带有瞬态跟踪电源的声频放大器 本发明涉及诸如要求具有双电源的运算放大器之类的电子电路。
立体声电视接收机通常希望具有能与外部功率放大器相耦合的输出端子。在这种情况下,当由“开启”状态的这个外部功率放大器使该电视接收机“开启”或“关断”时,很希望本系统无“喀啦声”或“键击噪声”。这就要求在该电视接收机“开启”和“关断”时不得引入产生声频信号的任何瞬变状态。
通过电视输出插孔进来的声频瞬态过程一般有两个来源,例如,它来自输出驱动器之前或是来自该输出驱动器自身。要是小心切断输出驱动器的电源,就不会产生声频瞬态。现有技术的系统使用软起动调节器以力图使电源的不平衡保持在最小程度上。由于这种软起动调节器不能准确地跟踪,因而它们的电压升降都很慢。使用本文公开的电路,由于对输出驱动放大器的供电强行增、减而能更快地使功率增加或功率减小以相互紧密跟踪。
本发明因正/负电源电压相互跟踪且与耦合在电源上的负载个数或负荷平衡无关,故允许多个负载与电源相耦合。
根据本发明的电源在“关断”状态与“开启”状态之间转换时,两种极性的电源瞬态电压相互跟踪,结果减小了该运算放大器内产生的声频瞬变。这种跟踪,是借助于一个增益为1的其反相输入端与正极性电源电压相耦合的运算放大器输出端上给信号放大器提供负极性电流电压来实现的。
因此,本发明的目的在于提供一种带有瞬态跟踪电源的声频放大器,该声频放大器能减小运算放大器内产生的声频瞬变。
按照本发明的一个方面,提供了一种瞬态跟踪电源,它包括:第一电压源装置,用以向负载提供第一电源电压,其内含有开关装置,用以使第一电源电压在“开启”方式和“关断”方式之间切换;第二电压源装置,包含增益为1的放大装置,该放大装置的输入端与上述第一电源电压耦合,其输出端与负载耦合,用以向负载提供第二电源电压,以使第一电源电压的电压变化由第二电源电压中相同的电压变化跟踪。
按照本发明的另一方面,提供了一种声频放大器,它包括:放大装置,用以放大输入信号以提供一个已放大的输出信号;第一电压源装置,与放大装置相耦合,用以对放大装置提供第一电源电压,该第一电压源装置内含开关装置,以使第一电源电压在“开启”方式与“关断”方式之间切换;第二电压源装置,包括一个增益为1的放大器,该放大器输入端与第一电源电压耦合,其输出端与上述负载耦合,用以向放大装置提供第二电源电压,以使第一电源电压的电压变化由第二电源电压中相同的电压变化跟踪。
图1示出根据本发明诸设计方案所述的伴音系统的方框图。
图2示出图1方框图中时间和电压相对值的关系图。
图3示出图1方框图中各部分的示例性实施例的原理图。
参照图1,图1示出根据本发明诸设计方案的伴音系统的方框图。运算放大器10具有一个信号输入端12和一个信号输出端14,该输出端14耦合到其它外部或内部放大器(图中未画出)。在该放大器10的端子16上提供正电源电压,在其端子18上提供负电源电压。正电压来自一个外部电源(图中未画出)供至线20上。可以理解,线20上供给的正电压可被大幅度调整和高度滤波。线20上的电源电压耦合到“慢起动”电路22上,其“开启”和“关断”时间由其内的一个时间常数电路降低其突变。电路22响应耦接自电路24的“开启/关断”信号而受控制,电路24响应线26上提供的控制信号而工作。线26上的控制信号来自一个微处理器(图中未画出)或其它合适的来源。
端子18上的负电源电压由运算放大器28提供,其反相输入端经一电源电阻30与正电源电压相耦合,其反馈电阻32与电阻30的阻值相等,以使运算放大器28在反相组态时增益为1。运算放大器28本身由一个外部的双电源(图中未画出)供电,例如在线20上提供的正电源电压和在线21上提供的负电源电压。因端子16上施加的正电源电压又施加在增益为1的放大器28的反相输入端上,故其输出端34上的直流电压在大小上等于端16上的电压,但因反相故为负极性。因此,施加在放大器10上的正、负电源电压数值相等,而且正电压中的任何瞬态变化将由负电压跟随。
图2示出端子26上的控制信号与端子16和18上的电源电压的定时图。该图示出控制线26在“关断”信号状态(高电平)情况下线16和18上的电源电压也是“关断”状态(低电平)。当控制线26变为“开启”(低电平)状态时,线16上的正电源电压以平滑过渡方式上升,而且线18上的负电压也紧跟,以使正、负极性的开启电压相互跟踪。一旦“关断”信号施加在线26上,线16上的正电压就开始向零减幅,线18上的负电压也跟随这个衰减。
在示例性的实施例中,线26上的控制电压由一个微处理器(图中未示出)提供。为在正、负两电源电压之间提供跟踪,须在放大器10的电源上升和电源下降期间在端子20上有电源电压。而且对放大器28要供应+V和-V电源电压。其原因是放大器28须保持运算以提供线18上负电压与线16上正电压的跟踪,以使微处理器保持工作。据此,若该电视接收机发生电源电压下降(端子20上的电源电压转换为OV),则关断运算放大器10的控制信号应在实现常规的电源电压下降状态之前(通常是40毫秒之前)施加一段时间。线26上的控制信号与干线电源电压下降之间的时间关系由上述的微处理器(图中未画出)来提供。同理,在电源上升时需在线26上的控制信号(用以开启放大器10)产生之前使干线电源起作用。
在端子38上提供静噪信号以保证在执行电源操作时由电路36前的电路提供无瞬变的信号。为此在端子38上提供静噪信号以在放大器10变成运算状态之后的很短时间内和在放大器10由线26上的控制信号关断之前的很短时间内起静噪作用。这样,在电源下降期间由放大器10前的电路产生的接收机关断瞬态现象由于该放大器10已处于“非运算”状态而被抑制了。
图3示出实施图1方框图的电路原理图。线20上的正电源电压耦合到NPN型串联控制晶体管40的集电极39上,该管的基极41与串联电阻42和43及电容器44的连接点46相耦合,以对线16上的正电源电压提供变慢的时间常数。在放大器10“关断”状态下,电容器44两端的电压借助晶体管24(该管由于线26上施加高电平的控制信号而保持在饱和状态)的集电极而保持得很低。由于节点46上电压低,晶体管40不导通,无正电压施加在线16上。在负电源侧,负电源线21与NPN型串联控制晶体管48的发射极相耦合,线21上的负电源电压在晶体管48变为导通时才与线18耦合,请看下文论述。
线26上的控制信号一旦变“低”,就使晶体管24的集电极变高,电容器开始通过电阻42和43充电到线20上的电压。选择电阻42和43以及电容器的数值,以在引线16上提供一个比较快速上升的电源电压,且能降低急剧上升的瞬态。应该注意,用以使电容器44放电和使晶体管40关断的放电时间常数是由电容器44和电阻43决定的。因此,如上讨论过的,响应线26上的控制信号的关断时间常数,比开启时间常数要快。基极41上的电压因电容器44的充电而增加时,晶体管40开始导通,且引线16上的正电压开始上升。当线16上的电压开始上升时,电流通过电阻49流向其基极通过电阻54接地的PNP晶体管50的发射极。晶体管50的集电极连接到晶体管48的基极51,并向晶体管48的基极51提供偏置电流,使晶体管48开始导通,故此提升线18上的负极性电压。
在线18上的电压变负时,PNP型晶体管52工作,其发射极与晶体管50的发射极和电阻49的连接点相耦合。晶体管52的基极与阻值相等的两个电阻30和32(它们跨接在线16和18上)之间的连接点耦合,以使晶体管52的基极约处于地电位,这与晶体管50的基极电位一样。晶体管52被设置为一个带有电阻32的增益放大器,电阻32是图1所示放大器28的反馈电阻。晶体52发射极上的输出信号与晶体管50的发射极耦合,用以控制流入晶体管48的基极51的电流,以使线18上的负电压将跟随线16上正电压中的瞬态变化。由于为减小线20上的电压而使瞬态变化的跟随要持续得象晶体管50和52具有足以保持工作的电压的时间一样长,因而线18上的负电压跟踪线16上正电压的瞬态变化在关断时也有效。
跨接在反馈电阻32上的电容器54使放大器28的频率响应下跌。电容器56和58分别将线16和18耦合到地。