控制级,根据任务适应级获得的左轮期望轮速适应值ULCK和右轮期望轮速适应值URCK,采用增量式轮速跟随控制,获得当前控制周期的左轮期望轮速ULK和右轮期望轮速URK;本发明中,运行控制级的操作步骤,采用动觉智能总图式“动觉智能总图式”的定义,参见文献“仿人智能控制理论和多级倒立摆的摆起控制”,人工智能回顾与展望,北京科学出版社,20067,174207页中的三元组给予描述,具体如下0022首先动觉智能总图式SKG定义为说明书CN102023569ACN102023。
18、583A4/15页80023SKG;0024上式中,SP为感知图式集,SM为运动图式集,SA为关联图式集,分别为构成动觉智能总图式的三元组。要构成两轮轮式机器人点镇定增量式智能控制在任务适应级的动觉智能总图式,需要获得机器人硬件系统的相关参数。0025C1获取左轮轮速饱和增量ULMAX和左轮轮速饱和值ULMAX,以及右轮轮速饱和增量URMAX和右轮轮速饱和值URMAX;轮速饱和增量,即为电机系统在控制周期内以最大加速度控制轮速增加的上限量,它与左轮、右轮电机系统的可控最大加速度有关,即与左轮、右轮电机系统的驱动功率有关;轮速饱和值,即为电机系统所能控制达到的轮速上限值,它与左轮、右轮电机系统的。
19、驱动力有关;机器人的硬件系统一经建立,左轮轮速饱和增量ULMAX和左轮轮速饱和值ULMAX,以及右轮轮速饱和增量URMAX和右轮轮速饱和值URMAX就已经确定了,可以通过常规的实验手段获取这些数据;0026同时,设定减速控制距离常数D1,该常数与左轮、右轮电机系统的可控最大减速度有关;减速控制距离常数D1的大小,需保证机器人若以最大速度行驶,也能够在距离D1以内停下来,也就是说,如果左轮、右轮电机系统的可控最大减速度为A,机器人的最大线速度为URMAXULMAX/2,那么根据匀加速运动计算公式,减速控制距离常数D1需满足0027D1URMAXULMAX2/8A;0028实际操作中,减速控制距离。
20、常数D1的设定值大小,也可以采用常规的实验手段来获取;0029此外,还需要获得在当前控制周期的左轮实际轮速VLK和右轮实际轮速VRK;获得上述数据后,数据准备工作即完成。0030C2根据上述获得的数据,计算当前控制周期的期望轮速适应差EUKURCKULCK和实际轮速差EVKVRKVLK;进而求得当前控制周期的控制向差EKEUKEVK。0031由此,计算准备工作也得以完成,下面说明本发明方法在运行控制级的控制原理即其动觉智能总图式的获得过程。0032根据任务适应级所获得的当前控制周期的左轮期望轮速适应值ULCK和右轮期望轮速适应值URCK,可以求得机器人在当前控制周期的期望线速度适应值UCK和期。
21、望角速度适应值CK00330034一个方面,此阶段的控制目标,需要保证通过控制机器人的实际角速度W达到期望值,使机器人的角度偏差E减小,并最好保持在0角偏;在距离目标点较远的情况下即距离偏差EDKD1时,控制机器人的实际线速度V应尽量增加,即左、右轮的轮的加速度尽可能大;而在距离目标点较近的情况下即距离偏差EDKD1时,控制机器人做减速运动,使其实际线速度V逐渐减小,并最终停止在目标点位置。以上控制目标可描述为,在约束条件1增量式控制器在每控制周期输出的期望轮速增量|UL|ULMAX,|UR|URMAXUL和UR分别为左轮期望轮速和右轮期望轮速在相邻控制周期的增量;约束条件2增量式控制器在期望。
22、轮速最大限值|URK|URMAX、说明书CN102023569ACN102023583A5/15页9|ULK|ULMAX的限制条件下,要保证在当前控制周期内,让URKULK的值趋于期望角速度适应值CK;在距离偏差EDKD1时使URKULK的值尽可能大,在距离偏差EDKD1时使URKULK的值逐渐减小到0。0035另一个方面,由于EKEUKEVK,当前控制周期的控制向差EK的正、负决定了控制的方向若EK0,应该减小期望轮速差URKULK;若EK0,则应该增加期望轮速差URKULK。同时,当前控制周期的控制向差EK的绝对值大小又决定了左轮、右轮期望轮速控制输出的大小若|EK|URMAXULMAX则。
23、两电机系统的轮速都应当达到饱和值;反之,则至少有一个电机系统的轮速应处于其饱和值。0036考虑到上述两方面因素,运行控制级采用如下控制准则0037控制准则1在距离偏差EDKD1时,根据期望角速度适应值CK的正负号确定当前控制周期的左轮期望轮速ULK或/和右轮期望轮速URK达到其轮速饱和值,使左轮或/和右轮尽快的加速;在距离偏差EDKD1时,可采用任务适应级给定的期望轮速适应值作为增量式控制器输出的期望轮速,使实际轮速逐渐减小到0;0038控制准则2若其中一个期望轮速不应达到饱和值,则也应当保证该轮轮速不小于0;0039控制准则3增量式控制器输出的期望轮速不应当超过轮速的饱和值,以确保实际轮速控。
24、制的有效性。0040以上述控制准则为依据,任务适应级的动觉智能总图式结构如下0041C3建立感知图式集SP0042感知图式集的目标是,对机器人的实际运行状态进行特征提取,并根据控制准则对提取的特征基元进行划分,构成适应于控制准则的特征模态集。感知图式SP的结构如下00430044其中,RPN是特征输入信息集,QM为特征基元集;KRM为关系划分矩阵,为算子运算符,R为特征模态集;X表示集合的空间维度为X。0045特征输入信息集RPN包含6个输入量,即N60046RPVRK,VLK,UCK,CK,EDK,EK;20047其中,VRK和VLK分别为机器人在当前控制周期的右轮实际轮速和左轮实际轮速;U。
25、CK和CK分别为机器人在当前控制周期的期望线速度适应值和期望角速度适应值;VCK和WCK分别为机器人第K控制周期的线速度和角速度;EDK和EK分别为机器人在当前控制周期的距离偏差和角度偏差。0048通过提取特征基元,构成特征基元集QM0049说明书CN102023569ACN102023583A6/15页100050即M14。0051然后,根据控制准则对提取的特征基元进行划分,确定关系划分矩阵KRM00520053即R13。0054再由算子得到特征模态集0055说明书CN102023569ACN102023583A7/15页110056C4建立运动图式集SM0057运动图式集的目标是,根据特征。
26、模态集中不同的特征模态,建立不同的控制模态基元,并根据控制准则对控制模态基元进行整合,构成与特征模态相对应、且适应于控制准则的控制模态集。运动图式SM的结构如下0058SMRM,P,L,UK;60059其中,RM为控制输入信息集;P为控制模态基元集;L为关系整合矩阵;为控制模态集;UK为增量式控制器在当前控制周期的期望轮速向量控制输出;0060特征输入信息集RM也包含6个输入量,即60061RPVRK,VLK,UCK,CK,EDK,EK;70062其中各输入量含义与RP中个输入量的含义相同。0063建立控制模态基元集P为0064说明书CN102023569ACN102023583A8/15页1。
27、20065即13,其中,URK和ULK分别为当前控制周期的右轮期望轮速和左轮期望轮速;并且,在控制模态P5和P6中,左轮期望轮速ULK还同时满足00660067在控制模态P11和P12中,右轮期望轮速URK还同时满足00680069关系整合矩阵选择维度为13的单位矩阵I13LI13,即13。说明书CN102023569ACN102023583A9/15页130070再由算子得到控制模态集00710072即00730074并且,在控制模态5和6中,左轮期望轮速ULK还同时满足00750076在控制模态11和12中,右轮期望轮速URK还同时满足0077说明书CN102023569ACN102023。
28、583A10/15页140078C5建立关联图式集SA0079关联图式集的目标是,根据控制准则确定感知图式集到运动图式集的关联关系,即确定特征模态J与控制模态J适应于控制准则的关联关系。关联图式集SA的结构为0080SA,1,2,13;140081其中,0082J若J成立,则J;J1,2,13;150083即特征模态J与控制模态J按下标号一对一对应关联;根据该关联关系获得当前控制周期的左轮期望轮速ULK和右轮期望轮速URK,从而确定增量式控制器在当前控制周期输出的期望轮速向量UK00840085D增量式控制器的任务适应级和运行控制级确定后,增量式控制器在各个控制周期重复步骤AC,并输出期望轮速。
29、向量U,直至机器人到达目标点;其中,00860087UL和UR分别为增量式控制器输出的左轮期望轮速和右轮期望轮速。0088在上述技术方案的基础上,作为进一步的优化,由于增量式控制器主要是以比例控制为增量控制的基础,而比例控制的实际输出存在静差;为了消除比例控制器的静差,按照下式对增量式控制器输出的期望轮速向量U进行静差补偿0089即0090再用补偿后的左轮期望轮速和右轮期望轮速分别控制左轮电机系统GL和右轮电机系统GR;其中,U为静差补偿后的期望轮速向量;L和R分别为左轮轮速反馈补偿系数和右轮轮速反馈补偿系数,分别由左轮、右轮电机系统的驱动性能决定。轮速反馈补偿系数决定了期望轮速和不考虑静差的。
30、系统稳态输出轮速之间的比值,的值由其所在电机系统的驱动性能决定,也可通过常规试验获得关于“轮速反馈补偿系数”,可参见文献“带驱动直流电机两轮机器人运动系统仿真”,系统仿真学报,2008,946334638页、4646页,王牛、李祖枢、李永龙、潘娅。0091相比于现有技术,本发明具有如下有益效果00921利用任务适应级通过对机器人状态特征的有效划分并对应不同的控制模态得到两轮的期望轮速适应值,解决了机器人的非完整约束问题导致的点镇定控制的稳定性问题;00932在现有技术的基础上,将现有技术中作为比例控制器输出的期望轮速作为本发明增量式控制器中任务适应级输出的期望轮速适应值,并增加了运行控制级对期。
31、望轮速适应值进行进一步增量控制,解决了因运动执行系统必然存在的加速度和速度约束限说明书CN102023569ACN102023583A11/15页15制所导致的点镇定控制的稳定性问题。00943通过增量式控制方法,使左、右轮对任务适应级输出的期望轮速适应值的动态跟踪过程得到了控制,有效地解决了左、右轮的配合控制问题,可以获得更加优良的机器人运动轨迹。00954基于增量式控制方法,在保证两轮轮式机器人运动轨迹的前提下,进一步提高了机器人到达目标点的速率,能有效提高机器人运动的快速性。附图说明0096图1为两轮轮式机器人的运动控制模型示意图;0097图2为经典比例控制下两轮轮式机器人从点O运动到点。
32、A的运动轨迹示意图;0098图3为本发明实施例中采用的分段比例控制的初始输入向量空间划分示意图;0099图411分别为实施例1中采用本发明方法控制两轮轮式机器人从初始位姿0,0,0到8个目标点AH的运动轨迹变化图;0100图12为实施例2中采用本发明方法的增量式比例控制INCP、增量式比例余弦控制INCPCOS和增量式分段比例控制INCHSIC与采用经典比例控制P、比例余弦控制PCOS和分段比例控制MPHSIC的两轮轮式机器人运动轨迹变化比较图;0101图13为实施例2中采用本发明方法的增量式比例控制INCP、增量式比例余弦控制INCPCOS和增量式分段比例控制INCHSIC与采用经典比例控制。
33、P、比例余弦控制PCOS和分段比例控制MPHSIC的两轮轮式机器人偏差角度变化比较图。具体实施方式0102下面结合附图和实施例对本发明的技术方案作进一步的说明。0103实施例10104为了说明本发明方法的可行性,本实施例采用本发明方法的增量式分段比例控制即在本实施例中任务适应级采用增量式分段比例控制,运行控制级采用增量式轮速跟随控制;此处将增量式分段比例控制缩写为INCHSIC,测试两轮轮式机器人从初始位姿O0,0,0分别到A4000,4000、B4000,0、C4000,4000、D0,4000、E4000,4000、F4000,0、G4000,4000和H0,4000这8个目标点的到定点运。
34、动单位MM选取的8个目标点包含了围绕初始点O的各方向,以达到较全面测试的目的。对于8个目标点中的任意一点的运动控制,增量式控制器的控制步骤如下0105A获取当前控制周期时,机器人所在点与目标点的距离偏差EDK,以及机器人朝向与机器人由所在点面向目标点方向的角度偏差EK;其中,E,以逆时钟方向为正,顺时钟方向为负;0106B在任务适应级,根据距离偏差EDK和角度偏差EK,采用分段比例控制,获得当前控制周期的左轮期望轮速适应值ULCK和右轮期望轮速适应值URCK;本实施例采用的分段比例控制的具体操作如下0107B1综合考量本实施例中所采用机器人的轮速饱和值及其可控最大减速度,设定减速控制距离常数D。
35、11500MM;考虑到可能存在180的大角度偏差,设定第一角度分段点190;为了让机器人在纠正角度偏差后能以尽快的速度达到目标点,设置优化说明书CN102023569ACN102023583A12/15页16轮速参数V31600MM/S本实施例所采用机器人的轮速饱和值为2000MM/S。0108然后,分段比例控制的其它参数V1、V2、1、2、3、4、5和2均可通过遗传算法整定优化获得;其中,V1和V2分别为初始轮速参数和中段轮速参数,1、2、3、4和5分别为各分段的固定增益,2为第二角度分段点;本实施例获取上述参数的具体方法是由于该机器人的运动控制系统的控制周期时长为005S,以机器人每运行5。
36、S即100个控制周期与目标点的距离偏差作为适应度函数,遗传算法的个体数为20,遗传500代,按遗传算法进行收敛、镇定,获得V12671MM/S,V213363MM/S,116,214,3041,402,528,2258;0109B2由减速控制距离常数D1将距离偏差ED的取值空间划分为0,D1和D1,两个区间;由第一、第二角度分段点1和2将角度偏差的绝对值|E|划分为0,2、2,1和1,三个区间;由此,机器人运动控制的输入向量ED,ET被划分为四个状态区间,如图3所示,其采用动觉智能总图式描述当前控制周期的特征模态集数学表达式为01100111B3根据遗传优化获得的参数,确定对应于特征模态集的分。
37、段控制模态集01120113其中,L为机器人左、右轮之间的轮距,本实施例所采用机器人的L364MM;0114B4将特征模态与控制模态按下标号一对一对应关联,根据该关联关系获得当前控制周期的左轮期望轮速适应值ULCK和右轮期望轮速适应值URCK。0115C在运行控制级,根据任务适应级获得的左轮期望轮速适应值ULCK和右轮期望轮速适应值URCK,采用增量式轮速跟随控制,获得当前控制周期的左轮期望轮速ULK和右轮期望轮速URK;运行控制级的具体操作如下0116C1获取左轮轮速饱和增量ULMAX和左轮轮速饱和值ULMAX,以及右轮轮速饱和增量URMAX和右轮轮速饱和值URMAX;同时,设定减速控制距离。
38、常数D1可与步骤B1中设定相同,并获取当前控制周期的左轮实际轮速VLK和右轮实际轮速VRK;0117C2计算当前控制周期的期望轮速适应差EUKURCKULCK和实际轮速差EVKVRKVLK;进而求得当前控制周期的控制向差EKEUKEVK;说明书CN102023569ACN102023583A13/15页170118C3按上述的式5确定特征模态集;0119C4按上述的式11式13确定控制模态集;0120C5特征模态集与控制模态集的关联关系按上述的式15确定,即特征模态J与控制模态J按下标号一对一对应关联;根据该关联关系获得当前控制周期的左轮期望轮速ULK和右轮期望轮速URK;0121D增量式控制。
39、器在各个控制周期重复步骤AC,并输出期望轮速向量U,直至机器人到达目标点;其中,01220123UL和UR分别为增量式控制器输出的左轮期望轮速和右轮期望轮速。0124最后,根据实际情况,可以选择直接用增量式控制器输出的左轮期望轮速UL和右轮期望轮速UR分别控制左轮电机系统和右轮电机系统;或者,选择执行步骤E0125E对增量式控制器输出的期望轮速向量U进行静差补偿,再用补偿后的左轮期望轮速和右轮期望轮速分别控制左轮电机系统和右轮电机系统;所述静差补偿的公式为0126即0127其中,U为静差补偿后的期望轮速向量;和分别为静差补偿后的左轮期望轮速和右轮期望轮速;L和R分别为左轮轮速反馈补偿系数和右轮。
40、轮速反馈补偿系数,分别由左轮、右轮电机系统的驱动性能决定。0128本实施例采用上述两轮轮式机器人点镇定增量式智能控制方法的步骤A步骤E,控制机器人从初始位姿O0,0,0到A4000,4000、B4000,0、C4000,4000、D0,4000、E4000,4000、F4000,0、G4000,4000和H0,4000这8个目标点到定点运动的运动轨迹变化图分别如图4图11所示;从图4图11可以看到,机器人从初始点运动到目标点,都尽可能快地纠正了角度偏差,其运动轨迹均接近于直线或者说曲度很小。该测试证明,本发明方法能够有效解决解决了机器人的非完整约束问题导致的点镇定控制的稳定性问题以及左、右轮的。
41、配合控制问题,可以获得较为理想的机器人运动轨迹。0129实施例20130为了进一步说明本发明方法相对于现有技术的有效性,本实施例采用本发明方法的增量式比例控制INCP、增量式比例余弦控制INCPCOS和增量式分段比例控制INCHSIC与采用现有技术的经典比例控制P、比例余弦控制PCOS和分段比例控制MPHSIC进行比较,分别测试两轮轮式机器人采用上述六种控制方法从初始位姿O0,0,0分别到A4000,4000、B4000,0、C4000,4000、D0,4000、E4000,4000、F4000,0、G4000,4000和H0,4000这8个目标点的到定点运动单位MM;其中,分段比例控制的具体。
42、实施方式与实施例1中相同。通过测试,对上述六种控制方法进行分析01311对上述六种控制方法的系统相应指标进行比较采用“是否可达”和“到说明书CN102023569ACN102023583A14/15页18达控制周期数”每个控制周期的时长为005S作为系统响应指标,分别比较采用本发明方法的增量式比例控制INCP与经典比例控制P、本发明方法的增量式比例余弦控制INCPCOS与比例余弦控制PCOS、以及本发明方法的增量式分段比例控制INCHSIC与分段比例控制MPHSIC进行控制时,机器人从初始位姿O0,0,0分别到目标点A4000,4000、B4000,0、C4000,4000、D0,4000、E。
43、4000,4000、F4000,0、G4000,4000和H0,4000的系统响应指标,如表1所示0132表1系统响应指标比较013301342选取六种控制方法均可达的一个目标点D0,4000,对运动过程中机器人的运动轨迹和角度偏差的变化情况进行比较机器人分别采用上述六种控制方法从初始位姿O0,0,0到目标点D0,4000的运动轨迹变化比较图以及角度偏差变化比较图分别如图12和图13所示。0135通过上述测试以及分析所得的数据及图示不难看出0136在系统响应指标上,对于采用经典比例控制P和比例余弦控制PCOS中出现目标点发散失控或不能到达目标点的情况,分别在本发明方法的增量式比例控制INCP和。
44、增量式比例余弦控制INCPCOS中得以解决,在测试中,采用本发明方法后失控现象不再有发生;同时,在INCP控制与P控制对比、INCPCOS控制与PCOS控制对比、以及INCHSIC控制与MPHSIC控制对比的8组数据中,就到达目标点的控制周期数而言本发明方法分别有7组、8组和5组更优包含不再失控的数据,而未获得更优效果的数据也非常接近,也就是说,采用本发明方法后针对不同比例控制方法的机器人运动快速性均得到了提高。从整体系统响应指标来看,六种控制方法中,本发明方法的增量式分段比例控制INCHSIC的响应性能最好。0137在运动轨迹和角度偏差的控制上,INCP控制、INCPCOS控制和INCHSI。
45、C控制分别获得了比P控制、PCOS控制和MPHSIC控制更优的运动轨迹和更好角度偏差控制;其中,P控制和MPHSIC控制在运动开始有一段角度偏差反而增大,这是由于加速度饱和使得两轮轮式机器人运动方向失控造成的,也是导致图12中P控制和MPHSIC控制运动轨迹很差的重要原因;PCOS控制的角度控制效率很高,但超调非常大,导致说明书CN102023569ACN102023583A15/15页19图12中PCOS控制运动轨迹形状变化较大。从整体来运动轨迹和角度偏差的控制来看,本发明方法的增量式比例余弦控制INCPCOS的角度偏差控制效率最高,超调也最小,本发明方法的增量式分段比例控制INCHSIC略。
46、次之,但也与INCPCOS控制相当接近;然而,结合表1中的系统响应数据可知,INCPCOS控制在各组数据的快速性控制上均不如INCHSIC控制做得好。0138综合考虑上述两个方面的分析结果,本发明方法的增量式控制与分段比例控制相结合INCHSIC,在兼顾可达性、运动轨迹、角度偏差控制、快速性各方面的点镇定控制效果要优于其他5中控制方法。因此,将分段比例控制作为本发明的两轮轮式机器人点镇定增量式智能控制方法中任务适应级的优选控制方案。0139本发明运用基于图式理论的仿人智能控制理论,提出了一种两级的增量式控制器,该增量式控制器在现有技术的基础上,将现有技术中作为比例控制器输出的期望轮速作为本发明。
47、增量式控制器中任务适应级输出的期望轮速适应值,解决了机器人的非完整约束问题导致的点镇定控制的稳定性问题;并增加了运行控制级对期望轮速适应值进行进一步的增量式轮速跟踪控制,解决了因运动执行系统必然存在的加速度和速度约束限制所导致的点镇定控制的稳定性问题,在保证获得优良的机器人运动轨迹的同时,更有效提高了机器人运动的快速性。此外,还通过测试实验,验证了本发明方法的增量式控制与分段比例控制相结合后的智能控制方法在兼顾可达性、运动轨迹、角度偏差控制、快速性各方面的点镇定控制效果的优越性。0140最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域。
48、的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。说明书CN102023569ACN102023583A1/6页20图1图2图3说明书附图CN102023569ACN102023583A2/6页21图4图5说明书附图CN102023569ACN102023583A3/6页22图6图7说明书附图CN102023569ACN102023583A4/6页23图8图9说明书附图CN102023569ACN102023583A5/6页24图10图11说明书附图CN102023569ACN102023583A6/6页25图12图13说明书附图CN102023569A。