非水电化学电池 本发明涉及非水电化学电池。
电池是常用的电能源。电池含有负电极,典型地称为阳极,和正电极,典型地称为阴极。阳极含有可被氧化的活性材料;阴极含有或消耗可被还原的活性材料。阳极活性材料能还原阴极活性材料。
当电池在设备内用作电能源时,使阳极与阴极电接触,从而允许电子流过该设备并允许各自的氧化与还原反应发生,以提供电能。与阳极和阴极接触的电解质含有经隔离件(separator)在电极之间流动的离子,以维持放电过程中整个电池内的电荷平衡。
对于电池来说,希望在它们被生产和/或在它们已被长时间地储存之后,具有良好的电容。
本发明涉及非水电化学电池。
一方面,本发明的特征在于锂电化学电池,它包括含碳酸亚丙酯和二甲氧基乙烷的溶剂混合物以及含三氟甲磺酸锂和三氟甲磺酰基亚氨基锂的盐混合物的电解质。该电池含有小于1500ppm重量的钠。
本发明的实施方案可包括一种或多种下述特征。电池含有小于1200ppm,例如小于1000ppm、小于800ppm,或小于600ppm重量的钠。电池包括40-80%,例如50-75重量%的二甲氧基乙烷,和20-60%,例如25-50重量%的碳酸亚丙酯的溶剂混合物,和盐混合物在溶剂混合物内的浓度为0.4M至1.2M。
另一方面,本发明的特征在于锂电化学电池,它包括含碳酸亚乙酯、碳酸亚丙酯和二甲氧基乙烷的溶剂混合物以及含三氟甲磺酸锂和三氟甲磺酰基亚氨基锂的盐混合物的电解质。该电池含有小于1500ppm,例如小于1200ppm,小于1000ppm、小于800ppm,或小于600ppm重量的钠。
本发明的实施方案可包括一种或多种下述特征。电池包括小于30%,例如10-20重量%的碳酸亚乙酯,40-85%,例如50-70重量%地二甲氧基乙烷,和盐混合物在溶剂混合物内的浓度为0.4M至1.2M。电池包括含5-15重量%的碳酸亚乙酯,70-80重量%的二甲氧基乙烷,和10-20重量%的碳酸亚丙酯的溶剂混合物。该电池含有小于500ppm重量的钠。
另一方面,本发明的特征在于锂电化学电池用的电解质,它基本上由含碳酸亚丙酯和二甲氧基乙烷的溶剂混合物以及含三氟甲磺酸锂和三氟甲磺酰基亚氨基锂的盐混合物组成。该电解质可在电池,例如在含有小于1500ppm,例如小于1000ppm,或小于500ppm重量钠的电池中使用。
电解质混合物可包括含40-80%,例如50-75重量%的二甲氧基乙烷,和20-60%,例如25-50重量%的碳酸亚丙酯的溶剂混合物,和盐混合物在溶剂混合物内的浓度为0.4M至1.2M。
另一方面,本发明的特征在于锂电化学电池用的电解质,它基本上由含碳酸亚乙酯、碳酸亚丙酯和二甲氧基乙烷的溶剂混合物以及含三氟甲磺酸锂和三氟甲磺酰基亚氨基锂的盐混合物组成。该电解质可在电池,例如在含有小于1500ppm,例如小于1000ppm,或小于500ppm重量钠的电池中使用。
电解质可包括含小于30%,例如10-20重量%的碳酸亚乙酯,和40-85%,例如50-70重量%的二甲氧基乙烷的溶剂混合物,和盐混合物在溶剂混合物内的浓度为0.4M至1.2M。
电解质可包括含5-15重量%的碳酸亚乙酯,70-80重量%的二甲氧基乙烷和10-20重量%的碳酸亚丙酯的溶剂混合物。
实施方案可具有一种或多种下述优点。电池在生产和/或在长时间的储存之后,具有良好的电容。
根据本发明的优选实施方案的说明以及根据权利要求,本发明的其它特征和优点将变得显而易见。
附图的说明
图1是非水电化学电池的截面视图。
参考图1,电化学电池10包括与负集电器(current collector)14电连接的阳极12、与正集电器18电连接的阴极16、隔离件20和电解质。阳极12、阴极16、隔离件20和电解质容纳在壳体22内。电解质溶液包括溶剂混合物和至少一种部分溶于该溶剂混合物内的盐。
电解质可以是液体、固体或凝胶(聚合物)形式。电解质可含有有机溶剂如碳酸亚丙酯(PC)、碳酸亚乙酯(EC)、二甲氧基乙烷(DME)、二噁烷(DO)、四氢呋喃(THF)、乙腈(CH3CN)、γ-丁内酯、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)、二甲亚砜(DMSO)、乙酸甲酯(MA)、甲酸甲酯(MF)、环丁砜或其组合。电解质可或者含有无机溶剂如SO2或SOCl2。可选择溶剂以提供具有物理和化学性能组合的混合物。例如,电解质可包括第一溶剂,如PC或EC(它为极性、反应性不活泼和/或高沸点的溶剂);和第二溶剂,如DME、THF或DMC(它为极性相对低、挥发、相对不粘稠和/或不反应的溶剂)。
电解质也可含有锂盐如三氟甲磺酸锂(LiTFS)或三氟甲磺酰基亚氨基锂(LiTFSI)或其组合。可包括的其余锂盐例举于美国专利No.5595841中,在此通过参考将其全文引入。
在一些实施方案中,电池10包括由具有DME和PC的溶剂混合物,以及LiTFS与LiTFSI的盐混合物形成的电解质。电池10可进一步具有低的钠浓度。DME在溶剂混合物内的浓度范围可以是约30%-约85%。DME在溶剂混合物内的浓度可以等于或大于30%、35%、40%、45%、50%、55%、60%、65%、70%、75%或80%;和/或等于或小于85%、80%、75%、70%、65%、60%、55%、50%、45%、40%或35%。PC在溶剂混合物内的浓度可以等于100%减去DME的浓度。例如,若DME在溶剂混合物内的浓度为75%,则PC在溶剂混合物内的浓度为25%。若DME在溶剂混合物内的浓度为50-75%,则PC在溶剂混合物内的浓度为25%-50%。
对于LiTFS和LiTFSI的盐混合物来说,在溶剂混合物内盐的总浓度范围可以是约0.4M到约1.2M。在溶剂混合物内LiTFS和LiTFSI的总浓度可以等于或大于0.40M、0.45M、0.50M、0.55M、0.60M、0.65M、0.70M、0.75M、0.80M、0.85M、0.90M、0.95M、1.00M、1.05M、1.10M或1.15M;和/或等于或小于1.2M、1.15M、1.10M、1.05M、1.00M、0.95M、0.90M、0.85M、0.80M、0.75M、0.70M、0.65M、0.60M、0.55M、0.50M或0.45M。在盐的总浓度中,LiTFS在溶剂混合物内的浓度可以等于或大于5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%或95%;和/或等于或小于95%、90%、85%、80%、75%、70%、65%、60%、55%、50%、45%、40%、35%、30%、25%、20%、15%、10%或5%。LiTFSI在溶剂混合物内的浓度可以等于100%减去LiTFS在溶剂混合物内的浓度。例如,若在溶剂混合物内盐的总浓度为0.5M,和LiTFS在溶剂混合物内的浓度为90%(即0.45M),则LiTFSI在溶剂混合物内的浓度为10%(即0.05M)。在实施方案中,也可将其它类型的盐加入到电解质中。
此处所述的钠浓度是指在电池10内的含量减去在壳体20和/或盖帽24内部的任何钠。例如,钠含量可以指电池10内的电解质和“胶卷(jelly roll)”。胶卷由阳极12、阴极16、集电器14和18、隔离件20和在电池10内使用的任何保护胶带形成。
电池10内的钠浓度可以是约100ppm-1500ppm重量。钠的浓度可以等于或大于100、200、300、400、500、600、700、800、900、1000、1100、1200、1300或1400ppm重量;和/或等于或小于1500、1400、1300、1200、1100、1000、900、800、700、600、500、400、300、200或100ppm重量。一般地,可通过控制电池的制造来控制,例如最小化或减少电池10内的钠浓度。例如,在其中于阴极16内使用电解二氧化锰(EMD)的实施方案中,可在用不含钠或具有降低的钠含量的试剂,如LiOH电沉积之后,洗涤和/或中和EMD。可用不含钠或仔细洗涤过的溶液清洗壳体20。一般地,可简单地规定电池10的其它组件,如阳极12和隔离件20,不含钠或含有降低的钠含量。
可将其它材料加入到电解质混合物中。例如,在一些实施方案中,电池10包括由含EC、DME和PC的溶剂混合物,以及LiTFS和LiTFSI的盐混合物形成的电解质。EC在溶剂混合物内的浓度可以是约5%至30%。EC在溶剂混合物内的浓度可以等于或大于5%、10%、15%、20%或25%;和/或等于或小于30%、25%、20%、15%或10%。DME在溶剂混合物内的浓度范围可以是约30%-约85%。DME在溶剂混合物内的浓度可以等于或大于30%、35%、40%、45%、50%、55%、60%、65%、70%、75%或80%;和/或等于或小于85%、80%、75%、70%、65%、60%、55%、50%、45%、40%或35%。PC在溶剂混合物内的浓度可以等于100%减去EC和DME的浓度。例如,若EC在溶剂混合物内的浓度为15%,和DME在溶剂混合物内的浓度为60%,则PC在溶剂混合物内的浓度为25%。EC∶DME∶PC溶剂混合物的实例是14∶62∶24和10∶75∶15重量的溶剂混合物。
在电解质内LiTFS和LiTFSI的浓度,例如0.4-1.2M通常可类似于此处所述的那些。在实施方案中,可将其它类型的盐加入到电解质中。
在电池10内的钠浓度,例如100-1500ppm重量通常可类似于此处所述的那些。在不希望受到理论束缚的情况下,认为当EC浓度增加时,钠的浓度可增加,且基本上没有负面影响电池10。因此,在实施方案中,在具有EC的电池10内,钠的浓度可以是约100ppm-3000ppm重量。钠的浓度可以等于或大于100、200、300、400、500、600、700、800、900、1000、1100、1200、1300、1400、1600、1800、1900、2100、2300、2500、2700或2900ppm重量;和/或等于或小于2900、2700、2500、2300、2100、1900、1800、1600、1500、1400、1300、1200、1100、1000、900、800、700、600、500、400、300、200或100ppm重量。
阴极16可包括活性阴极材料,该材料通常涂布在阴极集电器上。集电器通常是钛、不锈钢、镍、铝或铝合金,例如铝箔。活性材料可以是例如金属氧化物、卤化物或硫属元素化物;或者,活性材料可以是硫、有机硫聚合物。具体实例包括MnO2、V2O3、CoF3、MoS2、FeS2、SOCl2、MoO3、S、(C6HsN)n、(S3N2)n,其中n至少为2。活性材料也可以是单氟化碳。实例是具有通式CFx的化合物,其中x为0.5-1.0。活性材料可以与导电材料如碳和粘合剂如聚四氟乙烯(PTFE)混合。阴极的实例是包括涂有MnO2的铝箔的阴极。可根据美国专利No.4279972中所述制备阴极。
阳极12可由通常为碱金属,例如Li、K,或碱土金属,例如Ca、Mg形式的活性阳极材料组成。阳极也可由碱金属和碱土金属的合金或者碱金属和Al的合金组成。可使用带有或不带基材的阳极。阳极也可由活性阳极材料和粘合剂组成。在此情况下,活性阳极材料可包括碳、石墨、炔属中间相碳、焦炭、金属氧化物和/或锂氧化的金属氧化物。粘合剂可以是例如PTFE。可混合活性阳极材料与粘合剂,形成可应用到阳极12的基材上的糊料。
在一些实施方案中,在锂阳极内的钠含量小于约500ppm重量,例如小于400ppm,小于300ppm,小于200或小于100ppm。可仔细控制阳极加工(例如锂挤出)、电池加工、电池老化、电池预放电、电池储存和/或电池放电来控制钠含量。
隔离件20可由在非水电化学电池中使用的任何标准隔离件材料形成。例如,可由聚丙烯(例如非织造聚丙烯或微孔聚丙烯)、聚乙烯、聚丙烯和聚乙烯的层材,和/或聚砜形成隔离件20。
为了组装电池,可将隔离件20切割成多片小的尺寸作为阳极12和阴极16,并如图1所示,放置于其间。然后将阳极12、阴极16和隔离件20置于壳体22内,其中壳体可由金属如镍、镀镍钢、不锈钢或铝,或塑料如聚氯乙稀、聚丙烯、聚砜、ABS或聚酰胺制造。然后用电解质溶液填充壳体22并密封。壳体22的一端用盖帽24和可提供气密和流体密封的环状绝缘垫圈26密闭。正集电器18(它可由铝制造)将阴极16连接到盖帽24上。盖帽24也可由铝制造。安全阀28置于盖帽24的内侧,并构造为当压力超过某一预定值时降低电池10内的压力。组装电池的其余方法公开于美国专利Nos.4279972、4401735和4526846中。
也可使用电池10的其它结构,其中包括例如硬币电池结构。电池可具有不同的电压,例如1.5V、3.0V或4.0V。
其它实施方案在权利要求以内。