《相干光OFDM系统收端高速数据并行处理的结构和方法.pdf》由会员分享,可在线阅读,更多相关《相干光OFDM系统收端高速数据并行处理的结构和方法.pdf(11页完整版)》请在专利查询网上搜索。
1、10申请公布号CN104184691A43申请公布日20141203CN104184691A21申请号201310198470922申请日20130524H04L27/26200601H04L25/0320060171申请人北京邮电大学地址100876北京市海淀区西土城路10号72发明人陈雪闫峥刘耀超王邦醒王立芊张治国74专利代理机构北京路浩知识产权代理有限公司11002代理人王莹54发明名称相干光OFDM系统收端高速数据并行处理的结构和方法57摘要本发明公开了一种相干光OFDM系统收端高速数据并行处理的结构和方法该结构包括CD粗均衡模块、并行符号同步模块、并行FFT窗口模块、后续DSP处理模。
2、块、数据恢复模块;该方法首先利用色散补偿的特性,使高速串行数据流串并变换后降低到芯片时钟可处理范围,其次通过设置双训练符号并引入双相关峰值判决机制,达到符号同步并行处理,完成小数倍频偏估计与补偿功能,最后对多路并行数据进行分块处理。该结构和方法降低了高速光纤通信系统对ADC/DAC采样速率和DSP算法芯片处理速度的要求,解决了DSP算法处理芯片无法满足系统实时处理需求的问题。51INTCL权利要求书2页说明书5页附图3页19中华人民共和国国家知识产权局12发明专利申请权利要求书2页说明书5页附图3页10申请公布号CN104184691ACN104184691A1/2页21一种相干光OFDM系统。
3、收端并行DSP处理的结构,其特征在于,所述结构包括CD粗均衡模块;并行符号同步模块,对来自CD粗均衡模块数据进行处理;并行FFT窗口模块,对来自并行符号同步模块数据进行处理;后续DSP处理模块,对来自并行FFT窗口模块数据进行处理;数据恢复模块,对来自后续DSP处理模块数据进行处理。2根据权利要求1所述的相干光OFDM系统收端并行DSP处理的结构,其特征在于,所述的CD粗均衡模块用于串行数据转化为并行数据。3根据权利要求1所述的相干光OFDM系统收端并行DSP处理的结构,其特征在于,所述的并行符号同步模块用于并行符号同步,小数倍频偏估计和补偿。4根据权利要求1所述的相干光OFDM系统收端并行D。
4、SP处理的结构,其特征在于,所述的并行FFT窗口模块用于从并行数据中剥离出一定个数的子模块,并且每个子模块经去CP后都为与子载波数个相同的路数的并行数据。5根据权利要求1所述的相干光OFDM系统收端并行DSP处理的结构,其特征在于,所述的后续DSP处理模块用于并行FFT处理、并行整数倍频偏估计与补偿、并行信道估计与均衡、并行相位噪声估计与补偿。6根据权利要求1所述的相干光OFDM系统收端并行DSP处理的结构,其特征在于,所述的数据恢复模块用于对后续DSP处理模块输出的并行数据进行判决、串并变换和星座逆映射,恢复出高速串行数据流。7一种相干光OFDM系统收端并行DSP处理的方法,其特征在于,所述。
5、的方法包括以下步骤1)串行数据变并行数据并对数据进行处理;2)使用FFT窗口变换法对已处理数据剥离出子数据组;3)使用DSP处理单元对子数据组进行整数倍频偏估计与补偿、并行信道估计与均衡、并行相位噪声估计与补偿的处理;4)使用数据恢复方法对DSP处理过的数据恢复成串行数据。8根据权利要求7所述的一种相干光OFDM系统收端并行DSP处理的方法,其特征在于,所述步骤1)的串行数据变并行数据的方法使用CD粗均衡法对数据进行串行数据变并行数据的处理。9根据权利要求7所述的一种相干光OFDM系统收端并行DSP处理的方法,其特征在于,所述步骤1)数据经串行数据变并行数据的处理后,使用并行符号同步算法对并行。
6、符号同步,小数倍频偏估计和补偿处理。10根据权利要求9所述的一种相干光OFDM系统收端并行DSP处理的方法,其特征在于,所述的同步符号算法采用双训练符号,并引入双相关峰值判决机制进行数据处理。11根据权利要求7所述的一种相干光OFDM系统收端并行DSP处理的方法,其特征在于,所述步骤2)使用FFT窗口变换法剥离出子数据组的数据个数为复数个。12根据权利要求7所述的一种相干光OFDM系统收端并行DSP处理的方法,其特征在于,所述步骤3)的DSP处理单元个数与子数据组个数相同。13根据权利要求7所述的一种相干光OFDM系统收端并行DSP处理的方法,其特征在权利要求书CN104184691A2/2页。
7、3于,所述步骤4)的数据恢复方法为对所有子数据组中输出的并行数据进行判决、串并变换和星座逆映射后恢复出高速串行数据流的方法。权利要求书CN104184691A1/5页4相干光OFDM系统收端高速数据并行处理的结构和方法技术领域0001本发明涉及高速光纤通信特别是高速光纤通信系统收端DSP处理领域,具体涉及相干光单一交频分复用技术(ORTHOGONALFREQUENCYDIVISIONMULTIPLEXING,以下简称OFDM)系统收端数字信号处理(DIGITALSIGNALPROCESSING,以下简称DSP)处理的并行实现过程背景技术。背景技术0002近年来,在“高清、三维、用户创造内容”的。
8、驱动下,海量信息的产生引发了网络带宽以惊人速度增长。到2016年,全球IP流量将达到每年1300艾(1018)字节。根据中国电信公开的数据,其网络传输带宽年复合增长率超过80,5年增长超过10倍。单通道传输容量的提升不仅可以满足传输容量迅猛增长的要求,更重要的是单通道传输容量的提升能够大大降低传送网总投资运维费用,减少核心路由器和波分设备的端口数量,简化网络的管理,节省机房面积、减少能耗,符合发展绿色社会理念。同时,增加传输容量可降低单位带宽的投资。提升系统单通道传输能力,超过100GBPS,达到TBPS量级是光通信领域发展方向。0003虽然单通道超100GBPS调制/解调方案使用多维度调制及。
9、多子载波系统可带来系统符号率的降低,为超100GBPS信号进行电域数字均衡/去损伤提供了可能性,但是就单一子载波系统而言仍需要高达几十G采样/秒的模数转换器(ANALOGTODIGITALCONVERTER,以下简称ADC)和高处理速率的数字电路,器件实现的难度非常大而且成本昂贵。以400GBPS相干光OFDM传输系统为例,即使采用多光子载波调制降低对ADC/数模转换器(DIGITALTOANALOGCONVERTER,以下简称DAC)采样速率和DSP算法芯片处理速度的要求,仍需要DSP算法芯片时钟高达10GHZ量级,吞吐量更是高达100GBPS以上。因此,降低对数字电路处理速率的要求成为超1。
10、00GBPS相干光接收的关键问题,研究超100GBPS速率相干光接收机数字去损伤并行处理核心算法为解决问题的关键手段。发明内容0004(一)要解决的技术问题0005本发明的目的在于解决传统使用OFDM传输大规模数据时,对DSP芯片时钟频率要求高,数据吞吐量小的问题。0006(二)技术方案0007本发明技术方案如下0008一种相干光OFDM系统收端并行DSP处理的结构,包括0009设置色度色散(CHROMATICDISPERSION,以下简称CD)粗均衡模块;0010设置对CD粗均衡模块数据进行处理的并行符号同步模块;0011设置对并行符号同步模块数据进行处理的并行快速傅氏变换(FASTFOUR。
11、IERTRANSFORMATION,以下简称FFT)窗口模块;说明书CN104184691A2/5页50012设置对并行FFT窗口模块数据进行处理的后续DSP处理模块;0013设置对后续DSP处理模块数据进行处理的数据恢复模块。0014优选的,CD粗均衡模块用于串行数据转化为并行数据。0015优选的,并行符号同步模块用于并行符号同步,小数倍频偏估计和补偿。0016优选的,并行FFT窗口模块用于从并行数据中剥离出一定个数的子模块,并且每个子模块经去循环前缀(CYCLICPREFIX,以下简称CP)后都为与子载波数个相同的路数的并行数据。0017优选的,后续DSP处理模块用于并行FFT处理、并行整。
12、数倍频偏估计与补偿、并行信道估计与均衡、并行相位噪声估计与补偿。0018优选的,数据恢复模块用于对后续DSP处理模块输出的并行数据进行判决、串并变换和星座逆映射,恢复出高速串行数据流。0019一种相干光OFDM系统收端并行DSP处理的方法包括以下步骤0020使串行数据变并行数据并对数据进行处理;0021使用FFT窗口变换法剥离出子数据组;0022使用DSP处理单元对子数据组进行整数倍频偏估计与补偿、并行信道估计与均衡、并行相位噪声估计与补偿的处理;0023使用数据恢复方法对DSP处理过的数据恢复成串行数据。0024优选的,串行数据变并行数据的方法使用CD粗均衡法对数据进行串行数据变并行数据的处。
13、理。0025优选的,数据经串行数据变并行数据的处理后,使用并行符号同步算法对并行符号同步,小数倍频偏估计和补偿处理。0026优选的,同步符号算法采用双训练符号,并引入双相关峰值判决机制进行数据处理。0027优选的,使用FFT窗口变换法剥离出子数据组的数据个数为复数个。0028优选的,DSP处理单元个数与子数据组个数相同。0029优选的,数据恢复方法为对所有子数据组中输出的并行数据进行判决、串并变换和星座逆映射后恢复出高速串行数据流的方法。0030(三)有益效果0031本发明的结构和方法可以弥补收端DSP算法芯片处理能力有限的缺陷,提高高速相干光OFDM系统收端DSP的处理能力。使用本发明的结构。
14、和方法可以将高速串行数据流的速率降低约3个数量级,使数据速率降低到DSP算法芯片的处理能力范围之内;而带来的资源/面积代价只提高约1个数量级。附图说明0032图1是本发明提出的一种相干光OFDM系统收端并行DSP处理的结构图;0033图2是采用基于双训练符号并行符号同步算法结构和双峰值符号起点判决机制的图;0034图3是并行M路各支路峰值判决区间分类的图;0035图4是实施例收端并行DSP处理的结构图;说明书CN104184691A3/5页60036图5是实施例中双峰值符号起点判决机制中采用的算法流程图;0037图中1CD均衡模块;2并行符号同步模块;3并行FFT窗口模块;4、5、6后续DSP。
15、处理模块;7数据恢复模块;21样值相关乘运算模块;22求相关函数P(D)模块;23缓存模块;24搜寻阈值点模块;25首峰值搜索模块;26首峰值位置判断模块;27二次搜索模块。具体实施方式0038下面结合附图和实施例,对本发明的具体实施方式做进一步描述。以下实施例仅用于说明本发明,但不用来限制本发明的范围。0039本发明中根据色散补偿所需和子载波个数共同确定系统并行路数,符号同步及小数倍频偏采用基于双训练符号并行处理结构和方法,后续DSP处理根据并行路数采用模块化处理,每一子模块都进行并行N路处理。0040本发明中采用的结构和方法对应以下功能和步骤,包括0041如图1所示CD粗均衡模块1,该模块。
16、先将串行高速数据变为M路并行数据,通过FFT变换到频域,在频域中补偿色散后再将数据经IFFT变换回时域。最优并行路数M根据色散补偿所需和子载波个数(子载波个数为N)共同确定。0042选择最优并行路数M应该遵循的原则0043(1)M值需要大于均衡色散的最小抽头数,为了便于快速处理通常M2N(N为整数);0044(2)为方便后续DSP处理,希望能在M路中剥离出整数倍个N点FFT窗口(子载波个数为N),所以M至少应大于一个OFDM符号长度(NFFTNCP,NCP为CP长度);0045如图1所示并行符号同步模块2,模块2内部具体结构和判决机制如图2所示,该模块进行并行符号同步,小数倍频偏估计和补偿。串。
17、行数据流经过色散补偿后变成M路,并行符号同步算法采用双训练符号,并引入双相关峰值判决机制,其中图2所示,样值相关乘运算模块21,用于完成SCHMILD符号同步算法中样值相关乘积运算;求相关函数P(D)模块22,用于使用迭代的方法求相关函数PD,迭代公式如下PD1PDRDLRD2LRDRDL;缓存模块23,用于将并行输出的MN1路相关函数P(D)数据缓存,供后续搜索符号起点使用;搜寻阈值点模块24,用于对归一化后的相关函数进行阈值搜索,找出相关峰值点出现的大概位置,减小搜索首峰值点的计算量;首峰值搜索模块25,用于阈值点开始搜索,得到首峰值点的位置;首峰值位置判断模块26,用于判断首峰值的在并行。
18、支路中的位置,并根据其位置判定是否需要进行二次搜索;二次搜索模块27,作用为,如果需要进行二次搜索,则在首峰值的基础上进行二次搜索,从而判别出符号的起点。0046发端发送两个训练符号,每个训练符号训通过间隔插零构成,使训练符号前半部分和后半部分样值相同,不同训练符号之间相互独立。串行数据流经过色散补偿后变为M路,每一路和相隔N/2(N为子载波个数)路数据做相乘,并把N/2个相乘的结果进行累加,得到相关峰值。将并行M路数据分为多个判决区间,搜寻首峰值点并判断首峰值点在M条支路中所处的位置。根据首峰值点出现的位置及所在不同区间双峰值表现出的不同特性,判断是否需要进行二次搜索。如需要则经二次搜索第二。
19、峰值点后得到符号起点,否则通过第一个峰值可直接得到符号起点。通过对峰值所在位置处的相乘累加值取角度得到小数倍说明书CN104184691A4/5页7频偏估计值,并通过估计值对数据进行小数倍频偏补偿。0047如图1所示并行FFT窗口模块3,该模块从M路并行数据中剥离出P个子模块,每一子模块经去CP后都为N路并行数据。每一子模块中N路并行数据都属于同一OFDM符号且包含了OFDM符号中所有子载波信息。0048如图1所示后续DSP处理模块,该模块由4、5和6等共P个子模块构成。每一子模块分别进行N点FFT变换、整数倍频偏估计与补偿、信道估计与均衡和相位噪声估计与补偿。0049后续DSP处理采用在结构。
20、和功能上相同的平行的并行模块化的处理方式子模块可进行整数倍频偏估计、信道估计和相位噪声估计,可以独立的将得到的频偏和信道信息传递给所有子模块使用,其他子模块可以利用得到的频偏和信道信息进行均衡。0050如图1所示数据恢复模块7,该模块将从所有子模块中输出的并行数据进行判决、串并变换和星座逆映射后恢复出高速串行数据流。0051实施例10052下面结合具体实施例对本专利进行详细的说明。将本专利提出的相干光OFDM系统收端DSP并行处理结构和方法应用于480GBPSPM16QAMOFDM系统。图4为480GBPSPM16QAMOFDM系统采用本发明对收端数据进行并行处理的结构,图2为实施例中采用双训。
21、练符号进行并行符号同步的结构以及双峰值符号同步起点判决机制。图5为应用于实施例的双峰值符号起点判决机制采用的算法流程。0053本实施例中根据色散补偿所需和FFT点数共同确定最优并行路数M,取M为1024,OFDM符号子载波数N为128,LN/264,循环前缀(CP)样值数为28。根据M和N的关系,将后续DSP处理模块共分为P6个子模块。图4中只画出4、5、6三个子模块。0054收端数据并行处理的过程0055CD均衡模块1,该模块先将串行数据进行串并变换得1024路并行数据,后经FFT变换到频域,在频域补偿大色散后再变换回时域,即完成CD均衡的功能。0056并行符号同步模块2,该模块采用基于双训。
22、练符号的并行符号同步算法,引入双峰值判决机制同步得到符号起点。并行符号同步结构完成的功能找出以第一个训练符号为起点的数据流。符号同步后根据估计的频偏信息,以并行结构对并行数据进行小数倍频偏补偿。0057并行符号同步得到符号起点的步骤0058如图2所示计算相关乘,该功能由模块21完成从第一路开始,第D路(D1、2、959、960)数据取共轭后和它相隔64路的数据进行相乘,将相乘后的结果记为第D路的相关乘输出。0059相关乘结果累加与寄存,如图2所示该功能由模块22、23完成。从第D路开始,将其后的连续相邻的64路得到的相关乘的结果累加,便得到以第D路作为搜索起点的相关值P(D)。然后将P(D)归。
23、一化得到M(D),该功能由模块22完成。运算得到M(D)后将结果存入缓存模块23。此结构得到的M(D)中的D只能取1、2、896、897,所以并行的后127条支路,当第一个峰值落入该位置时具有峰值不完整低于门限值的情况。0060图5为双峰值符号起点判决机制的算法流程。双峰值判决符号起点,搜寻M(D)首峰值点并判断首峰值点在M条支路中所处的位置,首峰值所处位置如图3所示,该功能如说明书CN104184691A5/5页8图2所示由模块24、25和26完成。根据首峰值点出现的位置判断是否需要进行二次搜索,该功能由模块27完成。如首峰值出现在如图3所示的位置1和位置3,则经二次搜索第二峰值点后得到符号。
24、起点,否则可直接得到符号起点。0061该并行结构中由模块22运算得到M(D)中的D只能取1、2、896、897,所以并行的后127条支路,无法得到以各支路数据作为搜寻起点的相关值。0062在利用训练符号训练得到符号起点的过程中,如果只采用一个符号同步训练符号,当训练符号的一部分数据出现在并行支路的后127条支路中时,该训练符号的完整性遭到破坏,就不能保证将符号起点找到,其首峰值起点可以出现在如图3所示的位置1和位置3。所以符号同步时采用两个训练符号的方法,确保至少有一个完整的训练符号能出现在前897条支路之中。0063训练符号可能出现的三种情况0064(A)第一个训练符号和第二个训练符号都完整。
25、地出现在前897条支路之中,这样计算相关值时可以很理想的得到两个峰值平台,进而将符号起点确定;确定符号起点后将其中一个训练符号舍弃,另一个保留,以用于后续的整数倍频偏估计和补偿。0065(B)第一个训练符号完整的出现在前897条支路中,第二个训练符号完整性被破坏时,可以由第一个训练符号得到的峰值判别得到符号起点。完成符号同步后舍弃一个训练符号,将另一个留作后续整数倍频偏估计使用。0066(C)第一个训练符号完整性被破坏时,第二个训练符号完整的出现在下一时刻的前897条支路中,可以由第二个训练符号得到的峰值判别得到符号起点。完成符号同步后舍弃一个训练符号,将另一个留作后续整数倍频偏估计使用。00。
26、67并行FFT窗口模块3,该模块从并行的1024路数据中剥离出6个子并行数据流。每一子并行数据流都为128路,且该128路都包含一个OFDM符号中的所有子载波信息。取出6块子并行数据流后,在后续DSP模块中,每一子并行数据流的处理结构在结构和功能上相互平行。0068后续DSP处理模块,该模块由4、5、6等共6个子模块构成,每一子模块在结构和功能上平行。后续DSP处理模块进行并行数据整数倍频偏估计,信道估计,然后将整数倍频偏和信道信息传递给所有子模块使用。4、5、6等所有子模块都分别进行相位噪声估计,并行补偿相位噪声。0069数据恢复模块7,该模块将各子模块得到的并行数据进行判决,并串变换和星座逆映射后恢复出串行数据。0070以上实施方式仅用于说明本发明,而并非对本发明的限制,有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型,因此所有等同的技术方案也属于本发明的保护范畴。说明书CN104184691A1/3页9图1图2说明书附图CN104184691A2/3页10图3图4说明书附图CN104184691A103/3页11图5说明书附图CN104184691A11。