本发明涉及电视接收机的数字信号处理电路中使用的用于产生时钟信号的装置。本发明尤指在频道改变后产生时钟信号的装置,从而在频道改变后几乎能立即显示与新频道相关的视频信息。 电视机系统的一项重要性能指标为能在系统受扰动(诸如频道改变)后几乎立即显示画面。对于包含数字信号处理电路的电视接收机,要产生画面显示,首先必须产生适当的时钟计时信号以供数字信号处理电路使用。
1991年2月4日提出的名称为“供兼容高清晰度电视系统用的调制器/解调器”的美国专利申请案650,329号叙述了一种供高清晰度电视(high definition televion,下称HDTV)信号用的特别优异的数字信号发射/接收系统。在该系统中,所发射的高清晰度电视信息分为预定以高度可靠性予以接收的高优先信息,以及低优先信息。高优先信息和低优先信息作为电视信号频谱不同部分内的单独正交调幅(quadrature amplitude modulated,下称QAM)载波信号予以传送。高优先信息具有很小的多余带宽,以及较低优先信息更窄的带宽及更加大的振幅。
在接收机中,借助一个非线性信号发生器及可响应来自该非线性信号发生器的输出信号之销相回路,而由高优先窄带信号中产生一个供有关数字信号处理网路使用的时钟信号。由于非线性信号发生器工作于具有很小多余带宽的窄带QAM信号上,故来自该非线性发生器地输出信号的幅度很小。这限定了具有不希望有的慢响应时间的窄带销相回路的使用。可将信号能量以导频信号的形式加到电视信号上,以帮助产生时钟信号,但与此加入信号相关的能量可能由于导入了干扰及不希望有的人为因素而使电视信号变差。总之,在这种类型的系统中,宜于在频道改变后几乎立即提供时钟信号,因为电视观众通常更喜观在频道改变后几乎能立即看到新频道的显示影像。本发明目的即针对此类问题而设计。
根据本发明原理的装置是包括在一种处理第一电视频道信息及第二电视频道信息的数字式高清晰度视频信号处理机中的。对系统扰动(诸如频道改变)作出反应,从而由先前所调频道的信息产生的时钟信号用以作为供新频道用的时钟信号,直到由新频道的信息能产生一适当定相的新时钟信号为止。
在本发明所示的一个实施例中,数字式电视接收机包括一个所谓分部间隔振幅及相位自适应均衡器。在频道开始改变时,由旧频道所产生的时钟信号用以作为供新频道用的时钟信号,直到控制网路连同销相回路在旧时钟信号的相位上产生一相位规定的新时钟信号为止。在频道改变的一段时间内应避免时钟信号相位变化,并且接收机在频道改变后要立即正常工作。
图1为一数字式电视接收机一部分的方块图,此接收机包括根据本发明的数字信号处理网路及装置。
图2示出图1的接收机所接收和处理的兼容同时联播多重QAM高清晰度电视信号的基带视频频谱。
图1示出一种HDTV接收机的一部分,此接收机用于接收和数字化处理图2中所示那种类型的HDTV信号。在讨论图1中所示接收机的配置前,先说明此信号。
图2示出一个高清晰度电视信号的视频频谱,此电视信号是与标准国家电视系统委员会(National Television System Committee,下称NTSC)电视信号频道的6MHz带宽兼容的,并可用以作为同时联播信号。沿图2频率标度(-1.25MHz至4.5MHz)的各频率是以在标准NTSC系统中的射频(RF)图像载波的0.0MHz频率位置为基准的。
HDTV电视信号是一种分为高及低优先信息组分的数据压缩信号。在本例中,欲以高可靠性予以接收的音频、同步及低频视频信息组分被指定为高优先。例如,同步信息可为一种训练信号之性质,包含一种独特的标记或代码,以方便在接收机中的信号恢复和处理,并可直接包括场速率扫描信息(例如场标记的起始信息)。其他较不重要的人为组分,诸如高频视频信息,被指定为低优先。高优先信息相对于低优先信息呈现有窄带宽度,并且如以下所讨论的,正交调幅(QAM)为以信号REF为基准的0.96MHz的第一抑制载波。低优先信息正交调幅为同样以信号REF为基准的3.84MHz的第二抑制载波。所获得的复合信号为一种多重QAM信号形式,亦即,在本例中为一种“双生”QAM信号。复合双生QAM信号借带外参考信号REF转化为6MHz标准电视频带。信号REF的频率选择在使信号REF被复合QAM信号调制时,所获得的和及差组分之一处在与所希望的射频电视频道,例如处在与同时广播的VHF3号频道,相关的频带内。信号REF由复合双生QAM信号予以调制,以产生一种双边带调制信号,如图2所示,其下边带予以舍弃。而上边带予以保留。
窄带QAM组分的幅度显著大于宽带QAM组分的幅度,在本例中为两倍大。窄带QAM组分的-6分贝(db)带宽为0.96MHz,而宽带QAM组分的-6db带宽为3.84MHz,即四倍于窄带QAM组分的带宽。窄带和宽带QAM组分的非线性带缘过渡区借助有限脉冲响应(finite inpluse response,下称FIR)滤波器以上升余弦特征之平方根予以成形,以产生平滑之过渡区,避免尖锐过渡区所产生的不希望有的高频影响。窄带组分呈现一种振幅-频率特征,有大约17%的多余带宽(少于30%),亦即,超过公式1/2×1/T所确定的理论最小带宽17%,式中T为主信号的符号周期(symbol pepiod)。在带缘过渡区中宽带组分的振幅-频率响应(未依比例绘制)具有较陡窄带组分的四分之一斜度。
窄带和宽带QAM组分各包含一同相组分“I”及一正交相组分“Q”。I相组分对抑制余弦载波进行调制,而Q相组分对抑制正弦载波进行调制。一数据“符号”既表现为I组分也表现为Q组分。复合QAM信号在本例中为一“16QAM”信号。每一16QAMI及Q组分呈现四个分立的振幅层次,产生总共4×4即16个可能的振幅层次或数值,供每一窄带和宽带QAM信号之用,故而称为“16”QAM。需要两个位元来规定每一I及Q组分的四个层次,因而每一数据符号需要四个位元以规定一个I,Q组合的十六个层次。因此3.8MHz(-6db)宽带QAM信号的位元速率为15.36兆位元/秒(Mbps)(3.84MHzX4位元),而0.96MHz(-6db)窄带QAM信号的位元速率为3.84Mbps(0.96MHzX4位元)。在一种64QAM系统中,窄带及宽带组分的位元速率将增加到1.5倍。所描述的多重(双生)QAM信号,对于与标准NTSC电视信号(亦即自作为双生QAM信号的同一频道中不同位置发射的NTSC信号有关的干扰,呈现有显著的同频道抗干扰性。由双生QAM信号进入NTSC信号的同频道干扰也大为减低。
宽带及窄带QAM的位元速率(分别为15.36Mbps及3.84Mbps)呈现为一种适宜的4∶1整数关系。这种关系简化了在接收机中使窄带及宽带QAM信息恢复的过程,因为同样获得的数据时钟脉冲可以很容易地用于使两个QAM组分的数据恢复过程计时。如将要讨论的,由很快恢复的高功率窄带QAM信号可以很容易地获得接收机系统所需要的数据时钟脉冲速率。
在图1的接收机系统中,由天线110接收到的广播双生QAM信号,连同在发射机中所用的额定在信号REF频率上的参考信号REF,经调谐器111加至混频器(X)112上。调谐器111包括观看者可调整的装置,供按通常方式将接收机由一个频道调谐至另一频道上。来自混频器112的输出信号包括和及差组分。较高频率的和组分被低通滤波器(LPF)114滤除,而差组分经该滤波器传至模数转换器(ADC)116上。所通过的差组分呈现出图2所示的复合调频频谱,其窄带QAM调制频谱中心约在0.96MHz处,而宽带QAM调制频谱中心约在3.84MHz处。
来自单元116的数字取样输出信号加到解调器118上,此解调器连同元件120、122、124、126及128形成为一窄带QAM高优先信号处理机。解调器118包括多个输入FIR滤波器。用以选择性地使窄带QAM组分通过,而去掉宽带QAM组分。具体说,窄带QAM解调器118包括一滤波器,此滤波器具有与图2中所示的调制窄带QAM组分所有的振幅一频率特性形状实际上一致的振幅-频率响应特性。来自单元116的输出信号也加至宽带QAM低优先信号处理网路150,此网路包括与窄带QAM高优先处理机中所具有的元件类似的元件,用以选择性地使宽带QAM组分通过,而去掉窄带QAM组分。宽带QAM低优先处理机150包括一解调器,此解调器有一滤波器具有与图2中所示的调制宽带QAM组分所有的振幅-频率特性形状实际上一致的响应特性。因此接收机系统在与标准清晰度电视信号中的高能量信息关连的频率上呈现信号衰减凹陷。
通常设计的自适应均衡器120接收来自解调器118的解调正交相I及Q组分。均衡器120采用一自适应数字FIR滤波器,以补偿振幅及相位的不规则性,例如包括由发射频道所造成的重影。在此实例中,自适应均衡器120为一种所谓分部间隔均衡器,这种均衡器能在多于最少所需的间隔范围取样,并因此导入所需的相移和振幅变化,以产生输出I及Q组分所希望的振幅及相位特性。均衡器120包括一个以均衡器120的I及Q输出组分所希望的相位及振幅值而编程的只读存储器(ROM)。输出I及Q组分值分别与编程值比较,并且依据比较结果将I,Q值调整为接近编程值。调整是利用改变与均衡器120相关的滤波器的摇实重量(tap weight)来完成。均衡器120能在一符号周期内二次取样,以产生为产生所希望输出的振幅及相位特性而需要的相位及振幅变化量。由于此种能力,均衡器120的工作实际上不受所加时钟信号的相位影响,不过该相位最好基本上不变。均衡器120可以是一种同步均衡器,不过就所加时钟信号的相位特性而言,分部间隔均衡器具有更佳的性能。分部间隔及同步自适应均衡器在Lee和Messcrschmitt所著教科书“数字通信”(“Digital Communications”Kluwer Academic Publishers,Bosfon,MA,USA,1988)中有所讨论。
来自单元120的均衡的I及Q输出信号加到估计器网路126上,此网路产生代表所发射的I及Q组分的最可能估计值的I,Q组分的输出。例如,在估计器126之输出中,I及Q组分的值已按需要予以调整,以补偿在发射过程中所带来的杂波失真影响。估计器126基本上执行将值赋予样本之解释功能(interpretive fnction),由于诸如杂波影响,此等样本在16点四象限信号群中并不确切配置在指定的位置。来自估计器126的输出信号加到解码器122上,此解码器实际上执行由发射机上编码器进行的映射工作(mapping operation)的反向工作。采用检查表使四象限信号群以二进制数字形式“解除映射”而成为发射机编码前便存在于发射机中的顺序四位元(符号)段。
一误差检测器124用于监测估计器126的I,Q输入及输出信号,以便产生一载波相位误差输出信号,其大小与估计器126的输入及输出I和输入及输出Q间信号的相位误差成比例。相位误差可能是因杂波影响所致,在此情形下,相位误差性质上将是不规则的。相位误差也可能是因为信号REF的频率实际上不等于发射机中所用的对应信号REF的频率所致。在此情形下,相位误差性质上将不是随机的。来自误差检测器124的输出误差(ERROR)信号最后用以补偿偏离了希望值(亦即发射机中对应信号REF的频率值)的信号REF的频率。误差检测器124以高于均衡器120的取样速率工作,以便感测相位及频率偏差,此种偏差可能是由于合成器135所造成的频率偏差,或由于一个与调谐器111相关的振荡器的频率偏差所致。
具体说,误差信号加到包括低通滤波器的电压控制振荡器(voitage controlled oscillator,下称VCO)网路128上,用以修正加到正交解调器118上的正交调相的正弦及余弦参考信号值。修正了的正弦及余弦参考信号改变解调过程,直到表示来自检测器124的输出信号的误差大小指示已补偿了信号REF的频率与所希望的值之间的偏差为止。与单元128关连的低通滤波器将误差信号滤波,从而响应非随机性质的误差,诸如上述之频率偏差,修正来自VCO128的参考信号值,并因此修正解调器118的工作,并且不受随机效应例如杂波的影响。宽带QAM低优先信号处理机150包含以与上述窄带QAM处理机的各单元118、120、126、124和128相同方式工作的元件。涉及包括估计器126、检测器124、VCO128和解调器118那种类型的控制回路工作的另外的信息,请参考上述Lee和Messerschmitt所著教科书“数字通信”。
信号处理机140使来自解码器122的解调高优先数据信号与来自处理机150的解调低优先数据信号合并。处理机140可包括数据分解网路(data decompression networks)例如Huffman解码器及反量化器(inverse quantizers)、误差校正网路、以及解险多路及信号合并网路(demultiplexing and signal combining networks),以提供单独的音频及视频电视信号组分。音频组分在加至放音装置146前由音频信号处理器142进行处理。视频组分由单元144进行处理,以产生代表影像的信号并送到影像显示装置148上。
直接数字频率合成器129影响来自系统时钟脉冲发生器130的主时钟信号而产生15.36MHz的时钟信号CLK,该发生器同时将时钟信号送到频率合成器135上,以供产生混频器的参考信号REF。来自发生器130的时钟信号用以使合成器129和135的工作同步,在本例中呈现有10MHz的频率。信号REF的频率额定为与发射机所用的信号REF相应。信号REF与所希望频率间的任何频率偏差如以上所述予以补偿。来自信号源129的信号CLK为供低优先处理机150中的数字信号处理电路用的时钟信号。高优先窄带处理机对带宽为宽带信号带宽四分之一的信号进行处理。因此,高优先处理机元件是对具有如分频器136所提供的CLK信号频率的四分之一频率(3.84MHz)之时钟信号CLK/4作出响应的。
接收机中时钟信号CLK的频率对应于发射机中所采用的时钟信号的频率。由能够更可靠接收的高功率窄带QAM组分中所包含的信息来产生接收机的时钟信号,对于确立适当的接收机时钟频率是有利的。具体说,来自LPF114输出的复合QAM信号加到一个非线性信号发生器131上,例如N次方发生器(譬如一种使输入自乘的乘法器),其中N可为2或4。单元131以窄带QAM组分的符号速率产生一个单一的频率组分。本例中,符号速率为0.96MHz,为位元速率的四分之一。单元131同时也以低功率宽带QAM组分的符号速率产生一高度衰减的输出组分,但此输出组分被其后的各信号处理单元所舍弃。
来自单元131的0.96MHz符号速率输出组分在加至移相器(PS)133前由一带通滤波器(BPF)132予以带通滤波。滤波器132有一中心频率为0.96MHz符号频率。滤波器132的带宽无关紧要,但应能足以提供适当的信噪比。在随后将予说明的状况下,移相器133提供了一个可变的延迟期,该延迟期可长达来自滤波器132的0.96MHz输出信号的一个时钟周期。在正常稳态工作状况下,移相器133呈现为静态,并且按需要将延迟量施加到来自滤波器132的信号上,以使输入到检测器137的信号相位达到均衡补偿。
在正常稳态状况下,电子开关134处于如图示的位置“A”上。因此,相位检测器137响应来自单元133的0.96MHz符号速率输出组分,与低通滤波器138、合成器129以及除以16的一个分频器139一起形成一销相回路。滤波器138滤除乱真频率,包括由非线性信号发生器133工作时产生的噪音。分频器139接收来自合成器129的15.36MHz信号,并提供分频的0.96MHz输出信号至相位检测器137的控制输入端。合成器129包括一寄存器。此寄存器以来自时钟脉冲发生器130的信号频率所确定的速率,对由滤波器138加到单元129的控制输入端的信号所确定的相位增量进行累加。累加的相位值使一包含各种正弦值的ROM编址,合成为单元129的输出信号。单元129的功能可利用美国加利福尼亚州圣地牙哥市Qualcomm公司发售的型号为Q2334的集成电路完成。
在此种系统中,高优先组分最好呈现为具有急剧带外衰减的,即具有陡峭“外缘”的窄带宽。窄带QAM组分的小(17%)的多余带宽不允许非线性的发生器131产生足够大的输出信号,以在系统扰动(例如频道改变)后快速产生一个适当的同步时钟信号。虽然加至非线性的发生器131上的窄带QAM组分呈现有相当大的幅度,但窄带QAM组分的小的多余带宽却阻止发生器131去产生大的输出信号。响应输入的QAM信号的由非线性信号发生器(例如乘法器),如单元131,的输出信号大小,是输入信号的振幅-频率特性曲线形状的函数(特别是在频带边缘处)。对于一个给定的通带振幅特性,在频带边缘的陡峭斜度以输入信号的符号速率产生一个小振幅的单一频率输出组分,而浅的频带边缘斜度则产生一个大的振幅输出组分。
来自非线性发生器131的小信号输出意味着要有一个窄带销相回路跟随着该发生器131。在本例中所使用的窄带锁相回路,与宽带锁相回路比较,呈现有较慢的响应时间,因而来自该锁相回路的输出时钟信号在一段时间内呈现有缓慢变化的相位,直到达至相位锁定。在相位锁定前的这种缓慢变化相位,由于其对自适应均衡器120和其他时钟响应电路具有不利影响,因而是不希望有的。虽然分部间隔均衡器120实际上不受不同的固定时钟相位影响,但在相位锁定前变化的时钟相位却会产生有关尽量减少I及Q输入及输出信号的误差以及载波相位误差的追踪问题。这类追踪问题特别可能在频道改变开始与随后相位锁定期间产生,但可通过以下所讨论的时钟信号发生装置予以避免。在获得新信号期间变化的时钟相位将会中断或减慢均衡器的会聚。特别是此种状况将会在频道改变后而均衡器正对新频道的振幅和相位特性进行补偿时发生。
在出现频道改变时,希望迅速产生新频道的可见的不失真影象,因为观看电视者喜欢在频道改变后几乎立即看到可见的影象。因此重要的是在频道改变中断后迅速产生适当的时钟信号。这可借助上述装置配合移相器133、开关134和控制网路155达到。网路155系一微处理机,包括一些比较器、开关及逻辑电路,如将要讨论的,可用以提供输出控制信号作为一定输入信号大小的函数。
在一给定频道的正常、稳态工作状况下,开关134处在图示位置A上,并且包括元件137、138、134、129的锁相回路与136共同作用,以在由移相器133加至相位检测器137的0.96MHz输入信号与由分频器139加至相位检测器137的0.96MHz输入信号之间保持实际上为0°的相差。后一信号是由合成器129响应代表自滤波器138经在位置A的开关134所传送的控制信号的相位误差而产生。
在观看电视者开始作频道改变时,调谐器111提供一输出频道改变指示信号CC(例如脉冲)至控制网路155的输入端。信号CC使控制网路155去提供一输出开关控制信号S,其大小为可使开关134由位置A改为位置B。在位置B,来自滤波器138输出的相位误差控制信号由合成器129转接到移相器133上。合成器129继续提供具有先前所调频道相位特性的输出时钟信号CLK,而这时控制网路155、开关134和移相器133合作,使来自滤波器132的新频道的输出信号相位与和旧频道相关的时钟信号相位校准。在此时间,在高优先处理机及低优先处理机中的数字信号处理电路分别接收固定的相位时钟信号CLK/4及CLK。
来自滤波器138的表示相位误差的控制信号经处于位置B的开关134加至移相器133的控制输入端,以供确定单元133所产生的相移的大小和方向。控制网路155监视来自滤波器138的相位误差信号(E),以确定移相器133的动作何时已使经分频器139所传送的来自合成器129的信号与滤波器132所传送的来自新选频道的相移信号(此信号起相位检测器137的参考信号作用)之间的相差减为最小。在达到最小值时,亦即当相位检测器137和滤波器138的输出指示出相位检测器137的输入信号之间的相差实际为0°时,控制网路155便通过信号S使开关134回至位置A,因而由新频道信号所产生的时钟信号就又加到数字信号处理电路上。移相器133此时继续提供相移(延迟)量作为由滤波器138所接收而由单元133所储存的最后值的函数,因而来自单元132及133的新颖道信号起着供锁相回路作为基准的作用。
接收来自滤器132的输出中的参考信号R的网路155的输入,例如,具有有关的模数转换器和比较器电路。这些电路感测信号R的大小并延迟将开关134置回到位置A,直到来自滤器132的输出信号足够大,从而使锁相回路能追踪新频道的符号信号为止,其中来自新频道的时钟频率CLK是经合成器129所产生的。只有当控制网路155感测到来自滤波器132的输出信号足够大从而使锁相回路能适当工作,以及感测到信号E表示的单元137的输入信号之间的相差实际上为0°时,开关134才自位置B回到位置A。
因此,在频道改变后,由先前所调频道产生的时钟信号是作为供新频道用的时钟信号,直到单元131所获得的新频道的符号速率组分能适当控制锁相回路,并经合成器129产生一个相位稳定的时钟信号为止。时钟响应数字信号处理电路(例如自适应均衡器)在频道改变的过程中,表现为正常的不受扰动的工作,而接收机在频道改变后就立即开始为新频道工作。