书签 分享 收藏 举报 版权申诉 / 25

具有快速开启时间的电流感测多输出电流刺激器.pdf

  • 上传人:1**
  • 文档编号:6382013
  • 上传时间:2019-06-05
  • 格式:PDF
  • 页数:25
  • 大小:1.84MB
  • 摘要
    申请专利号:

    CN201480015775.4

    申请日:

    2014.03.17

    公开号:

    CN105164920A

    公开日:

    2015.12.16

    当前法律状态:

    授权

    有效性:

    有权

    法律详情:

    授权|||实质审查的生效IPC(主分类):H03K 3/012申请日:20140317|||公开

    IPC分类号:

    H03K3/012; A61N1/36; G05F3/26; H03K17/00; H03K17/042

    主分类号:

    H03K3/012

    申请人:

    艾尔弗雷德·E·曼科学研究基金会

    发明人:

    爱德华·K·F·李

    地址:

    美国加利福尼亚州

    优先权:

    61/788,871 2013.03.15 US

    专利代理机构:

    上海专利商标事务所有限公司31100

    代理人:

    钱慰民

    PDF完整版下载: PDF下载
    内容摘要

    本文描述了一种具有快速开启时间的多输出电流刺激器电路。在通过共源共栅耦合连接到源晶体管的电流镜中布置了至少一对输入侧晶体管和输出侧晶体管。所述输出侧晶体管为与组织接触的电极提供刺激电流。连接到基准电压并且连接到所述输出侧晶体管的运算放大器驱动所述源晶体管,使所述输出侧晶体管处的所述电压保持等于所述基准电压。所述至少一对晶体管包括多对晶体管,所述多对晶体管的输出侧晶体管利用刺激电流驱动相应电极。所述刺激器确定供给每个电极的刺激电流脉冲的开始和持续时间。电路触发时,产生大电流,所述大电流使所述输出侧晶体管中的电容放电,导致输出侧晶体管快速开启。

    权利要求书

    权利要求书
    1.  一种多输出电流刺激器电路,包括:
    基准电压源,所述基准电压源提供基准电压;
    多个输入侧晶体管;
    多个输出侧晶体管电流镜,所述多个输出侧晶体管电流镜耦接到所述输入侧晶体管中的相应一者,所述输出侧晶体管耦接在一起,以提供公共感测电压,所述输出侧晶体管中的每一个具有用于提供相应输出电流的电流输出端子;
    源晶体管,所述源晶体管可开关地以共源共栅布置耦接于每个输入侧晶体管和预定电压端口之间;
    差动放大器,所述差动放大器包括:第一输入,所述第一输入耦接到所述基准电压;第二输入,所述第二输入耦接到所述公共感测电压;和输出,所述输出被布置用于根据所述基准电压和所述公共感测电压之间的差值驱动所述源晶体管;以及
    开关控制电路,所述开关控制电路被构造用于选择性地启动所述输入侧晶体管中的每一个,使得对应的电流镜像输出侧晶体管根据所述对应的输入侧晶体管电流提供相应输出电流。

    2.  根据权利要求1所述的刺激器电路,还包括电流源和第一电阻器,所述第一电阻器耦接到所述电流源以提供所述基准电流。

    3.  根据权利要求2所述的刺激器电路,还包括第二电阻器,所述第二电阻器耦接在电压源和所述输出侧晶体管之间,从而提供所述公共感测电压。

    4.  根据权利要求3所述的刺激器电路,还包括第三电阻器,所述第三电阻器耦接在所述电压源和所述输入侧晶体管之间,以向每个输入侧晶体管提供电流。

    5.  根据权利要求3所述的刺激器电路,其中所述相应输出电流的总和等于所述电流源传递的电流乘以常数K,其中所述常数K等于所述第一电阻器与所述第二电阻器之比。

    6.  根据权利要求3所述的刺激器,其中所述输入侧晶体管和所述输出侧晶体管是具有宽度(W)和长度(L)的MOSFET晶体管,其中每个晶体管的W/L比率被配置成等于1:L,并且其中所述第三电阻器和所述第二电阻器的电阻值之比被配置成等于L:1,从而提供等于所述电流源电流乘以所述第一电阻器和所述第二电阻器之比再除以L的源晶体管电流。

    7.  根据权利要求1所述的刺激器,其中所述预定电压端口包括地。

    8.  根据权利要求1所述的刺激器,其中所述预定电压端口包括电压源。

    9.  根据权利要求1所述的刺激器,还包括第一多个开关,所述第一多个开关中的每一个开关连接于所述源晶体管和相应输入侧晶体管之间,所述开关控制电路被配置用于根据刺激方案启动所述第一多个开关,以使得所述对应的电流镜像输出侧晶体管提供相应输出电流。

    10.  根据权利要求9所述的刺激器,还包括第二多个开关,所述第二多个开关中的每一个开关连接于电压源和相应输入侧晶体管之间,所述开关控制电路被配置用于根据刺激方案启动所述第二多个开关,以使得所述对应的电流镜像输出侧晶体管暂停传递相应输出电流。

    11.  根据权利要求10所述的刺激器,其中所述开关控制电路以互补方式控制所述第一多个开关和所述第二多个开关的状态,使得当所述第一多个开关中的开关被启动时,所述第二多个开关中的对应开关被禁用,并且当所述第一多个开关中的开关被禁用时,所述第二多个开关中的对应开关被启动。

    12.  根据权利要求11所述的刺激器,其中所述开关控制电路控制所述基准电压源,使得在所述第一多个开关中的至少一个开关被启动时提供所述基准电压,从而将与对应于所述至少一个预选开关的所述输出侧晶体管相关的电容放电。

    13.  根据权利要求12所述的刺激器,其中在提供所述基准电压时,所述差动放大器驱动所述源晶体管,以使得与对应于所述至少一个预选开关的所述输出侧晶体管相关的电容放电。

    14.  一种多输出电流刺激器电路,包括:
    基准电压源,所述基准电压源提供基准电压;
    至少一个输入侧晶体管;
    至少一个输出侧晶体管电流镜,所述至少一个输出侧晶体管电流镜耦接到所述至少一个输入侧晶体管,所述至少一个输出侧晶体管提供公共感测电压,所述至少一个输出侧晶体管具有用于提供输出电流的电流输出端子。
    源晶体管,所述源晶体管可开关地以共源共栅布置耦接于所述至少一个输入侧晶体管和电压端口之间;
    差动放大器,所述差动放大器包括:第一输入,所述第一输入耦接到所述基准电压;第二输入,所述第二输入耦接到所述公共感测电压;和输出,所述输出被布置用于根据所述基准电压和所述公共感测电压之间的差值驱动所述源晶体管;以及
    开关控制电路,所述开关控制电路被构造用于启动所述至少一个输入侧晶体管,使得电流镜像的所述至少一个输出侧晶体管根据至少一个输入侧晶体管电流提供输出电流。

    15.  根据权利要求14所述的刺激器,其中所述电压端口是地。

    16.  根据权利要求14所述的刺激器,其中所述电压端口是电压源。

    17.  一种周围植入式神经刺激系统,包括:
    脉冲发生器,所述脉冲发生器包括:
    多输出电流刺激器电路,所述多输出电流刺激器电路包括:
    电流源;
    第一电阻器,所述第一电阻器耦接到所述电流源以提供基准电压;
    至少一个输出侧晶体管,所述至少一个输出侧晶体管具有用于提供输出电流的电流输出端子;
    第二电阻器,所述第二电阻器耦接于电压源和所述至少一个输出侧晶体管之间,从而提供公共感测电压;以及
    差动放大器,所述差动放大器包括:第一输入,所述第一输入耦接到所述基准电压;第二输入,所述第二输入耦接到所述公共感测电压;和输出,所述输出被布置用于 根据所述基准电压和所述公共感测电压之间的差值驱动所述至少一个输出侧晶体管。

    18.  根据权利要求17所述的周围植入式神经刺激系统,还包括连接到所述脉冲发生器的引线,其中所述引线包括多个导电电极和多个非导电区域。

    19.  根据权利要求17所述的周围植入式神经刺激系统,其中所述脉冲发生器包括多个电脉冲程序。

    20.  根据权利要求19所述的周围植入式神经刺激系统,其中所述多个电脉冲程序影响所述脉冲发生器产生的电脉冲的频率和强度。

    21.  根据权利要求20所述的周围植入式神经刺激系统,还包括控制器,所述控制器能够与所述脉冲发生器通信以创建所述多个电脉冲程序中的一者。

    22.  根据权利要求20所述的周围植入式神经刺激系统,还包括控制器,所述控制器能够与所述脉冲发生器通信以选择所述多个电脉冲程序中的一者。

    23.  根据权利要求19所述的周围植入式神经刺激系统,还包括位于所述差动放大器的输出和所述输出侧晶体管之间的第一开关,其中所述第一开关根据所述多个电脉冲程序中的一者关闭。

    24.  一种周围植入式神经刺激系统,包括:脉冲发生器,所述脉冲发生器被配置用于产生一个或若干个电脉冲,其中所述脉冲发生器包括:
    电流发生器,所述电流发生器被构造用于产生基准电流;和
    刺激器,所述刺激器包括刺激器电路,其中所述刺激器电路根据第一电阻器和第二电阻器的电阻之比放大所述基准电流;和
    一条或多条引线,所述一条或多条引线连接到所述脉冲发生器,所述一条或多条引线包括一个或多个电极,其中所述一条或多条引线被配置用于将来自所述脉冲发生器的所述一个或若干个电脉冲传导至所述一个或多个电极。

    25.  根据权利要求24所述的周围植入式神经刺激系统,其中所述刺激器电路包括差动放大器,所述差动放大器具有第一输入和第二输入,其中所述第一电阻器耦接到所述第一输入,所述第二电阻器耦接到所述第二输入。

    26.  根据权利要求24所述的周围植入式神经刺激系统,还包括与所述第二电阻器电连接的多个输出。

    27.  根据权利要求26所述的周围植入式神经刺激系统,其中流经所述第二电阻器的刺激器输出电流等于流经所述输出的所述电流之和。

    28.  根据权利要求24所述的周围植入式神经刺激系统,其中所述第一电阻器包括多个电阻器。

    29.  根据权利要求28所述的周围植入式神经刺激系统,其中所述第二电阻器包括多个电阻器。

    30.  根据权利要求29所述的周围植入式神经刺激系统,其中所述第一电阻器中的所述多个电阻器串联布置。

    31.  根据权利要求30所述的周围植入式神经刺激系统,其中所述第二电阻器中的所述多个电阻器并联布置。

    32.  一种周围植入式神经刺激系统,包括:
    脉冲发生器,所述脉冲发生器被配置用于产生一个或若干个电脉冲,所述脉冲发生器包括:
    电流发生器,所述电流发生器被构造用于产生基准电流;和
    刺激器,所述刺激器包括刺激器电路,其中所述刺激器电路包括源晶体管,所述源晶体管具有连接到一个或若干个输出晶体管的一个或若干个栅极的输出;和
    一条或多条引线,所述一条或多条引线连接到所述脉冲发生器,所述一条或多条引线包括一个或多个电极,其中所述一条或多条引线被配置用于将来自所述脉冲发生器的所述一个或若干个电脉冲传导至所述一个或多个电极。

    33.  根据权利要求32所述的周围植入式神经刺激系统,其中所述源晶体管的漏极连接到一个或若干个输出晶体管的一个或若干个栅极。

    34.  根据权利要求33所述的周围植入式神经刺激系统,还包括差动放大器,其中所述差动放大器的输出被布置用于驱动所述源晶体管。

    35.  一种治疗神经性疼痛的方法,包括:
    植入脉冲发生器,所述脉冲发生器被构造用于在身体的周围部分中产生一个或若干个电脉冲,所述脉冲发生器包括刺激器电路,其中所述刺激器电路根据第一电阻器和第二电阻器的电阻之比来放大基准电流;
    在所述身体的周围部分中植入引线,其中所述引线包括一个或多个电极;
    将所述引线的一个或多个电极靠近周围神经布置;并且
    将所述引线连接到所述脉冲发生器。

    36.  根据权利要求35所述的治疗神经性疼痛的方法,还包括利用所述脉冲发生器产生电脉冲;并且利用所述引线将所述电脉冲传导至所述周围神经。

    37.  一种治疗神经性疼痛的方法,包括:
    植入脉冲发生器,所述脉冲发生器被构造用于在身体的周围部分中产生一个或若干个电脉冲,所述脉冲发生器包括刺激器电路,其中所述刺激器电路包括源晶体管,所述源晶体管具有连接到一个或若干个晶体管的一个或若干个栅极的输出;
    在所述身体的周围部分中植入引线,其中所述引线包括一个或多个电极;
    将所述引线的一个或多个电极靠近周围神经布置;并且
    将所述引线连接到所述脉冲发生器。

    38.  根据权利要求31所述的治疗神经性疼痛的方法,还包括利用所述脉冲发生器产生电脉冲;并且利用所述引线将所述电脉冲传导至所述周围神经。

    39.  一种周围植入式神经刺激系统,包括:
    脉冲发生器,所述脉冲发生器被配置用于产生一个或若干个电脉冲,所述脉冲发生器包括:
    电流发生器;和
    刺激器,所述刺激器包括刺激器电路,其中所述刺激器电路针对小于50mA的输出电流具有小于5μs的开启时间;和
    一条或多条引线,所述一条或多条引线连接到所述脉冲发生器,所述一条或多条引线包括一个或多个电极,其中所述一条或多条引线将来自所述脉冲发生器的所述一个或若干个电脉冲传导至所述一个或多个电极。

    40.  根据权利要求33所述的周围植入式神经刺激系统,其中对于200uA与25mA之间的输出电流,所述开启时间小于2μs。

    41.  根据权利要求33所述的周围植入式神经刺激系统,其中对于200uA与25mA之间的输出电流,所述开启时间介于0.5μs和2μs之间。

    42.  根据权利要求33所述的周围植入式神经刺激系统,其中所述脉冲发生器被构造用于产生至少一个具有50μs脉冲宽度的电脉冲。

    43.  一种神经刺激系统,包括:
    植入式脉冲发生器,所述植入式脉冲发生器包括:
    第一电阻;
    基准信号发生器,所述基准信号发生器被构造用于产生基准信号,所述基准信号为延伸通过所述第一电阻的基准电压或流经所述第一电阻的基准电流中的至少一者;
    第二电阻;
    多个电极输出;和
    多输出刺激器,所述多输出刺激器被构造用于将所述基准信号放大为总输出信号,所述总输出信号为延伸通过所述第二电阻的总输出电压或流经所述第二电阻的总输出电流中的至少一者,所述多输出刺激器被构造用于将所述总输出信号分配至所述多个电极输出中的至少一些;
    其中所述多输出刺激器的放大增益值是基于所述第一电阻和所述第二电阻;以及
    一条或多条引线,所述一条或多条引线包括多个电极,所述多个电极被构造为耦接到所述多个电极输出。

    44.  根据权利要求43所述的神经刺激系统,其中所述多输出刺激器的放大增益值等于所述第一电阻除以所述第二电阻。

    45.  根据权利要求44所述的神经刺激系统,其中所述第一电阻包括多个串联电阻器。

    46.  根据权利要求45所述的神经刺激系统,其中所述第二电阻包括多个并联电阻器。

    47.  根据权利要求43所述的神经刺激系统,其中所述植入式脉冲发生器的尺寸便于植入到人体的周围部分中。

    48.  根据权利要求47所述的神经刺激系统,其中所述人体的周围部分包括臂部、腿部、手部和脚部中的一者。

    说明书

    说明书具有快速开启时间的电流感测多输出电流刺激器
    本申请要求于2013年3月15日提交的美国临时申请No.61/788,871的权益。前述申请的主题据此全文以引用的方式并入本文。
    技术领域
    本发明涉及电流镜电路,其能够在需要受控的电流递送以及找到功能性电刺激(FES)中的特定实用性的应用中广泛使用。
    背景技术
    通常在FES应用中,电流刺激器用于提供可编程电流脉冲,这些电流脉冲被导向穿过电极以刺激目标神经肌肉组织。通过电极传递的电流脉冲的振幅和持续时间一般通过数模转换器(DAC)被编程。DAC的电流输出通常在电流刺激器上被放大至所需的输出电流振幅。电流放大通常利用电流镜电路实现,尤其对于MOSFET器件而言,电流增益通过控制电流镜输入侧晶体管和输出侧晶体管的器件半导体管芯宽度(W)与长度(L)之比(W/L)实现。例如,在图1的现有技术电流镜电路中,输入侧晶体管M1和输出侧晶体管M2的W/L比率决定了总电流增益。
    有关传递的电流的振幅的错误主要是由于刺激器的有限输出阻抗,以及输入侧晶体管M1和输出侧晶体管M2之间的任何失配错误所致。一种补偿刺激器的输出阻抗效应的技术是构造图1的电路,将晶体管MC1和MC2包括在共源共栅布置中,以增大刺激器的输出阻抗。通常,为了补偿输入侧晶体管和输出侧晶体管的失配,一般是增大晶体管的宽度和/或长度。然而,增大器件的W和L会带来负面影响,即刺激器从开启到关闭之间(反之亦然)的响应时间由于晶体管电容的增大而显著变慢。当刺激器电流被编程以实现低电流振幅时,这种变慢尤其易实现。
    在高级应用中,设想刺激器输出电流被单独和独立地编程为通过多个电极,而不是通过仅单个电极。对于如图2A中所示的候选电路,设想共源 共栅晶体管可以分成多个共源共栅晶体管,即晶体管MC(2)到MC(n),它们提供输出电流至相应的“负载”,并且总输出电流等于输入DAC电流乘以电流增益K。输出OUT(2)至OUT(n)传递的输出电流数量是可控的,方法是开关各共源共栅晶体管至电压源VBP的栅极来开启特定晶体管和开关各共源共栅晶体管至VS的栅极来关闭特定晶体管。在这类情况下,各输出电流以及各输出电流之和可能会根据不同电极/组织阻抗以及每个输出处的电压而变化。
    如图2B所示,一种减少这些变化的技术是利用差动放大器或运算放大器(opamp)来尝试调节刺激器的工作。在这种情况下,被指定为A的到运算放大器20的一个输入是共源共栅晶体管MC(2)到MC(n)的漏极的公共互连器,而被指定为B的到运算放大器20的另一个输入是预定的基准电压。在工作中,图2B的调节设计努力保持输入A处的电压等于输入B处的电压,使得恒定电流ID2流经晶体管M2,而无论开启或关闭的输出的数量。然而,当不同数量的电极被编程用于电流/刺激递送时,由于耦接到运算放大器20的不同负载电容和负载,这种方法可能效果不佳。另外,当相对小的电流被编程并且很大数量的电极被启动时,特别期望有长的开启时间和关闭时间。尤其在利用高电压晶体管来使共源共栅晶体管适应输出处的高电压时,这种情况会较为复杂。高电压晶体管通常具有高阈值电压,并且通常需要在晶体管开启之前有一段长时间来充电至阈值电压。在某些情况下,可能需要改善多电极应用的输出电流准确性而无需连续校准的电路设计,以及具有更少晶体管管芯面积的设计。在建立电流增益K的过程中,可能理想的是,至少在某些情况下避免对晶体管管芯大小的依赖来建立增益并且依赖于更可靠的参数诸如电阻器。
    此外,在一些情况下,确保不同输出电流水平下的快速开启时间的设计可能会有帮助,这些不同输出电流水平包括小输出电流传递条件,尤其是使用能够输出大电流水平的多个可编程刺激电极。然而,在许多刺激器设计中,用于传递小输出电流水平的开启时间通常很长。这主要是由于:只有小电流可以流经晶体管,以实现小输出电流水平来对晶体管的寄生电容充电,尤其是栅极至源极电容。开启时间甚至更长,尤其是对于能够被编程为具有大电流输出的高电压刺激器。对于这些高电压刺激器,所需的大输出电流水平需要很大的高电压晶体管,因为这些晶体管的增益相对 低。另外,由于与这些高电压晶体管相关联的阈值电压相对高,为了开启这些高电压晶体管,将会花费更长的时间来使小电流输出将栅极至源极电压充电至高于阈值电压。
    发明内容
    本发明的一个非限制性实施例包括晶体管对,优选的是MOSFET晶体管,每对晶体管以电流镜构造连接,并且以共源共栅布置耦接到源晶体管。每一对晶体管具有输入侧晶体管和输出侧晶体管,每对晶体管中的输出侧晶体管电耦接到相应的和对应的组织刺激电极。因此输出侧晶体管实现了提供多电流刺激器功能的电路。本发明还包括运算放大器或差动放大器,其一个输入耦接到基准电压,另一个输入耦接到输出侧晶体管,并且其输出驱动源晶体管。在稳态下,运算放大器使输出侧晶体管的电压保持等于基准电压。
    在一些情况下,电流源提供经过第一电阻器以建立基准电压的恒定电流,并且电压源提供经过第二电阻器以建立输出侧晶体管的电压的所有刺激电流。电流增益K代表一个系数,将恒定电流的值乘以该系数得到总刺激电流;电流增益K等于第一电阻器和第二电阻器值的比率。这样,本发明避免了对在对应半导体管芯中定义的MOSFET晶体管宽度和长度值的依赖,而是依赖于更可靠的电阻器值来实现所需的电流增益。
    在一些情况下,有利的是,在电路开启时,由于放大器输入电压不同,运算放大器的输出非常大,因此由运算放大器驱动的源晶体管提供大的初始电流来使与输出侧晶体管相关联的电容放电,这导致刺激器开启时间会发生显著改善(缩短),几乎与刺激器输出的数量无关。
    本发明的一个实施例涉及周围植入式神经刺激系统。该周围植入式神经刺激系统可以包括脉冲发生器,该脉冲发生器包括产生基准电流的基准电流发生器,和多输出电流刺激器电路。在一些实施例中,多输出电流刺激器电路可以包括能够例如连接到基准电流发生器的电流源。多输出电流刺激器电路可以包括耦接到电流源以提供基准电压的第一电阻器,和至少一个输出侧晶体管,该输出侧晶体管具有用于提供输出电流的电流输出端子。在一些实施例中,多输出电流刺激器电路可以包括第二电阻器和差动放大器,该第二电阻器耦接于电压源和至少一个输出侧晶体管之间从而提 供公共感测电压。在一些实施例中,该差动放大器包括:第一输入,其耦接到基准电压;第二输入,其耦接到公共感测电压;和输出,其被布置用于根据基准电压和公共感测电压之间的差值驱动至少一个输出侧晶体管。
    在一些实施例中,周围植入式神经刺激系统可以包括连接到脉冲发生器的引线。此引线可以包括多个导电电极和多个非导电区域。在周围植入式神经刺激系统的一些实施例中,脉冲发生器可包括多个电脉冲程序,这些电脉冲程序能够例如影响脉冲发生器产生的电脉冲的频率和强度。
    在一些实施例中,周围植入式神经刺激系统可包括能够与脉冲发生器通信以创建多个电脉冲程序中的一个的控制器,和/或能够与脉冲发生器通信以选择多个电脉冲程序中的一个的控制器。在一些实施例中,周围植入式神经刺激系统可包括位于差动放大器的输出和输出侧晶体管之间的第一开关。第一开关可以根据多个电脉冲程序中的一个被关闭。
    本发明的一个实施例涉及周围植入式神经刺激系统。该系统包括能够产生一个或若干个电脉冲的脉冲发生器。脉冲发生器可包括能够产生基准电流的电流发生器,和包括刺激器电路的刺激器。在一些实施例中,刺激器电路根据第一电阻器和第二电阻器电阻之比放大基准电流。该系统可包括连接到脉冲发生器的一条或多条引线。在一些实施例中,这一条或多条引线可包括一个或多个电极,并且这一条或多条引线可将一个或若干个电脉冲从脉冲发生器传导至一个或多个电极。
    在周围植入式神经刺激系统的一些实施例中,刺激器电路可包括具有第一输入和第二输入的差动放大器。在一些实施例中,第一电阻器可耦接到第一输入,第二电阻器可耦接到第二输入。
    在一些实施例中,周围植入式神经刺激系统包括与第二电阻器电连接的多个输出,并且在该系统的一些实施例中,流经第二电阻器的刺激器输出电流等于流经输出的电流之和。在周围植入式神经刺激系统的一些实施例中,第一电阻器和第二电阻器中的一者或两者可以是多个电阻器。在周围植入式神经刺激系统的一些实施例中,第一电阻器的多个电阻器可串联布置,并且/或者在一些实施例中,第二电阻器的多个电阻器可并联布置。
    本发明的一个实施例涉及周围植入式神经刺激系统。该系统包括能够产生一个或若干个电脉冲的脉冲发生器。脉冲发生器可包括能够产生基准电流的电流发生器,和包括刺激器电路的刺激器。在一些实施例中,刺激 器电路可包括源晶体管,该源晶体管具有连接到一个或若干个输出晶体管的一个或若干个栅极的输出。该系统可包括连接到脉冲发生器的一条或多条引线,这一条或多条引线可包括一个或多个电极。在一些实施例中,这一条或多条引线可将一个或若干个电脉冲从脉冲发生器传导至一个或多个电极。
    在周围植入式神经刺激系统的一些实施例中,源晶体管的漏极可连接到一个或若干个输出晶体管的一个或若干个栅极。在一些实施例中,周围植入式神经刺激系统可包括差动放大器。在一些实施例中,差动放大器的输出可以被布置用于驱动源晶体管。
    本发明的一个实施例涉及治疗神经性疼痛的方法。这种方法可包括在身体的周围部分中植入脉冲发生器,该脉冲发生器能够产生一个或若干个电脉冲。在一些实施例中,脉冲发生器可包括刺激器电路,该刺激器电路能够根据第一电阻器和第二电阻器的电阻之比放大基准电流。在一些实施例中,这种方法可包括在身体的周围部分中植入引线,该引线可包括一个或多个电极,将引线的一个或多个电极布置为靠近周围神经,并将引线连接到脉冲发生器。
    在一些实施例中,这种治疗神经性疼痛的方法还可包括利用脉冲发生器产生电脉冲;并利用引线将电脉冲传导至周围神经。
    本发明的一个实施例涉及治疗神经性疼痛的方法。这种方法可包括在身体的周围部分中植入脉冲发生器,该脉冲发生器能够产生一个或若干个电脉冲。在一些实施例中,脉冲发生器可包括刺激器电路,该刺激器电路可包括源晶体管,该源晶体管具有连接到一个或若干个输出晶体管的一个或若干个栅极的输出。在一些实施例中,这种方法可包括在身体的周围部分中植入引线,该引线可包括一个或多个电极,将引线的一个或多个电极布置为靠近周围神经,并将引线连接到脉冲发生器。
    在一些实施例中,这种治疗神经性疼痛的方法可包括利用脉冲发生器产生电脉冲;并利用引线将电脉冲传导至周围神经。
    本发明的一个实施例涉及周围植入式神经刺激系统。该系统包括能够产生一个或若干个电脉冲的脉冲发生器。脉冲发生器可包括能够产生基准电流的电流发生器,和可包括刺激器电路的刺激器。在一些实施例中,对于小于50mA的输出电流,刺激器电路具有小于5μs的开启时间。在一些 实施例中,该系统可包括连接到脉冲发生器的一条或多条引线。在一些实施例中,这一条或多条引线可包括一个或多个电极,这一条或多条引线可将一个或若干个电脉冲从脉冲发生器传导至一个或多个电极。
    在周围植入式神经刺激系统的一些实施例中,对于200uA和25mA之间的输出电流,开启时间小于2μs。在周围植入式神经刺激系统的一些实施例中,对于200uA和25mA之间的输出电流,开启时间介于0.5至2μs之间。在周围植入式神经刺激系统的一些实施例中,脉冲发生器可产生至少一个具有50μs脉冲宽度的电脉冲。
    本发明的一个实施例涉及神经刺激系统。该神经刺激系统包括可植入的脉冲发生器。在一些实施例中,可植入的脉冲发生器包括第一电阻、能够产生基准信号的基准信号发生器,和第二电阻,所述基准信号为延伸通过第一电阻的基准电压或流经第一电阻的基准电流中的至少一者。在一些实施例中,神经刺激系统可包括多个电极输出,和能够将基准信号放大至总输出信号的多输出刺激器。在一些实施例中,总输出信号可为延伸通过第二电阻的总输出电压或流经第二电阻的总输出电流中的至少一者。在一些实施例中,多输出刺激器可将总输出信号分配到多个电极输出中的至少一些。在一些实施例中,多输出刺激器的放大增益值是基于第一电阻和第二电阻。在一些实施例中,神经刺激系统可包括一条或多条引线,这一条或多条引线包括多个电极,这些电极可耦接到多个电极输出。
    在神经刺激系统的一些实施例中,多输出刺激器的放大增益值等于第一电阻除以第二电阻。在神经刺激系统的一些实施例中,第一电阻可包括多个串联电阻器,并且在一些实施例中,第二电阻可包括多个并联电阻器。在神经刺激系统的一些实施例中,可植入的脉冲发生器的尺寸便于植入到人体的周围部分中,并且在一些实施例中,人体的周围部分可以是臂部、腿部、手部和脚部中的一者。
    附图说明
    图1是采用现有技术的共源共栅电流镜构造的单个输出刺激器电路。
    图2A是采用共源共栅电流镜的多输出刺激器电路。
    图2B是采用经调节的共源共栅电流镜的多输出刺激器电路。
    图3是本发明的多输出电流刺激系统的整体框图;并且
    图4A是电流感测多输出刺激器电路,其采用运算放大器和电阻器比率来产生所需的电流增益;
    图4B是本发明的电流感测多输出刺激器电路的详细电路图。
    图5示出具有和没有本发明的快速开启时间的多输出电流刺激器的时序图。
    图6为周围植入式神经刺激系统的一个实施例的示意图。
    具体实施方式
    现在参见图3,它示出多输出电流刺激系统的一个实例的整体框图,具体地讲,它示出脉冲发生器的一个实施例的整体框图。该系统包括阳极多输出刺激器框10A和阴极多输出刺激器框10B。该系统用于基于临床医生的组织刺激需求来选择阳极刺激器或阴极刺激器。通过设置数字寄存器2中的对应“比特”来选择阳极刺激器和阴极刺激器的输出。数字寄存器2产生数字控制信号DCS,该信号控制阳极刺激器和阴极刺激器的选择。尽管图3公开了两个刺激器10A和10B,下述参照图4A和4B的讨论仅关注阳极刺激器10A。应当理解,在一些实施例中,阴极刺激器(图4A或图4B中未示出)的互补电路按照与阳极刺激器相同的工作原理来工作,因此仅为了简洁起见,阴极刺激器没有包括在下述讨论中。
    数字寄存器2还储存与刺激脉冲持续时间、振幅和曲线相关的信息以及其他工作参数。基于数字寄存器2中储存的信息和CLOCK信号,刺激控制器30产生所需的刺激脉冲振幅,并触发数模转换器DAC4产生输出。基于DAC4的输出,基准电流源发生器6为阳极刺激器提供Isink电流(在图4A和图4B中示为IsinkPORT)的接收端,并为阴极刺激器提供源极电流Isource。刺激控制器30根据编程的阳极脉冲振幅、持续时间和曲线产生开启信号ANO以开启阳极刺激器10A,使其在所选择的输出端(图4A中的OUT(2)至OUT(n)和图4B中的OUT(1)至OUT(n))输出阳极电流。相似地,刺激控制器30还根据编程的阴极脉冲振幅、持续时间和曲线产生开启信号CAT以开启阴极刺激器10B,使其在所选择的输出端输出阴极电流。
    参照图4A,它示出电流感测多输出电流刺激器电路11A的一个非限制性实施例的示意图。如上述所讨论的,图4A仅包括阳极多输出刺激器电路,并且应当理解,用于阴极刺激的互补电路在图4A中未示出,而是被视 为可选地包括在整个电路和系统内。此外,应当理解,发明也设想使用单个多输出刺激器,无论它是用于阳极刺激还是阴极刺激。一旦信号ANO从刺激控制器30发出,被指定为Isink的电流从电压源VS流经电阻器R1,并且利用流经R1的电流在电阻器R1两端产生电压VR1。根据流经电阻器R1的电流Isink产生基准电压VREF14,并且该基准电压耦接到运算放大器(opamp)16的正极输入。尽管电压VREF耦接到运算放大器16的正极输入,应当理解,重新构造电路连接以将VREF施加于运算放大器16的负极输入在发明的设想之内,具体取决于当使用p个信道MOSFET晶体管代替n个信道晶体管时可能发生的互补电路设计。电流Isink经IsinkPORT耦接到图3所示的基准电流发生器6,如图4A中所示。
    有利地,在某些情况下,在图4A示出的实施例中,实现所需的电流增益K不依赖于晶体管W/L比率,电流感测多输出电流刺激器电路11A使用电阻器R1和R2以及运算放大器16来控制共源共栅晶体管MC(2)至MC(n)的栅极电压,从而获得准确的刺激器总输出电流IR2。
    电路11A还包括至少一个晶体管。晶体管MC(2)的源极经电阻器R2连接到电压源VS。晶体管MC(2)的源极还连接到运算放大器16的负极输入,并为运算放大器16提供感测电压。晶体管MC(2)的漏极被指定为OUT(2),它耦接到相应电极(未示出)以将刺激电流传递至与该相应电极接触的组织。
    如进一步看到的,在图4A中,运算放大器16经过一组开关SA(1)至SA(n)和SB(1)至SB(n)直接连接到MC(2)至MC(n)的栅极端子。在一些实施例中,这些开关可为例如“单极单掷开关”。当OUT(2)至OUT(n)中的任何者的输出被选择传递电流时,连接于运算放大器16的输出和MC(2)至MC(n)中的对应栅极端子之间的开关SA(1)至SA(n)开启(导电)。此外,连接MC(2)至MC(n)的栅极端子与VS的对应开关SB(1)至SB(n)关闭(不导电)。开关SA(1)由逻辑电路35控制,这样,当逻辑电路35接收到来自控制器30的信号ANO和来自数字寄存器2的数字控制信号DCS时,逻辑电路35启动开关SA(1)(使得SA(1)关闭),并且刺激电流从输出OUT(2)传递至其相应的电极。当逻辑电路35禁用开关SA(1)(使得SA(1)打开)时,暂停从输出OUT(2)传递电流。
    此外,同时,为确保暂停从输出OUT(2)传递电流,逻辑电路35使得开关SB(1)启动。刺激疗法也可由辅助设备诸如遥控器或智能手机以无线方式控制,以控制开关SA(1)和SB(1)的启动的时序和持续时间,以便根据预定的治疗方案提供所需的电流传递。优选的是,逻辑电路35以互补的方式控制开关SA(1)和SB(1)的状态,这样,当开关SA(1)被启动时,开关SB(1)被禁用,反之亦然。
    总开关控制可以利用刺激控制器30、数字寄存器2和逻辑电路35完成,具体是单一控制还是联合控制将取决于功能考虑。
    在一些实施例中,当电流Isink从电压源VS流经电阻器R1时,在电阻器R1两端产生电压VR1。与此相似,当总刺激器输出电流IR2从电压源VS流经电阻器R2时,在电阻器R2两端产生电压VR2。当对应开关SA(1)至SA(n)被启动时,运算放大器16的正极输入的电压是在晶体管MC(1)至MC(n)的源极处感测到的电压,并且可被视为公共感测电压。独特地,由于与运算放大器16相关联的反馈回路,运算放大器16的正极输入和负极输入处的电压在稳态下将相等,因此电压VR2被强制等于VR1。在稳态下,电流IR2等于所有输出OUT(2)至OUT(n)上传递的输出电流之和。因此,既然VR2=IR2·R2并且VR1=Isink·R1,IR2等于Isink·R1/R2,所需的总电流增益K被定义为IR2/Isink,因此等于R1/R2。因此,设置所需的总电流增益K实际上是选择R1和R2的值。
    在一些非限制性应用中,集成电路中的电阻器可能具有比的MOSFET更好的匹配特性,具体取决于面积。对于相同的部分至部分匹配准确性,使用本文所述的电阻器在集成电路上占用的面积比使用MOSFET的情况更少。在一些情况下,电阻器R1和R2的构造方式可带来额外的好处。例如,电阻器R2可由多个(Np)并联电阻构成,R1可由多个(Ns)串联电阻构成。因此,对于电阻器值R,R1=R·Ns并且R2=R/Np并且电流增益K=R1/R2=Ns·Np。对于当Ns=Np=N的情况,电流增益K=N2,电阻器总数等于2N(Ns+Np=2N),因此根据电流增益的电阻器总数量等于2·K1/2。对于100的电流增益,电阻器的数量为20,而M1和M2(见图1)需要总数为101的单独晶体管,因为要匹配并联晶体管,这些晶体管不能串联。当考虑大于实例K=100的电流增益时,这可能有更大的影响,所节省的管芯面积甚至更大。在一些情况下的另一个优点涉及使用本文所公开的与电 流增益有关的电阻器值技术,因为实现所需的电流增益准确性通常不需要校正,从而提供了额外的电力和管芯面积节省。
    参照图4B,它示出了本发明的电流感测多输出电流刺激器电路11B的另一个实施例。如上述所讨论的,图4B仅包括阳极多输出刺激器电路,并且应当理解,用于阴极刺激的互补电路在图4B中未示出,而是被视为可选地包括在整个电路和系统内。此外,应当理解,发明也设想使用单个多输出刺激器,无论它是用于阳极刺激还是阴极刺激。一旦信号ANO从刺激控制器30发出,被指定为Isink的电流从电压源VS流经电阻器R1,并且利用流经R1的电流在电阻器R1两端产生电压VR1。根据流经电阻器R1的电流Isink产生基准电压VREF14,并且该基准电压耦接到运算放大器(opamp)16的负极输入。尽管电压VREF耦接到运算放大器16的负极输入,应当理解,重新构造电路连接以将VREF施加于运算放大器16的正极输入在本发明的设想之内,具体取决于当使用n个信道MOSFET晶体管代替p个信道晶体管时可能发生的互补电路设计。电流Isink经由IsinkPORT耦接到图3所示的基准电流发生器6,如图4B中所示。
    电路11B还包括至少一对以电流镜连接布置耦接的晶体管。更具体地讲,输入侧晶体管ML(1)的栅极耦接到输出侧晶体管MC(1)的栅极,公共连接的栅极32也连接到晶体管ML(1)的漏极。晶体管MC(1)的源极通过电阻器R2连接到电压源VS,晶体管ML(1)的源极通过电阻器R3连接到VS。晶体管MC(1)的源极还连接到运算放大器16的正极输入,并为运算放大器16提供感测电压。晶体管MC(1)的漏极被指定为OUT(1),它耦接到相应电极(未示出)以将刺激电流传递至与该相应电极接触的组织。
    晶体管ML(1)和MC(1)的电流镜组合通过开关SA(1)可开关地以共源共栅布置耦接到源晶体管MS。更具体地讲,晶体管ML(1)的漏极耦接到“单极单掷”开关SA(1)的一侧,晶体管MS的漏极耦接到开关SA(1)的另一侧。晶体管MS的源极耦接到电压端口12,阳极刺激器的该端口是地,晶体管MS的栅极耦接到运算放大器16的输出。对于阴极刺激器,该电压端口为电压源,诸如VS。开关SA(1)由逻辑电路35控制,这样,当逻辑电路35接收到来自控制器30的信号ANO和来自数字寄存器2的数字控制信号DCS时,逻辑电路35启动开关SA(1)(使得SA(1)关闭),并且刺激电流 从输出OUT(1)传递至其相应的电极。当逻辑电路35禁用开关SA(1)(使得SA(1)打开)时,暂停从输出OUT(1)传递电流。
    此外,同时,为确保暂停从输出OUT(1)传递电流,逻辑电路35使得开关SB(1)启动。刺激疗法也可由辅助设备诸如遥控器或智能手机以无线方式控制,以控制开关SA(1)和SB(1)的启动的时序和持续时间,以便根据预定的治疗方案提供所需的电流传递。优选的是,逻辑电路35以互补的方式控制开关SA(1)和SB(1)的状态,这样,当开关SA(1)被启动时,开关SB(1)被禁用,反之亦然。
    总开关控制可以利用刺激控制器30、数字寄存器2和逻辑电路35完成,具体是单一控制还是组合控制将取决于功能考虑。
    尽管上述说明涉及包括晶体管ML(1)和MC(1)的单个电流镜组合,但本发明还设想了多种电流镜组合。就这一点而言,图4B公开了包括晶体管ML(1)至ML(n)以及MC(1)至MC(n)的晶体管组合,其中n是为n个相应电极提供刺激电流的单独电流镜组合的数量。如图4B所示,每一个包括ML(1)至ML(n)以及MC(1)至MC(n)的电流镜组合通过相应开关SA(1)至SA(n)耦接到源晶体管MS。每一个输出侧晶体管MC(i)的公共连接源极提供施加于运算放大器16的正极输入的公共感测电压。从相应电流镜组合ML(i)和MC(i)中个的任意一个输出OUT(i)传递到相应电极i的输出电流是由数字寄存器2和逻辑电路35控制,方式是根据治疗或刺激方案来启动相应开关SA(i)。方案可指示刺激器引起任何输出OUT(i)来提供刺激电流,方式可为一次提供一个,或以任意组合同时提供,或以任意顺序提供并持续任意时间段。
    如用于电流镜构造的现有技术所教导的那样,只有当晶体管准确匹配时,输入侧晶体管会将电流源提供给它的电流准确地镜像到输出侧晶体管(例如,见美国专利No.8,575,971)。因此,在这些情况下,晶体管制造要求给制备和加工技术造成了过度的负担,导致低设备产出和高设备成本。有利的是,本发明的一些应用消除了对严格的制造工艺的需要,这些严格工艺用于形成晶体管的宽度和长度维度从而形成所需的电路电流增益值。如下面将讨论的,本发明的一些实施例依赖于选择的电路电阻器值来可靠地形成所需的电流增益值。更具体地讲,电阻器R1和R2与运算放大器16组合,控制源晶体管MS的栅极电压,以实现流经电阻器R2的准确 总刺激器输出电流IR2。如图4B中所标注,流经电阻器R2的总刺激器输出电流IR2是当对应的开关SA(1)至SA(n)被启动时流到输出OUT(1)至OUT(n)的电流之和。
    如图4B进一步所示,耦接晶体管ML(i)和MC(i)对的每个电流镜的公共栅极连接(例如ML(1)和MC(1)的32所示)经对应的和相应的开关SB(i)连接到电压源VS。开关SB(1)至SB(n)的状态由逻辑电路35决定,这样,当刺激电流被导向特定的输出OUT(i)时,逻辑电路35使得开关SA(i)被启动,开关SB(i)被禁用,从而使电流经过晶体管MC(i)被传递至OUT(i)。以相似的方式,当要终止来自特定输出OUT(i)的刺激电流时,逻辑电路35使得开关SA(i)被禁用,开关SB(i)被启动,从而终止(暂停)从OUT(i)传递电流。
    当电流Isink从电压源VS流经电阻器R1时,在电阻器R1两端产生电压VR1。与此相似,当总刺激器输出电流IR2从电压源VS流经电阻器R2时,在电阻器R2两端产生电压VR2。当对应开关SA(1)至SA(n)被启动时,运算放大器16的正极输入的电压是在晶体管MC(1)至MC(n)的源极处感测到的电压,并且可被视为公共感测电压。由于与运算放大器16相关联的反馈回路,运算放大器16的正极输入和负极输入处的电压在稳态下将相等,因此电压VR2被强制等于VR1。在稳态下,电流IR2等于所有输出OUT(1)至OUT(n)上传递的输出电流之和。因此,既然VR2=IR2·R2并且VR1=Isink·R1,IR2等于Isink·R1/R2,所需的总电流增益K被定义为IR2/Isink,因此等于R1/R2。因此,设置所需的总电流增益K实际上是选择R1和R2的值。
    熟知的是,在集成电路中相同面积的电阻器具有比MOSFET更好的匹配特性。对于相同的部分至部分匹配准确性,在本发明的一些应用中使用电阻器在集成电路上需要的面积比使用MOSFET的情况更少。本发明的一些应用带来的额外有益效果与电阻器R1和R2的构造方式有关。例如,电阻器R2可由多个(Np)并联电阻构成,R1可由多个(Ns)串联电阻构成。因此,对于电阻器值R,R1=R·Ns并且R2=R/Np并且电流增益K=R1/R2=Ns·Np。对于当Ns=Np=N的情况,电流增益K=N2,所需电阻器总数等于2N(Ns+Np=2N),因此根据电流增益的电阻器总数量等于2·K1/2。对于所需的100的电流增益,所需的电阻器的数量为20,而M1和M2(见图 1)需要总数为101的单独晶体管,因为要匹配并联晶体管,这些晶体管不能串联。当考虑大于实例K=100的电流增益时,这可能有更大的影响,所节省的管芯面积甚至更大。本发明的一些应用的另一个优点涉及使用本文所公开的与电流增益有关的电阻器值技术,因为实现所需的电流增益准确性通常不需要校正,从而提供了额外的电力和管芯面积节省。
    在实施过程中,晶体管ML(1)和MC(1)被设置为具有1:L的宽度(W)长度(L)之比或W/L比率,并且R3R2之比设为L:1。因此,流经电阻器R3的电流IR3并且因此流经电阻器MS的电流ID4大约等于流经电阻器R2(IR2)的电流除以L,或者等效地,稳态下ID4=Isink·K/L,因为运算放大器16迫使VR2等于VR1。在这种情况下,电流ID4被明确限定,并且基本上与工艺和温度变化无关。
    在一些应用中,在刺激器电路11B中实施运算放大器16还有一个新的优点,就是在电路启动期间,也就是说当刺激控制器30发布ANO信号,该信号使得Isink流过从而提供VREF,并且IR2等于零安培时,VR1和VR2之间的电压差值很大,导致运算放大器16的输出电压非常大。然而要注意到,逻辑电路35是在提供VREF之前或者与此同时地被定时,它启动至少一个或多个预先选定的开关SA(i),该开关SA(i)对应于某个输出OUT(i),电流被选择为经过该输出OUT(i)传递。结果,运算放大器16驱动源晶体管MS,使其具有大的栅极到源极初始电压,从而产生大的初始漏极电流ID4。继而,对应于所选开关SA(i)的所选晶体管的栅极电压很快下降以快速开启这些晶体管。换句话讲,大的初始电流ID4的形成使所选晶体管MC(i)的大栅极电容快速放电,导致刺激器的开启时间很短。大的初始电流ID4被设计为使所选晶体管MC(i)的所有栅极电容放电。
    这个新的优点在一些应用中可能十分重要,尤其是对于一些情况下的短输出电流脉冲而言。如图5所示,当图3中的刺激控制器30产生如波形51所示的信号ANO并且如波形52所示的电流Isink输出进入基准电流发生器6时,从ANO的上升沿Ton到刺激器(诸如图2B的刺激器)的输出电流Iout(i)中的一个之间会有很明显的延迟时间TD1,如波形53所示,这样就不会有短的开启时间。然而,如波形53所示,典型刺激器的关闭时间在ANO的下降沿Toff后之几乎是瞬时的。因此,由Iout(i)产生的输出电流脉冲将从由ANO的脉冲宽度限定的脉冲宽度显著缩短,如图5的波形53所 示。如果ANO的脉冲宽度短于TD1,Iout(i)会完全消失。对于具有8个输出和约200uA的总电流输出的典型刺激器设计而言,对于基于图2A的刺激器设计而言,TD1将超过100μs;该设计利用高电压晶体管来实现MC(1)至MC(n)。在这种情况下,假设M(1)和M(2)之间的宽度-长度比率是1:100,单个输出(OUT(2)至OUT(n))的最大输出电流超过25mA。为支持每个输出处的这个最大输出电流,高电压晶体管MC(2)至MC(n)非常大,并且具有很大的栅极到源极电容。对于典型的电流刺激器而言,最短的脉冲通常长于50μs。
    图5中的波形54示出本发明的一个非限制性应用的快速开启特性的益处,其在于与图5的波形53中所示的长得多的时间延迟TD1相比,Ton和电流Iout(i)上升沿中点之间的时间延迟TD2非常短。
    尽管可以通过调节ANO的脉冲宽度,使其比所需的脉冲宽度长TD1,来补偿电流脉冲的缩短,但延迟时间TD1通常取决于Iout(i)的振幅(或水平)和/或进入所有刺激电极的总输出电流IR2。此外,由于工艺的变化,植入不同IC的不同刺激器之间的TD1将会有所不同。因此,很难通过调节ANO的脉冲宽度来正确补偿延迟时间TD1。在一些实施例中,具有能够在一系列输出电流上缩短开启时间的脉冲发生器可能是有利的。例如,在一个实施例中,脉冲发生器可具有小于10μs、5μs、2μs、1μs、或任何其他值或中间值、和/或介于约0.1和2μs、0.1和4μs、0.1和10μs、0.1和20μs、0.2和16μs、0.3和12μs、0.4和8μs、0.5和6μs、0.5和4μs、0.5和2μs、0.5和1μs的开启时间,或任何其他开启时间或中间开启时间。在一些实施例中,可以针对小于100mA、75mA、50mA、25mA、或任何其他值或中间电流、和/或介于50uA和100mA、100uA和75mA、150uA和50mA、200uA和25mA、500uA和10mA,或任何其他电流或中间电流的输出电流实现这些开启时间。在一些实施例中,如上述所用,这些输出电流约占所定义的范围的10%。图4B示出了具有短开启时间的电路11B的一个实施例。在图4B中,对于范围在200uA和25mA之间的总输出电流IR2,并且对于1和8之间的工作输出数量,电路11B具有在0.5-2μs范围内的开启时间。即便没有对ANO脉冲宽度的任何补偿,这个短的开启时间甚至对于50μs的最短脉冲宽度也是容许的。
    对于图4B中所示的实施例而言,运算放大器的频率响应与总电流IR2和开启的输出的数量无关,因为运算放大器的输出只连接到源晶体管MS的栅极端子。此外,由于如上所述的源晶体管上的大初始电流ID4,MC(1)至MC(n)很快被下拉以便快速开启这些晶体管,而不使用高电流驱动能力的运算放大器。因此,图4B中本发明的开启时间将比基于图4A的电路拓扑的刺激器短很多。
    电路11A、11B可被用于多种刺激装置。在一个实施例中,电路11A、11B的上述优点使得能够在用于治疗神经性疼痛或其他用途的周围植入式神经刺激系统中使用电路11A、11B。
    大约8%的西方(欧盟和美国)人口受到神经性疼痛(归因于神经损伤的慢性顽固性疼痛)的影响。在大约5%的人中,这种疼痛是严重的。有至少20万患者具有涉及神经的慢性顽固性疼痛。神经性疼痛可能非常难以治疗,只有半数患者实现了局部缓解。因此,确定个体患者的最佳治疗仍然具有挑战性。常规治疗包括某些抗抑郁药、抗癫痫药及阿片类药物。然而,这些药物的副作用可能是有害的。在这些情况中的一些情况下,电刺激(包括FES在内)可提供对这种疼痛的有效治疗而不产生与药物相关的副作用。
    脊髓刺激器,其为一种类型的FES设备,是一种用于将脉冲电信号递送至脊髓以控制慢性疼痛的设备。由于电刺激是一种单纯的电治疗并且不导致与药物所致的那些副作用类似的副作用,因此越来越多的医生和患者偏爱将电刺激而不是药物用作疼痛治疗。脊髓刺激(SCS)的确切的疼痛缓解机制尚且未知。SCS试验的科学背景最初基于由Melzack和Wall于1965年首先描述的疼痛闸门控制理论。这个理论假设疼痛由两种传入神经纤维传输。一种是较大的有髓鞘的Aδ纤维,其携带快速强烈疼痛讯息。另一种是较小的无髓鞘的“C”纤维,其传输悸痛性慢性疼痛讯息。称为Aβ的第三类神经纤维是“非疼痛感受型”,这就意味着它不传输疼痛刺激。闸门控制理论宣称,由Aδ和C疼痛纤维传输的信号可被非疼痛感受型Aβ纤维的激活/刺激阻挠并且因此抑制个体对疼痛的感知。因此,神经刺激通过在疼痛讯息到达大脑之前阻滞这些疼痛讯息来提供疼痛缓解。
    目前,SCS大多用在背部手术失败综合征的治疗中,背部手术失败综合征是一种具有由于局部缺血的顽固性疼痛的复杂的局部疼痛综合征。在 所有SCS患者中30%到40%的患者已报告SCS并发症。这就增加了患者疼痛管理的总成本并降低了SCS的功效。常见并发症包括:感染、出血、神经组织损伤、将装置置入了错误的区室、硬件失灵、引线迁移、引线破损、引线连接断开、引线腐蚀、植入部位处的疼痛、发生器过热以及充电器过热。常见并发症的发生率出奇高:9.5%由引线延伸部连接问题所致,6%由于引线破损,22.6%的情况与引线迁移相关,4.5%遭遇感染。
    周围神经病变可能是先天性的或后天性的。后天性周围神经病变的原因包括神经的物理损伤(创伤)、病毒、肿瘤、毒素、自身免疫反应、营养不良、酒精中毒、糖尿病以及血管和代谢紊乱。后天性周围神经病变分为三个大类:由全身性疾病导致的那些、由创伤导致的那些以及由感染或影响神经组织的自身免疫疾病导致的那些。后天性周围神经病变的一个例子是三叉神经痛,其中三叉神经(头部和面部的大神经)的损伤导致面部一侧受到剧烈的闪电般疼痛的急性发作。
    具有周围神经性疼痛的很大部分患者出于各种原因而并未从SCS中受益。然而,这些患者中的许多可经由直接电刺激对应周围神经而获得可接受水平的疼痛缓解。这种疗法称为周围神经刺激(PNS)。然而,在美国市场上没有获FDA批准的PNS设备。标准脊髓刺激器(SCS)设备通常被疼痛医生超说明书用于治疗这种病情。据估计,大约15%的SCS设备已超说明书用于PNS。
    由于当前的市售SCS系统设计用于刺激脊髓而不是用于周围神经刺激,因此相比针对SCS,针对PNS存在更多的与SCS系统的使用相关联的设备并发症。当前的SCS设备(发生器)大而笨重。在将SCS用于PNS的情况下,SCS发生器通常植入在腹部中或者臀部上方的后腰中,并且长引线跨多个关节穿引到达手臂、腿部或面部中的目标周围神经。关节的过度穿引以及跨越引起增加的术后疼痛以及更高的设备故障率。此外,刚性引线可引起皮肤侵蚀和穿透,其中引线故障率在植入的3年内将近100%。大多数并发症导致置换手术以及甚至在某些情况下的多个置换手术。
    图6中示出了周围植入式神经刺激系统600的一个实施例。在一些实施例中,周围植入式神经刺激系统600可用于治疗具有例如源自周围神经的慢性、严重、顽固性神经疼痛的患者。在一些实施例中,周围植入式神经刺激系统600可用于刺激目标周围神经或脊椎的后硬膜外腔隙。
    周围植入式神经刺激系统600可包括一个或若干个脉冲发生器。脉冲发生器可包括各种形状和尺寸,并且可由各种材料制成。在一些实施例中,所述一个或若干个脉冲发生器可生成递送至神经以控制疼痛的电脉冲。在一些实施例中,脉冲发生器可为体外脉冲发生器602或植入式脉冲发生器604。在一些实施例中,体外脉冲发生器602可用于评估用周围植入式神经刺激系统600进行治疗和/或植入式脉冲发生器604的植入的患者适用性。
    植入式脉冲发生器604的尺寸和形状可经设计并且由一定材料制成,以便允许将植入式脉冲发生器604植入到身体内部。在一些实施例中,植入式脉冲发生器604的尺寸和形状可被确定为允许将植入式脉冲发生器604置于身体中的任何所需位置处,并且在一些实施例中,置于周围神经附近使得(下文所述的)引线不跨关节穿引和/或使得不需要延长电缆。在一些实施例中,脉冲发生器,并且具体来说植入式脉冲发生器604和/或体外脉冲发生器602,可结合电路11A、11B中的一者,如图4A和图4B的实施例中的任一者或两者所示。
    在一些实施例中,由脉冲发生器生成的电脉冲可经由一个或数个引线递送至一条或数条神经610和/或至一条或数条神经610附近的组织。引线可包括称为电极的导电部分,以及非导电部分。引线可具有各种形状,可为各种尺寸,并且可由各种材料制成,所述尺寸、形状和材料可由应用或其他因素决定。
    在一些实施例中,引线可包括阳极引线606和/或阴极引线608。在一些实施例中,阳极引线606和阴极引线608可为相同的引线,但可从脉冲发生器接收不同极性的脉冲。
    在一些实施例中,引线可直接连接至脉冲发生器,并且在一些实施例中,引线可经由连接器612和连接器线缆614连接至脉冲发生器。连接器612可包括能够将引线电连接至连接器线缆614的任何设备。同样,连接器线缆可为能够将不同电脉冲传输至阳极引线606和阴极引线608的任何设备。
    在一些实施例中,周围植入式神经刺激系统600可包括充电器616,该充电器可被配置为在植入式脉冲发生器604植入体内时对植入式脉冲发生器604再充电。充电器616可包括各种形状、尺寸和特征结构,并且可 由各种材料制成。在一些实施例中,充电器616可经由电感耦合对植入式脉冲发生器604再充电。
    在一些实施例中,可经由控制器来控制电脉冲的细节。在一些实施例中,这些细节可包括,例如,电脉冲的频率、强度、波形、持续时间或时序和幅值的其他方面。电脉冲的此控制可包括对一个或数个电脉冲程序、脉冲方案或脉冲波形的创建,而在一些实施例中,这可包括对一个或数个已有电脉冲程序、脉冲方案或脉冲波形的选择。在图6所描绘的实施例中,周围植入式神经刺激系统600包括控制器,该控制器为临床医生编程器618。临床医生编程器618可用于创建一个或数个脉冲程序、脉冲方案或脉冲波形和/或用于选择已创建的脉冲程序、脉冲方案或脉冲波形中的一者或数者。在一些实施例中,临床医生编程器618可用于对脉冲发生器的运行进行编程,所述脉冲发生器包括例如体外脉冲发生器602和植入式脉冲发生器604这两者或其一。临床医生编程器618可包括可有线地和/或无线地与脉冲发生器通信的计算设备。在一些实施例中,临床医生编程器618可被进一步配置为从脉冲发生器接收指示脉冲发生器和引线的运行和/或有效性的信息。
    在一些实施例中,周围植入式神经刺激系统600的控制器可包括患者遥控器620。患者遥控器620可包括可经由有线或无线连接与脉冲发生器通信的计算设备。患者遥控器620可用于对脉冲发生器进行编程,并且在一些实施例中,患者遥控器620可包括由临床医生编程器618创建的一个或数个脉冲生成程序、脉冲方案或脉冲波形。在一些实施例中,患者遥控器620可用于选择已有脉冲生成程序、脉冲方案或脉冲波形中的一者或数者,并且选择例如所述一个或数个脉冲生成程序、脉冲方案或脉冲波形中的被选者的持续时间。
    有利的是,周围植入式神经刺激系统600的上文所概述的部件可用于控制并提供电脉冲的生成以减轻患者疼痛。
    虽然已借助具体实施例及其应用描述了本发明,但应当理解,在不脱离本发明的实质和范围的情况下,本领域那些技术人员可对本发明进行多种修改和变型。因此,应当理解,在权利要求书的范围内,可以除本文具体所描述之外以其他方式实践本发明。

    关 键  词:
    具有 快速 开启 时间 流感 输出 电流 刺激
      专利查询网所有文档均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    0条评论

    还可以输入200字符

    暂无评论,赶快抢占沙发吧。

    关于本文
    本文标题:具有快速开启时间的电流感测多输出电流刺激器.pdf
    链接地址:https://www.zhuanlichaxun.net/p-6382013.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
    经营许可证编号:粤ICP备2021068784号-1