半导体装配方法和装置 本发明涉及半导体制造工艺中半导体装配方法和装置,该装置用于连接芯片和引线框架等。
用金、铝等构成的引线和引线焊接机连接半导体芯片和如引线框架等外电极。用加热或超声波或两者连接引线和半导体芯片或外电极。
在引线焊接机中,其中之一利用的焊接工艺被称为球形焊接,利用放电或其它加热方法在引线的尖端形成球。该工艺的焊接条件包括,加热半导体芯片和外电极的工作台的温度,给引线加压的压力和时间,超声波的振荡输出和时间。
预先存储这些条件作为引线焊接机的数据,把这些数据作为总的设定数据,或各引线的设定数据。
在该情况,焊接机连续为多条引线进行焊接,加压部件接收半导体芯片加热器的热量,升高温度。球也升温,因为形成球后立刻进行焊接工艺。
但是,例如,在传送半导体芯片的时间,或暂停后重新开始的时间,当延长焊接工艺与其它工艺的间隔时间时,加压部件或球的温度要降低,这产生下述结果,会抑制引线和半导体芯片的合金,以致于会降低可焊性。
因此,本发明的目的是提供半导体装配方法和装置,完成焊接而不受加压部件和球的降温地影响,即使延长下步焊接工艺时间间隔也是如此。
为了实现这些和其它目的,按照本发明第一方案,提供一种半导体装配方法,利用压焊头把焊接引线压在焊接物件上,并至少利用热焊接工艺或超声焊接工艺之一来连接引线和连接物件,
半导体装配方法包括下列步骤:
测量上次焊接工艺到下次焊接工艺经过的时间;
根据测量的时间,改变压力、加压时间、超声振荡输出和用于后续焊接工艺的超声振荡时间中至少一个焊接条件。
按照本发明第二方案,提供一种半导体装配方法,利用引线压焊头向焊接物件压接引线,并且至少进行热连接或超声连接,来连接引线和焊接物件。
半导体装配方法,包括下列步骤:
测量压焊头的温度;
根据测量的温度,改变压力、加压时间、超声振荡输出、和用于后续焊接工艺的超声振荡时间中的至少一个焊接条件。 按照本发明第三方案,提供一种半导体装配方法,它是通过在焊接引线尖端处用能量施加到焊接引线而形成小球、用压焊头将焊接引线压向焊接物件以及用至少是热连接或超声连接之一的连接方法来连接焊接引线和焊接物件,
半导体装配方法包括下列步骤:
测量焊接引线尖端的温度;和
根据测量的温度,改变压力、加压时间、超声振荡输出、和用于后续焊接工艺的超声振荡时间中的至少一个焊接条件。
按照本发明第四方案,提供一种半导体装配方法,利用引线压焊头向焊接物件压接引线,并且至少进行热连接或超声连接,来连接焊接引线和焊接物件。
半导体装配方法包括下列步骤:
测量从向焊接引线施加能量在焊接引线的尖端形成球到利用压焊头把焊接引线焊到焊接物件的时间;
根据测量的时间,改变压力、加压时间、超声振荡输出、和用于后续焊接工艺的超声振荡时间中的至少一个焊接条件。
按照本发明第五方案,提供一种半导体装配装置,利用引线压焊头向焊接物件压接引线,并且至少进行热连接或超声连接,来连接焊接引线和焊接物件。
半导体装配装置包括:
用于测量上次焊接工艺到下次焊接工艺的时间的焊接间隔测量装置;
用于根据测量的温度改变压力、加压时间、超声振荡输出、和用于后续焊接工艺的超声振荡时间中的至少一个焊接条件的改变焊接条件装置。
按照本发明第六方案,提供一种半导体装配装置,利用引线压焊头向焊接物件压接引线,并且至少进行热连接或超声连接,来连接焊接引线和焊接物件。
半导体装配装置包括:
压焊机温度测量装置,它用于检测压焊头的温度;
改变焊接条件的装置,它用于根据测量的加压部件的温度,改变压力、加压时间、超声振荡输出、和用于后续焊接工艺的超声振荡时间中的至少一个焊接条件。
按照本发明第七方案,提供一种半导体装配装置,利用引线压焊头向焊接物件压接引线,并且至少进行热连接或超声连接,来连接焊接引线和焊接物件。
半导体装配装置包括:
利用施加在焊接引线上的能量在焊接引线的尖端形成球的球形成装置;
用于测量从由球形成装置在焊接引线尖端形成球到下步焊接工艺的时间的温度测量装置;
改变焊接条件装置,它用于根据测量的时间,至少改变压力、加压时间、超声振荡输出、和用于后续焊接工艺的超声振荡时间中的一个焊接条件。
按照本发明的第八方案,提供一种半导体装配装置,利用压焊头向焊接物件压焊接引线,并且至少进行热连接或超声连接,来连接焊接引线和焊接物件。
半导体装配装置包括:
用于利用施加在焊接引线上的能量在焊接引线的尖端形成球的球形成装置;
用于测量焊接引线尖端温度的温度测量装置;和
用于根据所测温度,至少改变压力、加压时间、超声振荡输出、和用于后续焊接工艺的超声振荡时间中的一个焊接条件。
本发明的这些和其他目的及特征,通过结合实施例和参考附图进行的叙述将变得显而易见,其中:
图1是按照本发明第一实施例焊接半导体芯片的装置的配置图;
图2是按照本发明第二实施例焊接半导体芯片的装置的配置图;
图3是按照本发明第三实施例焊接半导体芯片的装置的配置图;
图4是按照本发明第四实施例焊接半导体芯片的装置的配置图。
在说明本发明方法前,要注意的是在各附图中相同的标记表示相同的部件。
下面参考附图1-附图4,说明本发明的实施例。
图1表示本发明第一实施例。
第一实施例是一个例子,其中,根据从装配在采用热超声球形焊或者劈焊方法的引线焊接设备上、用来测量上次焊接工艺到下次焊接工艺的时间的焊接间隔测量装置获得测量数。通过改变压力、加压时间、超声振荡输出,超声振荡时间中的部分或者全部来进行装配。
引线焊接设备利用未表示的驱动方法,根据最佳长度从引线传送器1把焊接引线2送到压焊头3,由加压器4把压焊头3压在焊接物件6上。物件6是半导体芯片或者引线框架的外引线。标记5表示的是加热器,用来加热焊接物件6。利用AC伺服马达,线马达,压气缸等驱动增压器4。如此设置压焊头3使超声振荡器7产生的超声波传到连接部分的引线2。
控制整个焊接工艺的主控制器9,从数据存储器读出压力、加压时间、超声振荡输出和超声振荡时间的数据,并把它们输出到计算装置11。
如此设置计算装置11,以便按照从用来测量上次焊接工艺到下次焊接工艺的时间的间隔测量装置12获得的测量时间T改变数据,并传送指令到压力和时间控制装置13和超声振荡输出及时间控制装置8。如此设置计算部件11,以便当测量时间T变长大于连续焊接工艺之间的许可间隔时间时,加强焊接条件。例如,当连续焊接工艺之间普通的间隔时间是0.1秒,测量时间T是在10秒的允许间隔时间内时,焊接条件不变,因为测量时间T在许可的范围。当测量时间T大于10秒的许可时间间隔时,要改变焊接条件。加强焊接条件装置增加压力,或增加加压时间,或增加超声振荡输出,或延长超声振荡时间。为了避免由于过度增加压力对物件6的任何损伤,最好小量地增加压力和增加超声振荡输出。加强焊接条件只是意味着增加各种焊接条件。也就是,加强焊接条件意味着,减少加压时间、同时增加压力,以便增加焊接能量,减少超声振荡时间,同时增加超声振荡输出,以便增加焊接能量。
压力和时间控制装置13,根据计算装置11送来的指令来控制加压装置4。超声振荡输出和时间控制装置8,根据计算装置11送来的指令来控制超声振荡器7。
按照焊接程序进行说明,主控制器9在压焊时启动焊接间隔测量装置12。在接着的焊接过程中,计算装置11接收焊接间隔测量装置12测量的时间T,接收由主控制器9从数据存储器10读出的焊接条件数据,进行预定计算,然后把指令送到压力和时间控制装置13以及超声振荡输出和时间控制装置8。计算部件11进行计算,如下列所述:一个用来表示测量的时间T和压力、加压时间、超声振荡输出,超声振荡时间的增大数据之间的关系的表存储在数据存储器10中。根据测量时间T,计算部件11从表中读出增大的数据及其增加的数值,把其作为一个指令送到压力和时间控制装置13和超声振荡输出及时间控制装置8中。利用表示测量时间T和在数据存储器中存储的压力、加压时间、超声振荡输出、超声振荡时间的增大数据关系的方程式可进行计算。
用压焊头3把引线2压在物件6上,然后进行超声振荡,由此,完成引线2和物件6的焊接。
结果,由于通过检测焊接间隔,可以加强焊接条件,所以可以防止可焊接性的任何下降。
此外,显而易见,当只用热焊接方法作为焊接方法时,则超声振荡器7和超声振荡输出及时间控制装置8是不需的,当只用超声焊接时,加热器5是不需的。
图2表示本发明的第2实施例。
第2实施例是根据从压焊头温度测量装置获得结果,改变压力,加压时间,超声振荡输出,超声振荡时间中的部分或全部,进行装配工艺的例子。
标记14表示压焊头温度测量传感器,用于测量压焊头3的温度。用热电偶或者非接触式热传感器举例说明压焊头温度测量传感器14。标记15表示压焊头温度测量装置,根据压焊头温度测量传感器14的输出来测量压焊头的温度。其它部件包括送线器1,引线2,压焊头3,加压器4,加热器5,物件6,超声振荡器7,超声振荡输出和时间控制装置8,主控制器9,数据存储器10,这与第1实施例相同。
如此连接第2实施例的计算装置11,以便根据压焊头温度测量装置15获得的温度改变数据,计算装置11把指令送到压力和时间控制装置13及超声振荡输出和时间控制装置8。当测量温度低于焊接过程许可的温度时,计算装置11加强焊接的条件。例如,焊接的初始温度是100℃,当测量的温度低于100℃和等于或高于许可温度50℃时,不改变焊接条件,因为测量的温度是在许可的范围内。当测量温度低于许可温度50℃时要改变焊接条件。
在焊接期间,计算装置11从压焊头温度测量装置15接收测量的温度,从数据存储器10接收焊接条件数据,然后进行计算,向压力和时间控制装置13及超声振荡输出和时间控制装置8发出指令。例如计算装置11计算如下:有表示测量温度和压力、加压时间、超声振荡输出、超声振荡时间的增大数据之间关系的一个表存储在数据存储器中,然后,计算装置11根据测量的温度从表中读出增大的数据及其增加了的数值,把其作为指令送到压力和时间控制装置13及超声振荡输出和时间控制装置8。可利用下述方程进行计算,该方程表示测量温度和存储在数据存储器10中的压力、加压时间,超声振荡输出、超声振荡时间的增大数据之间的关系。
利用压焊头3把焊接引线2压在焊接物件6上,然后进行超声振荡,由此,完成焊接引线2和焊接物件6之间的焊接。
结果,由于通过检测压焊头的温度,可加强焊接条件,所以可以防止可焊接性的任何下降。
图3表示本发明的第3实施例。
第3实施例是装配方法的实施例,根据时间测量装置通过测量形成球后到接着进行焊接工艺经过的时间,改变压力、加压时间、超声振荡输出,超声振荡时间的部分或全部来完成该装配方法。
参见图3,标记16表示能量产生器,其把能量传给引线2的尖端,以便利用球形成装置117在引线2的尖端形成球17。作为一个例子,利用高压放电器件说明能量产生器。
如此设定计算装置11,以便根据测量形成球17后到接着进行焊接工艺的时间的时间测量装置18获得的测量时间改变数据,并且发送指令到压力和时间控制装置13及超声振荡输出和时间控制装置8。当测量的时间大于形成球17后到接着进行焊接工艺的许可间隔时间成为一个延长的时间时,则计算装置11加强焊接条件。例如,当普通间隔时间是0.1秒,测量的时间是在许可的10秒间隔时间内,则不改变焊接条件,因为测量的时间在许可的范围内。当测量的时间大于许可的10秒间隔时间时,要改变焊接条件。其它部件包括,送线器1,焊接引线2,压焊头3,加压器4,加热器5,焊接物件6,超声振荡器7,超声振荡输出和时间控制器8,主控制器9,数据存储器10,这些部件与第1实施例相同。
在焊接工艺期间,计算装置11接收时间测量装置18测量的时间,接收数据存储器10的焊接条件数据,进行计算,然后,向压力和时间控制装置13及超声振荡输出和时间控制装置8发出指令。例如计算装置11计算如下:有一个表示关于从形成球后到接着进行的焊接工艺的测量时间和压力、加压时间、超声振荡输出、超声振荡时间的增强数据之间关系的表存储在数据存储器10内。然后,计算装置11,根据测量的时间,从表中读出增强的数据及其增加的数值,作为指令送到压力和时间控制装置13及超声振荡输出和时间控制装置8。利用表示测量时间和存储在数据存储器10中的压力、加压时间、超声振荡输出、超声振荡时间的增强数据之间关系的方程式,可以进行计算。
利用压焊头把焊接引线2压在焊接物件6上,再进行超声振荡,由此完成焊接引线2和焊接物件6之间的焊接。
结果,由于通过检测形成球后的时间,可增强焊接条件,所以可以防止可焊性的任何下降。
图4表示本发明的第4实施例。
第4实施例是装配方法的例子,根据球温度测量装置测得的结果,改变压力、加压时间、超声振荡输出、超声振荡时间的部分或全部来实施该装配方法。
标记19表示球温度测量传感器,利用非接触式传感器作为例子来说明它。标记20表示球温度测量装置,它用来根据球温度测量传感器19的输出数据,测量球17的温度。其它部件包括,送线器1,焊接引线2,压焊头3,加压器4,加热器5,焊接物件6,超声振荡器7,超声振荡输出和时间控制装置8,主控制器9,数据存储器10,这些部件和第1实施例中的元件相同。
如此设置计算装置11,以便根据球温度测量装置20测得的温度来改变数据,其中测量装置20用于测量由球形成装置117形成的球的温度,然后计算装置11向压力和时间控制装置13及超声振荡输出和时间控制装置8发出指令。当测量温度低于球焊接工艺的许可温度时,计算装置11要增强焊接条件,例如,球焊接工艺普通的温度是100℃,测量的温度低于100℃和等于或高于50℃的许可球温度时,则不改变焊接条件,因为测量温度在许可的范围内,当测量温度低于50℃的许可温度时,要改变焊接条件。
在焊接工艺期间,计算装置11接收来自球温测量装置20的所测温度,接收来自数据存储器10的焊接条件数据,然后进行预定计算,并向压力和时间控制装置13及超声振荡输出和时间控制装置8发出指令。例如计算装置11计算如下:有一个表示所测球温和压力、加压时间、超声振荡输出、超声振荡时间的增强数据之间的关系的表存储在数据存储器10中,然后计算装置11,根据测量的球温,由表中读出增强的数据及其增加的数值,作为指令送到压力和时间控制装置13及超声振荡输出和时间控制装置8。利用下述方程式可进行计算,该方程式表示所测温度和存储在数据存储器10中的压力、加压时间、超声振荡输出、超声振荡时间中的增强数据之间的关系。
利用压焊头3把焊接引线2压在焊接物件6上,然后进行超声振荡,由此完成焊接引线2和焊接物件6之间的焊接。
结果,由于通过检测球温的任何降低,可增强焊接条件,所以可以防止可焊性的任何降低。
此外,即使只根据压力、加压时间,超声振荡输出,超声振荡时间中的一种参数来改变焊接条件,也可能改善可焊性。因此,不必利用数据存储器10存储各种数据,用某些固定数据也可以实施焊接方法和操作焊接装置。
虽然按照第1和第2实施例的装置没有如图3和图4所示的球形成部件117,但对于进行较小球的焊接工艺,每种装置都可具有上述的球形成部件117。
在焊接工艺中,可以根据各种需要设置第1到第4实施例中的许可温度和时间。
如上所述,按照本发明,即使延长一焊接过程到另一过程的时间间隔,例如,传送半导体芯片或停机后重新启动期间,可使焊接引线和焊接物件之间的焊接不受压焊头温度或球温降低的影响。这样,可焊性决不再下降。
虽然,参考附图结合优选实施例充分地说明了本发明,但应注意,本领域技术人员可进行各种变化和改型。并应理解,上述变化和修改包括在权利要求限定的范围内,而不脱离其限定的范围。