本发明涉及一种具有较小内阻的双层电容器。 在双层电容器中,有的使用通过把活性碳粒与电解液(如稀硫酸)混和得到的糊状极化电极作为极化电极,也有的使用由经焙烧或者热压并经电解液浸泡的固化活化碳制成的固态极化电极。
图2为使用这种固态极化电极的普通双层电容器的示意图。图中,数字1为集电电极,2为固态极化电极,3为隔离层,4为密封片。
集电电极1可以用(比方说)导电橡胶制成。隔离层3具有的特性允许离子通过但不允许电子通过,可以由(比方说)多孔塑料制成。设置密封片4的目的是使固态极化电极2与其毗邻部件绝缘,它可以由(比方说)绝缘橡胶制成。
图3是图2中的普通双层电容器设X-X线的剖面图。图中的参考数字与图2中的相对应。
这个例子的结构是:多个固态极化电极2相对应地设置在隔离层3的两侧,聚电电极1与固态极化电极2的外表面相接触。这样,每个固态极化电极2都被用电解液浸渍,它们之间的空隙也充满着电解液。
固态极化电极中活性碳粒的体积密度(克/立方厘米)为0.5~0.7克/厘米3,大于糊状极化电极中的活性碳粒密度。因此,其容量更大。固态极化电极由于呈固体并且具有在制造中生产率高等优点,因而更容易加工。
由于集电电极1与固态极化电极2接触处存在的电阻及固态极化电极2自身存在电阻,因此,双层电容器(如上面描述的那种)都有一定的内阻。一般希望一个电容器的内阻越小越好。但是,只要采用固态极化电极2,必然会存在固态极化电极2本身具有的电阻。
为了减小内阻,就需要把上述各部分中的电阻降至最小。为此,通过压紧金属外壳(图中未示出)地边缘或者其它方法从集电电极1的外侧(同时从其顶部和底部)施加一个机械力而产生压力,可以改善集电电极1及固态极化电极2之间的接触情况。
日本公开专利第24100/1979号是一篇有关使用固态极化电极的双层电容器的文献。
但是,在常规的双层电容器中常遇到下列问题。
第一个问题是不能有效地降低某些常规双层电容器的接触问题。
第二个问题是产生机械力的装置必须设置在双层电容器的外部,因而其尺寸相对来说比较大。
由于第二个问题本身已能说明问题,因此接下来只对第一个问题进行描述。
当从外部施加一个机械压力时,由于各个固态极化电极2尺寸上的差异(如高度上的细微差别)或者由于距施加压力的点的距离不同,加至各个固态极化电极2上的压力不可避免地会发生偏差。
本发明的目的在于解决这些问题。
本发明的目的是给每一集电电极和固态极化电极互相接触的地方施加一个足够的接触力,而不需一个给双层电容器施加机械力的外部装置。
为了实现上述目的,本发明提供了一种双层电容器,这种电容器中用来隔离外部与内部的部件上打有许多小孔;在内部空气被抽走之后,这些小孔又被密封起来。
本发明的上述目的及其他目的在下面的具体实施例描述中得到了更清楚的描述。
下面参照附图来描述本发明的一个实施例,附图中,
图1是根据本发明的一个实施例的双层电容器。
图2是一个常规的双层电容器。
图3是上述的常规双层电容器的截面图。
图1是一个根据本发明而制成的双层电容器的实施例示意图。图中的参考标记对应于图2中的标记,其中标记1A表示凹坑,5表示小孔。
小孔5是在密封片4上由外向里打的通孔。有一个小孔5位于隔离片3之上,其余的在隔离片3之下。换句话说,在本实施例中选择了密封片4作为把双层电容器的内部与外界隔离的部件,小孔5就开在密封片4上。
把集电电极1、固态极化电极2,隔离片3及密封片4加以组合构成双层电容器之后,一根细管(如注射针)插入小孔5中抽出内部的空气。之后,再用橡胶粘合剂充满小孔5使之密封。
空气被抽出后,由于在电容内部与外部之间产生的压力差,使得集电电极1紧紧地压在固态极化电极2上。集电电极1在各个固态极化电极2之间的部分呈凹坑1A。这些凹坑因压力差而形成。
由于电容内外的压力差是均匀地施加在每个接触点上的,因此各个接触点上的接触电阻能被相同地加以降低。换句话说,不会有某个触点与其它触点相比较呈电阻降低不足。
小孔5被分别设置在隔离层3的上方和下方,理由是这样的设置的小孔在抽取上集电电极1和隔离层3之间的空气以及抽取下集电电极1和隔离层3之间的空气时能使空气被更快地抽掉。
这样,在空气被抽走之后通过小孔5注入电解液,就能使固态极化电极2被电解液浸渍。而且电解液能快速地完全地浸没固态极化电极2的每一部分。因此,制造中的生产率可以提高,同时性能也得到改善。
在上面的例子中,开有小孔的密封片4虽被选作使双层电容器的内部与外部分离的部件,但集电电极1也可以用作这种部件。
根据本发明,由于以双层电容器中抽出内部空气产生了接触力,因此,在双层电容器外面无需设置任何产生机械力的装置。
虽然本发明是根据具有一定特殊性的最佳实施例来描述的,应该理解的是无需离开下面申请人要求的本发明的精神实质及范围,即可对上述的优化实例的结构,设置及其组合进行细节上的变化。