技术领域
本发明涉及灌溉技术领域,特别涉及一种基于土壤水分检测的脐橙节水灌溉方法。
背景技术
大力发展农业节水的技术需求下,调亏灌溉成了当前热烈推广的节水技术。调亏灌溉(RDI)主要是以作物和水分关系为基础,在作物的生长发育阶段有目的地使其产生水分亏缺,在对作物产量无不利影响的基础上,达到节水、高产、优产和提高水分利用效率的灌溉技术。该技术自上世纪70年代中期于澳大利亚持续灌溉农业研究所提出后,开始广泛运用于果树。国内自20世纪80年代开始调亏灌溉的研究工作,研究对象主要为大田作物玉米、棉花、小麦、水稻,研究人为康绍忠、梁银丽;研究方向从一开始的RDI对产量、果实品质的影响,后逐步转移到对果实耗水规律的研究,进而制定灌溉制度。而因为已有灌溉制度研究成果不能全面反映不同区域不同种类作物的情况,因此迫切需要研究不同种类作物在不同地区调亏指标的分布,以利于因地适宜的应用于推广。
发明内容
本发明的目的在于克服现有技术的缺点与不足,提供了一种基于土壤水分检测的脐橙节水灌溉方法,结合土壤和脐橙相关信息,通过设置不同的水分条件,观测脐橙的健康状况,研究脐橙用水规律,并与当地自然降水量进行耦合度分析,从而确定因地制宜的灌溉制度。
本发明的目的通过以下的技术方案实现:
一种基于土壤水分检测的脐橙节水灌溉方法,包括以下步骤:
S1、根据脐橙不同生育期的耗水规律,依据Jensen模型,得到脐橙不同生育期敏感系数:
其中,Ya为非充足供水条件下脐橙实际产物,Ym为充足供水条件下脐橙产量,ETa为为非充足供水条件下作物实际蒸发蒸腾量,ETm为充足供水条件下作物蒸发蒸腾量,i为不同生育期序号,n为生育期的总数,λi为脐橙不同生育期敏感系数;
根据脐橙不同生育期敏感系数,建立拟合精度较高的水分生产函数:
其中,ETai为非充足供水条件下脐橙实际蒸发蒸腾量,ETmi为充足供水条件下脐橙蒸发蒸腾量,i为脐橙不同生育期序号。
S2、根据脐橙不同生育期的调亏灌溉结合水分生产函数分析,得出脐橙不同生育期最优需水量;
S3、根据脐橙不同生育期最优需水量,制定满足脐橙正常生长的灌溉制度。
S4、对当地历史降水量按脐橙生育期进行统计分析,计算有效降水量:
pe=α×p,
其中,pe为有效降雨量,p为计算时间段内降雨量总量,α为降雨有效习俗,其值大小与降雨量大小、降雨量强度、降雨延续时间、土壤特性相关;
S5、将脐橙不同生育期需水量与有效降水量进行季节耦合度分析,得出脐橙需水满足率:
其中,pei为第i生育期内的自然降水量,ETmi为第i生育期的脐橙需水量,αi为第i生育期的脐橙需水量与自然降水量的耦合度;
S6、将脐橙全阶段生育期需水量与有效降水量进行季节耦合度分析,得出脐橙总需水满足量:
根据耦合度,完善灌溉制度;耦合度为1则不需要补充灌水,耦合度低于1则适当补充灌水。
步骤S2中,具体过程为:在脐橙的不同生育期进行调亏灌溉后,从果实的生长发育、品质发展和产量进行综合考虑;脐橙树的最佳生育期调亏处理方式为:在果实膨大期采用轻度水分亏缺处理、开花坐果期采用中度水分亏缺处理,其他生育阶段采用充分灌溉,结合水分生产函数的敏感系数,其中敏感系数从高到低的顺序:果实膨大期>开花坐果期>果实着色期>果实成熟期,从而得到不同生育期最优需水量;果实膨大期是脐橙生长的水分敏感期,在果实膨大期保证水分和养分的合理供应;
所述脐橙不同生育期最优需水量,以脐橙不同生育期敏感系数为基础,通过对不同生育期进行亏水处理后的脐橙进行生长发育、产量和品质、水分利用效率的监测得出;其中开花坐果期最有最优需水量为45%FC~55%FC,果实膨大期最优需水量为55%~70%FC,果实着色期和果实成熟期最优需水量为70%FC~75%FC。
所述脐橙不同生育期包含:开花坐果期、果实膨大期、果实着色期、果实成熟期。
步骤S3具体步骤如下:以脐橙不同生育期敏感系数为基础,即敏感系数高的表明该生育期对水分越敏感,并通过对不同生育期进行亏水处理后的脐橙进行生长发育、产量和品质、水分利用效率的监测后,得出每个生育期的最优需水量,即各个生育期的最优含水量上下限,制定满足脐橙正常生长的灌溉制度:
M=S×H×γ×(Wa-Wb),
其中,M为灌水量,S为距离脐橙1米范围内的面积,H为灌水计划湿润层深度,γ为土壤密度,Wa为土壤含水量上限,Wb为土壤含水量下限;
计算脐橙的灌水次数与灌水周期:
T=M/q,
n=K/T,
其中,T为灌水周期,q为灌水强度,n为灌水次数,K为脐橙生育期总天数。
所述计划湿润层深度为脐橙纵向根长度;所述脐橙纵向根长度随脐橙根系活动层深度、土壤特性信息、地下水埋深度变化,还随着脐橙相关信息变化,这里土壤湿润层深度为40cm。
所述土壤特性信息包含:土壤密度、田间持水量、土壤含水量;
所述脐橙相关信息包含:脐橙年龄、脐橙的根系深度、脐橙不同生育期需水量、蒸发蒸腾量、脐橙生长发育指标、脐橙品质指标。
所述土壤密度采用环刀法测量;所述田间持水量采用威尔科克斯法测量,步骤如下:
Y1、用环刀在试验区大田采原状土,带回室内放水中饱和一昼夜,水面较环刀上缘低1~2mm;
Y2、同时在相同土层采土、风干、通过1mm筛子,装入环刀中;
Y3、将装有饱和水分的湿土的环刀的底盖打开,连同滤纸一起放在风干土的环刀上,为使接触紧密,采用砖头压实,一对环刀用三块砖压;
Y4、经过8小时吸水过程后,从上面环刀盛原状土中用铝盒取土15~20g,立即称重,烘干,测定含水率,此含水率即土壤的田间持水量。
所述土壤含水量采用TRIME-T3土壤剖面含水率测量系统监测,检测时间为每隔十天测量一次;每次灌水及降雨前后进行加测。
所述蒸发蒸腾量采用蒸发检测FR蒸发自动监测系统监测,检测时间为每天测量一次。
本发明与现有技术相比,具有如下优点和有益效果:
本发明结合当地土壤特点和脐橙信息,并通过脐橙耗水规律,结合自然降水量进行耦合度分析,制定灌水周期和灌水定额,确定灌溉方法,因地制宜,适用范围广,提高水分利用概率和灌溉水利用效率,同时还能提高产量。
附图说明
图1为本发明一种基于土壤水分检测的脐橙节水灌溉方法的流程图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
一种基于土壤水分检测的脐橙节水灌溉方法的流程图如图1所示,包括以下步骤:
第一步:根据脐橙不同生育期的耗水规律,依据Jensen模型,得到脐橙不同生育期敏感系数:
其中,Ya为非充足供水条件下脐橙实际产物,Ym为充足供水条件下脐橙产量,ETa为为非充足供水条件下作物实际蒸发蒸腾量,ETm为充足供水条件下作物蒸发蒸腾量,i为不同生育期序号,n为生育期的总数,λi为脐橙不同生育期敏感系数;
根据脐橙不同生育期敏感系数,建立拟合精度较高的水分生产函数:
其中,ETai为非充足供水条件下脐橙实际蒸发蒸腾量,ETmi为充足供水条件下脐橙蒸发蒸腾量,i为脐橙不同生育期序号。
第二步:根据脐橙不同生育期的调亏灌溉结合水分生产函数分析,具体过程为:在脐橙的不同生育期进行调亏灌溉后,从果实的生长发育、品质发展和产量进行综合考虑;脐橙树的最佳生育期调亏处理方式为:在果实膨大期采用轻度水分亏缺处理、开花坐果期采用中度水分亏缺处理,其他生育阶段采用充分灌溉,结合水分生产函数的敏感系数,即λ值,其中敏感系数从高到低的顺序:果实膨大期>开花坐果期>果实着色期>果实成熟期,从而得到不同生育期最优需水量;果实膨大期是脐橙生长的水分敏感期,在果实膨大期保证水分和养分的合理供应;
所述脐橙不同生育期最优需水量,以脐橙不同生育期敏感系数为基础,通过对不同生育期进行亏水处理后的脐橙进行生长发育、产量和品质、水分利用效率的监测得出;其中开花坐果期最有最优需水量为45%FC~55%FC,果实膨大期最优需水量为55%~70%FC,果实着色期和果实成熟期最优需水量为70%FC~75%FC。
第三步:以脐橙不同生育期敏感系数为基础,即敏感系数高的表明该生育期对水分越敏感,并通过对脐橙不同生育期进行亏水处理后的脐橙进行生长发育、产量和品质、水分利用效率的监测后,得出脐橙不同生育期的最优需水量,即脐橙不同生育期的土壤含水量上下限,制定满足脐橙正常生长的灌溉制度:
M=S×H×γ×(Wa-Wb),
其中,M为灌水量,S为距离脐橙1米范围内的面积,H为灌水计划湿润层深度,γ为土壤密度,Wa为土壤含水量上限,Wb为土壤含水量下限;
计算脐橙的灌水次数与灌水周期:
T=M/q,
n=K/T,
其中,T为灌水周期,q为灌水强度,n为灌水次数,K为脐橙生育期总天数。
计划湿润层深度为脐橙纵向根长度,所述脐橙纵向根长度随脐橙相关信息、土壤特性信息、地下水埋深度变化,还随着作物的生长发育、树龄增长变化,本实施例土壤湿润层深度为40cm。
所述土壤特性信息包含:土壤密度、田间持水量、土壤含水量;
所述脐橙相关信息包含:脐橙年龄、脐橙的根系深度、脐橙不同生育期需水量、蒸发蒸腾量、脐橙生长发育指标、脐橙品质指标。
所述土壤密度采用环刀法测量;所述田间持水量采用威尔科克斯法测量,步骤如下:
Y1、用环刀在试验区大田采原状土,带回室内放水中饱和一昼夜,水面较环刀上缘低1~2mm;
Y2、同时在相同土层采土、风干、通过1mm筛子,装入环刀中;
Y3、将装有饱和水分的湿土的环刀的底盖打开,连同滤纸一起放在风干土的环刀上,为使接触紧密,采用砖头压实,一对环刀用三块砖压;
Y4、经过8小时吸水过程后,从上面环刀盛原状土中用铝盒取土15~20g,立即称重,烘干,测定含水率,此含水率即土壤的田间持水量。
所述土壤含水量采用TRIME-T3土壤剖面含水率测量系统监测,检测时间为每隔十天测量一次;每次灌水及降雨前后进行加测。
所述蒸发蒸腾量采用蒸发检测FR蒸发自动监测系统监测,检测时间为每天测量一次。
第四步:对当地历史降水量按脐橙生育期进行统计分析,计算有效降水量:
pe=α×p,
其中,pe为有效降雨量,p为计算时间段内降雨量总量,α为降雨有效习俗,其值大小与降雨量大小、降雨量强度、降雨延续时间、土壤特性相关;
第五步:将脐橙不同生育期需水量与有效降水量进行季节耦合度分析,得出脐橙需水满足率:
其中,pei为第i生育期内的自然降水量,ETmi为第i生育期的脐橙需水量,αi为第i生育期的脐橙需水量与自然降水量的耦合度;
第六步:将脐橙全阶段生育期需水量与有效降水量进行季节耦合度分析,得出脐橙总需水满足量:
根据耦合度,完善灌溉制度;耦合度为1则不需要补充灌水,耦合度低于1则适当补充灌水,即根据耦合度高低,适当补充灌水,并将多余的降水量设排水沟排出,集中储存起来,在土壤含水量不能满足慈橙树正常生长发育时再进行灌溉。
实施例:
本发明采用大田实验方式进行分析,地址选择在广东省梅州市平远县慈橙生产试验基地,脐橙选择为脐橙树。本发明研究的是开花坐果期、果实膨大期、果实着色期和果实成熟期4个生育期内的水分需求特征。将脐橙树的划分为新梢生长期、开花坐果期、果实膨大期、果实着色期和果实成熟期5个生育阶段,如下所示:
新梢生长期 开花坐果期 果实膨大期 果实着色期 果实成熟期 生长日期 2.10~4.3 4.4~6.02 6.03~8.22 8.23~10.22 10.23~12.01 天数 52 60 81 61 40
共设13个实验组,每个实验组为3棵树,挑选树形均一、树龄一致、长势较好的39棵脐橙树。为防止自然降雨入渗对调亏灌溉产生影响,除正常对照组CK外,其余12个实验组均在地表铺设双层防渗膜以及周围挖宽防侧渗沟。薄膜铺设在脐橙树根部10cm范围外,根部土堆垒高,除了水分调亏处理,其他的田间管理均按当地的生产措施实行,如图1所示。
实验采取根区(0~80cm)土壤含水率下限控制灌水。灌水量按照田间持水量(FC)进行控制。根据实际生产习惯,土壤含水率保持在田间持水率(FC)的70%~75%时是比较适合脐橙的生长,结合脐橙各生育阶段对水分需求的特性,在其四个生育期内,试验设置为:正常处理的土壤含水率为田间持水量的70%~75%;轻旱处理的土壤含水率为田间持水量的55%~70%;中旱处理的土壤含水率为田间持水量的45%~55%;重旱处理的土壤含水率为田间持水量的35%~45%。具体实验方案见下表所示:
对土壤进行测试:
获取土壤密度:土壤容重是指田间自然状态下每单位体积土壤的干重,通常用来估计土壤的松紧和结构状况,用g/cm3表示。本实验采用环刀法测定土壤密度:如下所示:
土层深度(cm) 0~20 20~40 40~60 60~80 平均值 土壤密度(g/cm3) 1.24 1.41 1.31 1.27 1.31
获取田间持水量:田间持水量是指土壤中毛管悬着水达到最大量时的土壤含水率,它是土壤中的有效水分和过剩水分的分界线,是对作物有效水的上限,常用作计算灌水定额的依据。田间持水量是一个很难确定的参数。在现场采用威尔科克斯法测定田间持水量。操作步骤:
1、用环刀在试验区大田采原状土,带回室内放水中饱和一昼夜(水面较环刀上缘低1~2mm)。
2、同时在相同土层采土、风干、通过1mm筛子,装入环刀中。
3、将装有饱和水分的湿土的环刀的底盖(有孔的盖子)打开,连同滤纸一起放在风干土的环刀上。为使接触紧密,采用砖头压实(一对环刀用三块砖压)。
4、经过8小时吸水过程后,从上面环刀(盛原状土)中用铝盒取土15~20g,立即称重,准确至0.01g。烘干,测定含水率,此值即接近该土壤的田间持水量。
每层土壤进行3次重复测定,取算术平均值:
获取土壤含水量:本次实验采用TRIME-T3土壤剖面含水率测量系统,如图所示,监测不同土壤深度的土壤含水率变化状况。在距离根部1m处埋好测试管,测试土壤深度为80cm,分别测0~20cm、20~40cm、40~60cm和60~80cm四个土层土壤体积含水率,每隔10天测一次,每次灌水及降雨前后加测。
获取作物蒸发蒸腾量:为了监测试验区土壤水分蒸发状况,采用蒸发监测FR蒸发自动监测系统,监测当地参考作物蒸发蒸腾量ET0,每天采集一次数据。
获取脐橙生长发育和果实品质指标:本次试验中对果实生长发育指标的监测开始于开花坐果期,随后开始在果实膨大期、果实着色期和果实成熟期4个生育阶段每隔10天进行一次重复测量,测定脐橙各项生长指标,并在果实成熟后采摘进行品质指标的测定。各项指标的监测方法如下:
果实直径:自果实生长开始,在每棵树主枝不同方向分别标记10个生长发育良好的果实,采用精度为0.01mm的游标片尺每10天测定一次果实横径和纵径。
果实产量:将不同水分处理的脐橙树的所有果实进行采摘并统计脐橙树的单棵树上的果实总重,计算单位面积内的产量作为该处理的总产量,单位为kg/㎡。
单果鲜重:果实成熟采摘后,对每颗试验树在标记的10个果实采用精度为0.01kg的电子天平测定果实鲜重。
果实品质:从成熟后的标记过的果实里随机抽取3个脐橙进行品质的测定,测定项目包括维生素含量、糖分含量。维生素含量采用2,6-二氯酚靛酚法测定,精度为1mg/100g;糖分含量由手持糖分计测定,精度为0.1%。
在开花坐果期采用45%FC~55%FC亏水处理可以增加果实的含糖量和维生素C的含量;果实膨大期进行适度缺水处理,土壤含水率控制在55%FC可明显提高果实的品质以及增大果实的体积;果实膨大期是耗水敏感期,在该阶段进行适度土壤水分控制,即55%~70%FC的处理,可以提加产量、提高水分利用效率,但若是水分亏缺严重,则会造成产量降低。
根据脐橙不同生育期的耗水规律,依据Jensen模型,得到脐橙不同生育期敏感系数:
其中,Ya为非充足供水条件下脐橙实际产物,Ym为充足供水条件下脐橙产量,ETa为非充足供水条件下作物实际蒸发蒸腾量,ETm为充足供水条件下作物蒸发蒸腾量,i为不同生育期序号,n为生育期的总数,λi为脐橙不同生育期敏感系数;
根据脐橙不同生育期敏感系数,建立拟合精度较高的水分生产函数:
其中,ETai为非充足供水条件下脐橙实际蒸发蒸腾量,ETmi为充足供水条件下脐橙蒸发蒸腾量,i为脐橙不同生育期序号。
使用Jensen模型反映耗水量与产量之间的关系,脐橙的水分生产函数确定为:
脐橙树不同生育期,灌水周期是不同的:
生育期 开花坐果期 果实膨大期 果实着色期 果实成熟期 生育期天数 60 81 61 40 耗水强度(mm/d) 1.35 3.20 1.74 2.30 灌水定额(mm) 15.54 23.31 7.77 7.77 灌水周期(d) 12 7 4 3 灌水次数(次) 5 12 13 11
根据当地降水资料,用频率方法对其进行统计分析,运用水文频率P-III曲线进行典型年选配曲线,根据平远地区降雨频率曲线可以得出四种降水年型的年降雨量值以及各典型年在脐橙的四个生育期内的月降雨量值,通过采用公式pe=α×p计算有效降雨量,并于作物适宜需水量进行平衡分析;
在本实施例灌溉制度下,该地区四种典型年降雨量都能够满足脐橙树的需水需求。但从具体月份来看,即使在湿润年也需要补充灌溉,如湿润年10月和11月份均出现亏水情况,该阶段刚好是脐橙的果实成熟期。
将本实施例灌溉制度下的脐橙需水与自然降水进行季节耦合度分析,主要是从时间维度上衡量自然降水对作物需水的满足率,数值上介于0-1之间,越接近1满足率越高,采用公式如公式1所示:
全生育期脐橙需水量耦合度采用公式如下:
耦合度结果如下表所示:
典型年 4月4-30日 5月 6月 7月 8月 9月 10月 11月 总量 湿润年 1 1 1 0.6 1 1 0.2 0.1 1 平水年 1 1 1 1 1 1 0.2 0 1 干旱年 1 1 0.5 1 1 1 0.8 0 0.9 枯水年 0.6 1 1 1 1 1 0.6 0.8 0.9
根据耦合度高低,适当补充灌水,耦合度为1则不需要补充灌水,耦合度低于1则适当补充灌水,并将多余的降水量设排水沟排出,集中储存起来,在土壤含水量不能满足慈橙树正常生长发育时再进行灌溉。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。