《一种基于模糊推理的管道泄漏定位方法.pdf》由会员分享,可在线阅读,更多相关《一种基于模糊推理的管道泄漏定位方法.pdf(16页完整版)》请在专利查询网上搜索。
1、10申请公布号CN104197203A43申请公布日20141210CN104197203A21申请号201410334406322申请日20140714F17D5/0220060171申请人东北大学地址110819辽宁省沈阳市和平区文化路3号巷11号72发明人张化光吴振宁汪刚刘金海冯健马大中王一宁迪李芳明卢森骧许相凯刘喆周坤赵重阳74专利代理机构沈阳东大知识产权代理有限公司21109代理人朱光林54发明名称一种基于模糊推理的管道泄漏定位方法57摘要本发明提供一种基于模糊推理的管道泄漏定位方法,包括实时采集管道首末两端的压力信号和温度信号;若实时采集的管道两端的压力信号中存在非工况调整引起的压。
2、力突变信号,则当前管道存在泄漏点,计算压力突变信号到达管道首末两端的时间差;利用负压波法、广义递归神经网络定位方法、利用温度梯度法,定位管道泄漏点到管道首端的距离;根据利用负压波法、广义递归神经网络定位方法、温度梯度法定位得到的管道泄漏点到管道首端的距离,利用模糊推理算法对泄漏点进行定位。采用三种不同的定位方法对管道泄漏点进行定位,经过模糊推理,鱼群算法隶属度函数参数自适应优化,赋予三种定位结果不同的置信度,从而实现泄漏点的精确定位。51INTCL权利要求书2页说明书8页附图5页19中华人民共和国国家知识产权局12发明专利申请权利要求书2页说明书8页附图5页10申请公布号CN104197203。
3、ACN104197203A1/2页21一种基于模糊推理的管道泄漏定位方法,其特征在于包括以下步骤步骤1实时采集管道首末两端的压力信号和温度信号;步骤2判断实时采集的管道两端的压力信号中是否存在压力突变信号,是,则执行步骤3,否则返回步骤1;步骤3判断当前管道是否存在工况调整,是,则返回步骤1,否则,当前管道存在泄漏点,计算压力突变信号到达管道首末两端的时间差;步骤4利用负压波法,根据压力突变信号到达管道首末两端的时间差,定位管道泄漏点到管道首端的距离;步骤5利用广义递归神经网络定位方法,根据压力突变信号到达管道首末两端的时间差,定位管道泄漏点到管道首端的距离;步骤6利用温度梯度法,根据采集到的。
4、管道首末两端的温度信号,定位管道泄漏点到管道首端的距离;步骤7根据利用负压波法、广义递归神经网络定位方法、温度梯度法定位得到的管道泄漏点到管道首端的距离,利用模糊推理算法对泄漏点进行定位;步骤71根据历史数据建立模糊推理规则,用来描述管道的决策条件空间与其对应的决策结果空间的关系;所述管道的决策条件空间包括管道首末两端的温度差和管道首末两端压力差;所述决策结果空间包括管道运行正常、管道发生泄漏和管道工况调整,其中,管道发生泄漏决策结果的三个程度模糊子集分别为严重泄漏、较大泄漏和小泄漏;步骤72对各管道的决策条件空间和各决策结果分别建立模糊隶属度函数;步骤73利用鱼群算法优化各模糊隶属度函数的顶。
5、点位置和模糊隶属度函数宽度;步骤731将各决策条件的模糊隶属度函数的顶点位置和模糊隶属度函数宽度、决策结果的模糊隶属度函数的顶点位置和模糊隶属度函数宽度作为基因,并将各基因任意排列构成人工鱼个体形式;步骤732按照构成的人工鱼个体形式随机产生N组数据,即N个人工鱼个体;步骤733分别计算N个人工鱼个体的食物浓度,记录食物浓度最大值及其对应的人工鱼个体;步骤734设定人工鱼个体的感知距离、人工鱼个体移动的最大步长、拥挤度因子、寻优最大次数、食物浓度阈值;步骤735对人工鱼个体进行寻优;步骤7351确定与当前人工鱼个体间距离小于感知距离的所有人工鱼个体,并确定这些人工鱼个体对应的模糊隶属度函数的顶。
6、点位置的平均值及模糊隶属度函数宽度的平均值,同时确定这些人工鱼个体中食物浓度最大的人工鱼个体及其食物浓度;步骤7352根据聚群、追尾和觅食确定新的人工鱼个体;步骤7353计算新的人工鱼个体的食物浓度,判断该新的人工鱼个体的食物浓度是否大于记录的食物浓度最大值,是,则记录该新的人工鱼个体的食物浓度及其对应的人工鱼个体;否则,维持记录的食物浓度最大值;步骤7354判断是否所有人工鱼个体均完成步骤7351步骤7353是,则执行步骤7355,否则对下一条人工鱼个体执行步骤7351步骤7353;权利要求书CN104197203A2/2页3步骤7355判断是否达到寻优最大次数或者当前记录的食物浓度最大值大。
7、于食物浓度阈值,则当前记录的食物浓度最大值对应的人工鱼个体为最优人工鱼个体,进而确定优化的各模糊隶属度函数的顶点位置和模糊隶属度函数宽度,否则,返回步骤7351;步骤74根据确定的优化的各模糊隶属度函数的顶点位置和模糊隶属度函数宽度,得到管道发生泄漏决策结果对应的模糊隶属度函数,进而得到严重泄漏的置信度、较大泄漏的置信度和小泄漏的置信度;步骤75将严重泄漏的置信度、较大泄漏的置信度和小泄漏的置信度分别作为利用负压波法、温度梯度法、广义递归神经网络定位方法定位得到的管道泄漏点到管道首端的距离的置信度,计算管道泄漏点到管道首端的距离XL其中,COF0、COF1和COF2分别为利用负压波法、广义递归。
8、神经网络定位方法、温度梯度法定位得到的管道泄漏点到管道首端的距离的置信度,X1、X2和X3分别为利用负压波法、广义递归神经网络定位方法、温度梯度法定位得到的管道泄漏点到管道首端的距离。权利要求书CN104197203A1/8页4一种基于模糊推理的管道泄漏定位方法技术领域0001本发明属于管道检测技术领域,具体涉及一种基于模糊推理的管道泄漏定位方法。背景技术0002随着输油管道的增多和管道服役时间的增长,管道运输的安全状态不容乐观。很多管道的老化程度比较严重,且已进入泄漏事故多发期。此外,人为破坏管道窃取石油资源的现象也相当严重,带来重大安全隐患。因此,管道泄漏检测成为管道安全生产管理的重要工作。
9、内容,对管道泄漏点进行定位也成了工作中的重中之重。0003目前,已经出现了温度梯度法、负压波法、管道模型法等多种方法实现对管道泄漏点的定位,但是,在这些方法中,有些方法简单方便、实用性强,但是定位精度较差;而另外一些方法定位精度较准确,但是方法复杂,需要考虑多种因素。因此,设计一种定位精度高、实用性强的管道泄漏定位装置具有重要的现实意义。发明内容0004针对现有技术存在的问题,本发明提供一种基于模糊推理的管道泄漏定位方法。0005一种基于模糊推理的管道泄漏定位方法,包括以下步骤0006步骤1实时采集管道首末两端的压力信号和温度信号;0007步骤2判断实时采集的管道两端的压力信号中是否存在压力突。
10、变信号,是,则执行步骤3,否则返回步骤1;0008步骤3判断当前管道是否存在工况调整,是,则返回步骤1,否则,当前管道存在泄漏点,计算压力突变信号到达管道首末两端的时间差;0009步骤4利用负压波法,根据压力突变信号到达管道首末两端的时间差,定位管道泄漏点到管道首端的距离;0010步骤5利用广义递归神经网络定位方法,根据压力突变信号到达管道首末两端的时间差,定位管道泄漏点到管道首端的距离;0011步骤6利用温度梯度法,根据采集到的管道首末两端的温度信号,定位管道泄漏点到管道首端的距离;0012步骤7根据利用负压波法、广义递归神经网络定位方法、温度梯度法定位得到的管道泄漏点到管道首端的距离,利用。
11、模糊推理算法对泄漏点进行定位;0013步骤71根据历史数据建立模糊推理规则,用来描述管道的决策条件空间与其对应的决策结果空间的关系;0014所述管道的决策条件空间包括管道首末两端的温度差和管道首末两端压力差;0015所述决策结果空间包括管道运行正常、管道发生泄漏和管道工况调整,其中,管道发生泄漏决策结果的三个程度模糊子集分别为严重泄漏、较大泄漏和小泄漏;0016步骤72对各管道的决策条件空间和各决策结果分别建立模糊隶属度函数;说明书CN104197203A2/8页50017步骤73利用鱼群算法优化各模糊隶属度函数的顶点位置和模糊隶属度函数宽度;0018步骤731将各决策条件的模糊隶属度函数的顶。
12、点位置和模糊隶属度函数宽度、决策结果的模糊隶属度函数的顶点位置和模糊隶属度函数宽度作为基因,并将各基因任意排列构成人工鱼个体形式;0019步骤732按照构成的人工鱼个体形式随机产生N组数据,即N个人工鱼个体;0020步骤733分别计算N个人工鱼个体的食物浓度,记录食物浓度最大值及其对应的人工鱼个体;0021步骤734设定人工鱼个体的感知距离、人工鱼个体移动的最大步长、拥挤度因子、寻优最大次数、食物浓度阈值;0022步骤735对人工鱼个体进行寻优;0023步骤7351确定与当前人工鱼个体间距离小于感知距离的所有人工鱼个体,并确定这些人工鱼个体对应的模糊隶属度函数的顶点位置的平均值及模糊隶属度函数。
13、宽度的平均值,同时确定这些人工鱼个体中食物浓度最大的人工鱼个体及其食物浓度;0024步骤7352根据聚群、追尾和觅食确定新的人工鱼个体;0025步骤7353计算新的人工鱼个体的食物浓度,判断该新的人工鱼个体的食物浓度是否大于记录的食物浓度最大值,是,则记录该新的人工鱼个体的食物浓度及其对应的人工鱼个体;否则,维持记录的食物浓度最大值;0026步骤7354判断是否所有人工鱼个体均完成步骤7351步骤7353是,则执行步骤7355,否则对下一条人工鱼个体执行步骤7351步骤7353;0027步骤7355判断是否达到寻优最大次数或者当前记录的食物浓度最大值大于食物浓度阈值,则当前记录的食物浓度最大值。
14、对应的人工鱼个体为最优人工鱼个体,进而确定优化的各模糊隶属度函数的顶点位置和模糊隶属度函数宽度,否则,返回步骤7351;0028步骤74根据确定的优化的各模糊隶属度函数的顶点位置和模糊隶属度函数宽度,得到管道发生泄漏决策结果对应的模糊隶属度函数,进而得到严重泄漏的置信度、较大泄漏的置信度和小泄漏的置信度;0029步骤75将严重泄漏的置信度、较大泄漏的置信度和小泄漏的置信度分别作为利用负压波法、温度梯度法、广义递归神经网络定位方法定位得到的管道泄漏点到管道首端的距离的置信度,计算管道泄漏点到管道首端的距离XL00300031其中,COF0、COF1和COF2分别为利用负压波法、广义递归神经网络定。
15、位方法、温度梯度法定位得到的管道泄漏点到管道首端的距离的置信度,X1、X2和X3分别为利用负压波法、广义递归神经网络定位方法、温度梯度法定位得到的管道泄漏点到管道首端的距离。0032有益效果0033采用三种不同的定位方法对管道泄漏点进行定位,利用压力信号到达管道首末端的时间差实现了基于管道机理模型的负压波定位和基于数据驱动方法的广义递归神经网络模型定位,同时,利用管道首末端的温度信号实现了基于温度梯度的定位;对上述三种定说明书CN104197203A3/8页6位结果进行二次定位,经过模糊推理,鱼群算法隶属度函数参数自适应优化,赋予三种定位结果不同的置信度,从而实现泄漏点的精确定位。附图说明00。
16、34图1为本发明一种实施方式的基于模糊推理的管道泄漏定位装置结构框图;0035图2为本发明一种实施方式的第一信号调理模块的电路原理图;0036图3为本发明一种实施方式的A/D转换芯片与FPGA的接口电路图;0037图4为本发明一种实施方式的基于模糊推理的管道泄漏定位方法流程图;0038图5为本发明一种实施方式模糊推理方法流程图;0039图6为本发明一种实施方式优化运行状态和决策结果的隶属度函数参数优化流程图。具体实施方式0040下面结合附图对本发明的具体实施方式做详细说明。0041本实施方式中,实现基于模糊推理的管道泄漏定位方法所采用的基于模糊推理的管道泄漏定位装置,如图1所示,该装置包括压力。
17、传感器模块、温度传感器模块、第一信号调理模块、第二信号调理模块、第一A/D转换模块、第二A/D转换模块和FPGA中央处理单元,其中FPGA中央处理单元模块包括时序控制模块和基于模糊推理的泄漏定位模块,时序控制模块用于产生A/D转换模块的工作时序,基于模糊推理的泄漏定位模块包括负压波定位模块、广义递归神经网络定位模块、温度梯度定位模块和模糊推理模块。0042压力传感器模块的型号为PT500502,温度传感器模块的型号为PT100,第一A/D转换模块和第二A/D转换模块的型号均为ADS7844,FPGA中央处理单元模块的型号为EP3C25Q240C8。0043压力传感器和温度传感器均安装在管道首末。
18、两端,分别采集管道首端和末端的压力和温度信号,压力传感器输出端连接第一信号调理模块的输入端,温度传感器输出端连接第二信号调理模块的输入端,第一信号调理模块的输出端、第二信号调理模块的输出端分别连接第一A/D转换模块的输入端和第一A/D转换模块的输入端,第一A/D转换模块的输出端、第二A/D转换模块的输出端分别连接FPGA中央处理单元的输入端,FPGA中央处理单元的时序控制模块分别连接第一A/D转换模块和第二A/D转换模块。0044第一信号调理模块的电路原理图如图2所示,该模块实现信号的滤波和放大,压力传感器的输出首先经过滤波电路滤波,然后经一个10K的电阻R2连接到运算放大器的反相输入端,同相。
19、输入端接25V的参考电压,运算放大器的输出端连接电阻R3的一端、电阻R1的一端及电容C2的一端,电阻R3的另一端作为信号调理模块的输出端连接A/D转换芯片的输入端,电阻R1的另一端连接运算放大器的反相输入端,电容C2的另一端接地。本实施方式中运算放大器的型号为AD824。第二信号调理模块的原理与第一信号调理模块相同。0045第一A/D转换模块/第二A/D转换模块与FPGA的接口电路图如图3所示,第一A/D转换模块、第二A/D转换模块均采用ADS7844的A/D转换芯片,A/D转换芯片将电压信号转换为数字信号,A/D转换芯片的6个不同的输出端分别连接FPGA时序控制模块的自定义I/O口,即A/D。
20、转换芯片的DCLK端连接FPGA的I/O23端,A/D转换芯片的CS端连接I/说明书CN104197203A4/8页7O24端、A/D转换芯片的DIN端连接I/O25端、A/D转换芯片的BUSY端连接I/O26端,A/D转换芯片的DOUT端连接I/O27端,FPGA的型号为EP3C25Q240C8。0046本实施方式中,基于模糊推理的管道泄漏定位方法,如图4所示,包括以下步骤0047步骤1实时采集管道首末两端的压力信号和温度信号;0048步骤2判断实时采集的管道两端的压力信号中是否存在压力突变信号,是,则执行步骤3,否则返回步骤1;0049步骤3判断当前管道是否存在工况调整,是,则返回步骤1,。
21、否则,当前管道存在泄漏点,计算压力突变信号到达管道首末两端的时间差;0050步骤4利用负压波法,根据压力突变信号到达管道首末两端的时间差,定位管道泄漏点到管道首端的距离X1;00510052其中,L为管道的长度,V为管道输油介质中压力波的传播速度,T为管道实时压力突变信号到达管道首末两端的时间差;0053步骤5利用广义递归神经网络定位方法,根据压力突变信号到达管道首末两端的时间差,定位管道泄漏点到管道首端的距离X2;0054基于广义递归神经网络模型建立的理论时间差T与泄漏位置X的对应关系ZFT,利用压力突变信号到达管道首、末端的时间差,定位出管道泄漏点到管道首端的距离X2;0055步骤51从管。
22、段首端开始,到末端为止全长为L,构造模拟泄漏位置序列Z0,ZL,Z2L,,ZL,L为单位步长,L越小,定位精度越高;0056步骤52计算负压波在管道介质中的传播速度;0057VZV0,VZL,VZ2L,VZL0058和管道内传输介质的流速0059UZU0,UZL,UZ2L,UZL;0060步骤53构建模拟泄漏位置对应的理论时间差序列TT0,TL,T2L,TL,其中00610062步骤54建立基于模拟泄漏位置对应的理论时间差序列的广义递归神经网络模型,利用历史数据进行训练;0063步骤55将管道实时压力突变信号到达管道首末两端的时间差作为广义递归神经网络模型的输入,广义递归神经网络模型的输出为管。
23、道泄漏点到管道首端的距离X2。0064步骤6利用温度梯度法,根据采集到的管道首末两端的温度信号,定位管道泄漏点到管道首端的距离X3;0065根据管道首端的温度数据、管道的流量信息和管道固有特性构建管道泄漏温度下降曲线1,再根据管道末端的温度数据、管道的流量信息和管道固有特性构建管道泄漏温度上升曲线2,利用曲线1和曲线2的交点定位出管道泄漏点到管道首端的距离X3;0066具体步骤如下说明书CN104197203A5/8页80067步骤61构建管道泄漏温度下降曲线1,公式如下00680069其中,T2表示到首端距离为X处的温度,T0表示X处周围介质的温度,K表示介质传热系数,I表示管道的水力坡降,。
24、D表示管道直径,C表示比热容,T1表示管道首端温度,G表示流量。0070步骤62构建管道泄漏温度上升曲线2,公式如下00710072其中,T4表示到末端距离为X处的温度,T3表示管道末端温度。0073步骤63利用管道泄漏温度下降曲线1和管道泄漏温度上升曲线2的交点,定位出管道泄漏点距离管道首段的距离X3。0074步骤7根据利用负压波法、广义递归神经网络定位方法、温度梯度法定位得到的管道泄漏点到管道首端的距离,利用模糊推理算法对泄漏点进行定位;0075如图5所示,具体步骤如下0076步骤71根据历史数据建立模糊推理规则,用来描述管道的决策条件空间与其对应的决策结果间的关系;0077管道的决策条件。
25、空间包括管道首末两端的压力差和温度差;0078决策结果空间包括管道运行正常、管道发生泄漏和管道工况调整,其中,管道发生泄漏决策结果的三个泄漏程度模糊子集分别为严重泄漏、较大泄漏和小泄漏;0079模糊推理规则RI的文字描述形式如下0080RIIF运行状态属于决策条件空间的子集,0081THEN当前管道运行状况的决策结果是。0082管道的决策条件空间CC1,C2,其中C1代表首末两端温度差,C2代表首末两端压力差,D表示决策结果空间,决策条件CJJ1,2表示管道运行状态,DD1,D2,D3,其中D1代表运行正常,D2代表发生泄漏,D3代表调节工况。0083步骤72对各管道的决策条件空间和各决策结果。
26、分别建立模糊隶属度函数;0084决策条件空间中每一类决策条件表示的运行状态被划分为5个程度的模糊子集,当前运行状态属于每一个模糊子集的隶属度为EE0,E1,,E4,EKK0,1,4代表由该决策条件表示的运行状态偏离其正常值的程度;每一类决策结果同样被划分为3个程度模糊子集,每一类决策结果属于其对应的模糊子集的隶属度为FF0,F1,F2,FKK0,1,2表示该类决策结果可能性的程度。0085步骤73利用鱼群算法优化各模糊隶属度函数的顶点位置和模糊隶属度函数宽度;0086如图6所示,具体步骤如下0087步骤731将各决策条件的模糊隶属度函数的顶点位置和模糊隶属度函数宽度、决策结果的模糊隶属度函数的。
27、顶点位置和模糊隶属度函数宽度作为基因,并将各基因任意排列构成人工鱼个体形式;0088将运行状态CJ的模糊隶属度函数进行实数编码为VJ1WJ1VJ5WJ5作为一个基因,VJI说明书CN104197203A6/8页9I1,25表示运行状态CJ中第I个隶属度函数的顶点位置,WJI表示运行状态CJ中第I个隶属度函数宽度;将决策结果DR的模糊隶属度函数进行实数编码为CR1ZR1CR2ZR2CR3ZR3作为一个基因,CRII1,2,3表示决策结果DR中第I个隶属度函数的顶点位置,ZRI表示决策结果DR中第I个隶属度函数宽度。将由运行状态得到的2个基因同由决策结果得到的3个基因任意排列构成一个人工鱼个体形式。
28、X。0089步骤732按照构成的人工鱼个体形式随机产生N组数据,即N个人工鱼个体,N50;0090每组数据均在其所对应的隶属度函数论域内,则每一组数据可视为一个人工鱼XI,I1,2,50;0091步骤733分别计算N个人工鱼个体XI的食物浓度,记录食物浓度最大值及其对应的人工鱼个体;0092食物浓度YXI公式如下00930094步骤734设定人工鱼个体的感知距离T、人工鱼个体移动的最大步长STEP、拥挤度因子、寻优最大次数NUM为200、食物浓度阈值TM;0095步骤735对人工鱼个体进行寻优;0096步骤7351确定与当前人工鱼个体间距离小于感知距离的所有人工鱼个体,并确定这些人工鱼个体对应。
29、的模糊隶属度函数的顶点位置的平均值及模糊隶属度函数宽度的平均值,同时确定这些人工鱼个体中食物浓度最大的人工鱼个体及其食物浓度;0097令DIJ|XIXJ|表示人工鱼XI和XJ之间的距离;0098确定人工鱼XI的邻域即DIJT内的人工鱼条数S包括XI本身,即确定与当前人工鱼个体间距离小于感知距离的所有人工鱼个体,将S条人工鱼任意排列,表示为0099X1,X2,XI,XS,取P为0100其中,P表示此邻域DIJT鱼群的中心位置,VFJII1,2,5表示第F条人工鱼XF的运行状态CJ中第I个隶属度函数的顶点位置,WFJI表示第F条人工鱼XF的运行状态CJ中第I个隶属度函数宽度,CFKI表示第F条人工。
30、鱼XF的决策结果DK中第I个隶属度函数的顶点位置,ZFKI表示第F条人工鱼XF的决策结果DK中第I个隶属度函数宽度。选取X1,X2,,XI,XS中食物浓度最大的人工鱼,标记为XMAX,分别计算XMAX的食物浓度YXMAX和中心位置的食物浓度YP。0101步骤7352根据聚群、追尾和觅食确定新的人工鱼个体;01021聚群0103如果满足YP/S1YXI且YXIYP的条件时,则根据说明书CN104197203A7/8页100104得到新的个体鱼XINEXT。RAND为随机产生的01范围内的随机数。01052追尾0106如果满足YXMAX/S1YXMAX且YXIYXMAX的条件时,则根据得到的新人工。
31、鱼XINEXT。如果聚群和追尾的条件同时满足,则比较YXMAX和YP,按照值较大的方式进行移动。01073觅食0108如果1和2两个条件都不满足,则在人工鱼XI的邻域内即DIJT中随机选择一个人工鱼XJ,若YXIYXJ,根据得到新的人工鱼XINEXT;否则重新随机选择XJ,重复判断,若反复5次后仍不满足条件,则按照0109XINEXTXIRANDSTEP随机得到XINEXT。0110计算新的人工鱼XINEXT的食物浓度YXINEXT。0111步骤7353计算新的人工鱼个体的食物浓度,判断该新的人工鱼个体XINEXT的食物浓度YXINEXT是否大于记录的食物浓度最大值,是,则记录该新的人工鱼个体。
32、的食物浓度及其对应的人工鱼个体;否则,维持记录的食物浓度最大值;0112步骤7354判断是否所有50条人工鱼个体均完成步骤7351步骤7353是,则执行步骤7355,否则对下一条人工鱼个体执行步骤7351步骤7353;0113步骤7355判断是否达到寻优最大次数200或者当前记录的食物浓度最大值大于食物浓度阈值TM,则当前记录的食物浓度最大值对应的人工鱼个体为最优人工鱼个体,进而确定优化的各模糊隶属度函数的顶点位置和模糊隶属度函数宽度,否则,将新个体鱼作为XI,返回步骤7351;0114步骤74根据确定的优化的各模糊隶属度函数的顶点位置和模糊隶属度函数宽度,得到管道发生泄漏决策结果对应的模糊隶。
33、属度函数,进而得到严重泄漏的置信度、较大泄漏的置信度和小泄漏的置信度;0115步骤75将严重泄漏的置信度、较大泄漏的置信度和小泄漏的置信度分别作为利用负压波法、温度梯度法、广义递归神经网络定位方法定位得到的管道泄漏点到管道首端的距离的置信度,计算管道泄漏点到管道首端的距离XL01160117其中,COF0、COF1和COF2分别为利用负压波法、广义递归神经网络定位方法、温度梯度法定位得到的管道泄漏点到管道首端的距离的置信度,X1、X2和X3分别为利用负压波法、广义递归神经网络定位方法、温度梯度法定位得到的管道泄漏点到管道首端的距离。0118决策结果空间中的D2代表发生泄漏,其3个泄漏程度模糊子集为严重泄漏F0、较大泄漏F1和小泄漏F2,其相应的置信度分别为COF0、COF1和COF2,分别将该三个置信说明书CN104197203A108/8页11度等同于利用负压波法、广义递归神经网络定位方法定位、温度梯度法得到的管道泄漏点到管道首端的距离的置信度,进而完成泄漏点定位。说明书CN104197203A111/5页12图1图2说明书附图CN104197203A122/5页13图3说明书附图CN104197203A133/5页14图4说明书附图CN104197203A144/5页15图5说明书附图CN104197203A155/5页16图6说明书附图CN104197203A16。