幻象电源供电麦克风的远程控制 【技术领域】
本发明涉及一种远程控制麦克风的方法,该麦克风包括从音频放大器,电源供电电路,处理器,控制电子器件,A/D与D/A转换器,LED显示器等的组中选择的至少一个麦克风炭精盒,和至少一个另外的功率接收机,它们的供电是来自通过声频电缆的电缆导线的一个幻象供电单元,即所谓“幻象电源供电”。
背景技术
麦克风的电源供电传统上是由一个电源提供,例如,利用混频器。在幻象电源供电过程中,馈电电压的正极是通过声频电缆的两个电缆导线的两个相等的馈电电阻(feeder residence)来施加。返回的电流从连接到XLR插头的电接头1的第三个导线流过。为能够有效地利用为电容式麦克风的由幻象电源供电提供的电压,麦克风地电流消耗应该尽可能地小,以防止在馈电电阻上的过大的压降。48-V电容式麦克风的最大电流消耗是10mA。根据DIN EN61938(原来的IEC268),幻象电源在这里是标准化的。
为在麦克风膜上产生值通常是在20-100V直流电压范围内的极化电压,可以主要利用组合电路部件或电压转换器。其余的麦克风电子器件一般是由线性调节提供电源,这可将电源馈电电压或电源电流维持在一个预定值。对于具有小功率消耗的麦克风来说,该类型的电源是适当的。当例如由使用处理器,A/D转换器,LED显示器等等造成麦克风中的功率消耗增加时,该线性调节会成为问题。在这种情况下,由幻象电源可获得的能量的一大部分在线性调节器件中被损耗。然而,根据标准,由于幻象电源是由馈电电阻限制电流,所以用于声频放大器的最大供电电压因为在麦克风中的线性调节而立即降低,这导致麦克风的最大音频输出电压的降低。
另外的问题包括极化电压的产生。通常是通过一个高欧姆电阻对麦克风膜施加该电压。这里,所需的功率非常低。用于产生该实际上是无功率极化电压的高效调节器也是难以构造的。
另一个问题是关于麦克风的远程控制。利用麦克风,存在着一种增长的需要,即能通过远程控制来调节或改变重要的麦克风参数。这些参数包括在膜上的极化电压和电容式麦克风的相关灵敏性、麦克风的指向性、幻象电源(12V,24V或48V)的类型、序列号、来自制造商的校准数据、以及信号的减弱程度和用于声频信号的一个可连接滤波器。
DE 3 933 870 A1文件公开了远程控制麦克风参数的一种方法,这些参数如指向性,阶跃声音滤波器或初始阻尼。在该方法中,传送到电缆导线的供电电压是通过一个远程控制单元来调节,例如,在一个混合表中,方式是电压的量值代表麦克风的控制信息。在麦克风这边,供电电压是不耦合的,并应用到一个评估电路,评估电路产生一个控制信号作为供电电压的量的函数。通过数据传输的这一方法,只有少量的控制信息可以被传输到麦克风,因此,也只有一些参数是可以在麦克风中被远程控制。
US 6 028 946 A(和相应的EP 0 794 686 A2)文件公开了一个数字麦克风。音频信号通过一个模拟-数字转换器被数字化,产生的两个通道数字声音信号通过一个对称的两根线导体或一个关联的放大器被传送。麦克风的电源是通过这个对称的两线导体来提供的。顺便间接地提到,在关联的放大器中,脉冲可被调制到麦克风的电源电压上,这用作扬声器设定的远程控制。在上下文中必须指出的是,数字麦克风的概念和数字信号的后续传送完全不同于一个模拟麦克风,其中模拟信号通过幻象电源线来传送。在同时传送数字信号的线路上的另外调制信号的传送不引起任何问题,因为数字音频信号可容易地从一个另外调制信号中分开。
一个另外的迄今未最好地解决的问题是关于在电容式麦克风的膜上极化电压的产生。极化电压的电平是直接包含在麦克风炭精盒的灵敏性的电平中。结果,在极化电压的帮助下,也可能来调节电容式炭精盒的灵敏性。在具有极化电压的单个膜进行单独供电的情形下,结合使用双膜炭精盒,这是特别有利的,因为这些炭精盒不仅允许调节灵敏性,而且允许调节指向性。
如何在固定电阻或微调电阻的帮助下调节极化电压是已知的。在该过程中,在麦克风的组装中,发生极化电压的一次性调节。这里,指向性一度可利用固定的电阻比率被预定。利用该方法,由麦克风炭精盒的组装引起,以及由老化过程引起的灵敏性的容限补偿可能有困难。为了这个目的,在麦克风的组装状态中的灵敏性的音频测量过程中,将需要极化电压的一个补偿。在不同的指向性情况下进行灵敏性的容限补偿也不太可能。
美国4,541,112 A(和对应的EP 0 096 778 B1)号文件公开了一个具有可调节脉冲发生器的电声变换器系统,把电流DC转换成AC。连接到脉冲发生器的一个变压器允许电感去耦单个的功率接收机。供电回路是通过变压器上的分离线圈电感耦合到由脉冲发生器产生的交流电。该文件被包括在本文的描述中,作为参考。
【发明内容】
关于麦克风的电源,需要一种解决办法,其中由幻象电源获得的电源被最优使用,并被转换成如声频放大器,麦克风炭精盒,处理器,控制器,A/D转换器,LED显示器等等单独的输出接收机所需的操作电压。这里,目标将是尽可能大地利用通过幻象电源获得的电源的一部分以给声频放大器供电。
利用一个包括用于单独的电源接收机的电源供电电路的麦克风可达到这些目标,其麦克风的特征表现为,电源供电电路包括一个将通过音频电缆的电缆导线传送的直流电转换为交流电的控制单元,一个连接到控制单元的变压器,和用于单独的电源接收机的供电回路,其中供电回路通过变压器上的分离线圈电感耦合到由控制单元产生的交流电,且这些供电回路间彼此耦合。
在这过程中,上述电源接收机所要求的所有电压是由一个电源供电电路产生,例如由一个DC/DC转换器产生,它具有以下特点。该电源供电电路是以这样的方式来被调节或操作,即有一个对幻象电源单元的电源适配。因此,幻象电源单元可实现的最大可能供电可以总是由麦克风的电源供电电路来消耗。电源供电电路的源电流消耗是恒定的。因此,相对于幻象电源单元,电源供电电路像是一个恒流吸收器。单个电源接收机的单独的供电回路在电源供电电路中通过变压器被去耦合,以用尽可能小的功率损耗去满足单个的功率接收机的不同要求:用于极化电压的高电压和小电流,中等电压和用于声频放大器的中等电流消耗,以及用于数字电子器件的低电压与大电流。
根据本发明,电容式麦克风的有利效果是明显的:利用提出的电源供电概念,由幻象电源单元实现的电能最优地被应用。结果,麦克风可被提供新的功能(例如,远程控制,新的操作概念,自动补偿的可能性,等等),而麦克风的最大声频输出电压保持不变。基本上是无功耗的极化电压的产生实际上是作为由在变压器上的简单的另外的线圈产生的副产品而发生。
一个另外的优势是,作为尽可能高的一个欧姆级的使用结果,在电源供电电路的输入处利用一个恒定的电源,电源供电电路的切换波动或DC/DC转换器的切换波动可非常容易地被过滤掉。
利用在麦克风中增加的适应可能性,如改变极化电压及其灵敏性、双膜炭精盒的指向性的持续变化和存储校准数据的微处理器的控制信号的改变,以及频率范围的修改,最大声频输出电压的修改,或声频放大器的THD的修改,因此存在着一种需要,即通过一个远程控制,基本上以更高速率将据传输到麦克风。
根据本发明,这些目标可以通过远程控制麦克风的方法达到,其特征在于,一个调频电压是作为控制信号被施加到两个电缆导线中的至少一个,通过电缆导线,还可发生幻象供电,以及在麦克风侧的调频电压被施加到一个控制电子器件,例如一个微控制器或一个CPLD(复杂可编程逻辑设备),微控制器或一个CPLD根据调频控制信号可发送命令给单个的功率接收机。
在该方法中,一个调频电压叠加在幻象电源的供电电压上。数据传输是从一个发送器通过声频线路到麦克风,例如,发送器是配置在一个混合表或在混合表之前的一个设备中。FSK调制的载频在这里是高于由麦克风传输的声频范围。
通过利用调频信号传输,与利用直流电的传输相比,可以获得一个基本上更高的数据传输速率。结果,利用一个特定的协议,大量的参数可被传输。用于调制的载频最好是大约100kHz,它们可以利用滤波器从声频信号中分离。
为满足电容式麦克风的极化电压中的低容限的这一要求,例如,考虑到灵敏性,要到达±0.5dB的容限,这需要一种解决办法,允许即使在麦克风的组装状态下也可进行极化电压的灵活调节。
根据本发明,这可通过电容式麦克风来得到,其特征在于,电容式麦克风包括用于调节极化电压的至少一个电路,其中调节极化电压的电路包括提供有一个非调节电压的模拟调节回路,以及一个数字调节回路,其中,数字调节回路包括一个控制电子器件,例如一个微处理器或一个CPLD,提供给模拟调节回路的用于极化电压的一个希望值,它是利用校正因子计算的,以及为了反馈的目的,模拟调节回路的输出是与控制电子器件连接。
在该过程中,极化电压是通过集成在麦克风中的一个电压调节回路来调节。极化电压的希望值是由控制电子器件通过D/A转换器预先建立在该电路中。结果,可执行极化电压的分级微调。极化电压的希望值也可通过远程控制被传输到控制电子器件。获得的极化电压的容限现在取决于参考电压源的容限和热反应。
在麦克风中通过数字控制调节回路的极化电压的调节允许非常精确的、抗干扰的和电容式麦克风的极化电压的远程可控的调节。结果,在电容式麦克风的制造和测量技术验证的过程中,可能获得关于灵敏性和指向性的十分狭窄的容限要求为。极化电压的远程可控调节具有的优势是,通过固定电阻或微调电阻的重新调节不再是必须的;这一事实在成本方面具有一个好的效果。与利用固定不变的极化电压的现有解决办法相比,会出现根据本发明的电容式麦克风有关的下面的另外的可能性。
作为双膜炭精盒的单独特征的函数,在不同地调节指向性的情形下,不同的麦克风灵敏性可被补偿,并且可以存储补偿极化电压所需要的要求校正因子。
例如,与如上所述的远程控制一起,极化电压可以在关闭的麦克风的声频测量过程中被校准,校正因子可再次被存储。
在操作过程中能改变远程控制麦克风的极化电压及其指向效果的是有特别的优势。例如,麦克风在音频上可跟随如在剧场的演出中的移动演员。
根据本发明的电容式麦克风允许麦克风灵敏性的老化引起的重新校准,而没有必要拆卸麦克风,这又意味着消费者费用的节省。在更换麦克风炭精盒的过程中,麦克风的原来的灵敏性因此在以后还可重新调节,也就是说,在合并之后,通过远程控制来调整。
【附图说明】
下面,参考附图进一步解释本发明。在图中:
图1表示根据本发明的具有电源供电电路的一个电容式麦克风的框图;
图2表示根据本发明的具有电源供电电路的一个电容式麦克风的实施例的框图;
图3表示根据当前技术水平的一个晶体管-LED恒定-电源的电路图;
图4表示根据当前技术水平的具有逆向耦合晶体管的恒定电源的电路图;
图5表示连接到远程控制单元的电容式麦克风的一个框图;
图6表示具有用于调节极化电压的集成电路的一个电容式麦克风的框图;和
图7表示调节极化电压的电路,包括一个模拟和一个数字调节回路。
【具体实施方式】
图1是表示根据本发明的一个麦克风的主要部件的一个框图。在图5中所示的麦克风的幻象电源是由幻象供电单元31通过量值相同的馈电电阻32、33来执行的,该馈电电阻32、33是配置在可以在混合表中或混合表之前的例如一个XLR插座的三极插座4的后面。这样的幻象电源是表示在图5中。根据标准,三个幻象电源是可能的:用于12V、24V或48V电源的馈电电阻的相关值分别是680Ω,1.2KΩ,或6.8KΩ。这里的线路1和2代表由幻象供电单元提供的电缆导线;线路3代表通常连接到接地的电缆屏蔽的地线。通过声频电缆,即通过线路1、2与电阻5、6,幻象供电单元31连接到根据本发明的电源供电电路11的输入端。电容7相对于地平滑供电电压。电阻5与6是麦克风中的馈电电阻。使用它们以使麦克风的电源从声频放大器10的输出端去耦。麦克风的馈电电阻5与6被分配作为幻象电源31的另外的内电阻。当幻象供电单元的内电阻等于麦克风中电源供电电路11的内电阻时,存在电能适配(poweradaption)。这样,在功率调节的情况下,一半的幻象电源的电压是用于电源供电电路11的供电电压。可由幻象供电单元31产生的最大的该电能现在是通过电源供电电路11以DC/DC转换器的形式分配给麦克风中所有能耗的部件。剩余电能在这里是由声频放大器10使用,以获得麦克风的尽可能高的最大声频输出电压。关于不同的电源电压(根据标准的12V,24V或48V),可以这样的方式来设计电路,即自动地产生对不同幻象电源的电能适配。该任务然后是由下文描述的控制单元12承担。
电源供电电路11包括一个电源13,一个控制单元12和一个连接到控制单元12的变压器14。具有变压器14的控制单元12形成一个电路单元,其中DC电压转换成AC电压。在该情况下,变压器是振荡发生电路的一部分。一般来说,交流电也可由独立于变压器的控制单元12产生。控制单元12则包括独立于变压器的一个振荡循环,来产生交流电。变压器只起到将交流电转换为单独的输出电压的功能。
在一个优选实施例中,AC信号具有范围为100-130kHz的一个频率。AC信号也可自由振荡;这表示用于这样的电路的最简单实施例的可能性。唯一重要的因素是AC信号的频率范围必须在声频范围之外,以不产生对声频信号的任何干扰,该干扰不能由简单的滤波来消除。另一方面,频率也不应太高,因为否则的话,电路的效率降低,并可能会有传输干扰。
利用100-130kHz的频率的另一个优势是,该频率也可被用作在麦克风中提供的控制电子器件39的周期脉冲。结果,数字技术产生的干扰信号被最小化,因为没有另外混合的产物是在数字周期时间与DC/DC转换器的振荡频率之间产生。
产生的AC信号被施加到变压器14。作为在变压器上单独的分离线圈的结果,形成了分离的电流回路15、16、17,以供给单独的能量消耗部件。该去耦使得,以尽可能小的功率损耗,同时给需要高电压和低电流的消耗部件,以及需要高电流消耗和低电压的消耗部件供电。在单独的供电回路15、16、17中的二极管18、19、20和电容器21、22、23代表将AC电压转换成DC电压的一个整流器电路。当然,来自当前技术水平的更复杂和更高效率的整流器可以在单独的供电回路中提供。供电回路16用于提供给麦克风炭精盒9以极化电压,这是通过电阻8施加到麦克风炭精盒9。
当然本发明不限于电容式麦克风,因为任何种类的麦克风,尤其是动态麦克风可被连接到幻象电源。单独的功率接收机是由幻象供电单元以图1和2中所示的同样方式来供电。但在动态麦克风的情况下,极化电压不是必需的,因此不需要供电回路16。
在DC/DC转换器的输入端的恒流发生器13的使用保证了恒定的源电流的吸收。与幻象供电单元31相比,恒流发生器13像是一个恒流吸收器,它表示电源供电电路11的一个恒流发生器。具有尽可能高欧姆级的恒流发生器13,在其它效果中,简化了DC/AC转换过程中产生的切换波动的滤波,因而它同时防止了在声频信号上的干扰的叠加。该类型的电子组件对于熟悉本领域的技术状态的本领域的技术人员是熟知的。来自当前技术水平的恒流发生器的电路示例示意在图3和4中。图3表示具有双极晶体管的一个“晶体管LED”恒流发生器。关于该电流发生器,LED是工作在电流方向上。结果,一个恒定电压施加给LED,这样的电压也被施加到具有射极电阻的晶体管的基极射极二极管的串行连接上。因此,由该电流发生器带来的电流是I=(ULED-Ubc)/Re,其中UIED是在LED的压降,Ubc是基极射极电压,Re是射极电阻。
图4中的电路包括一个恒流发生器,它具有两个逆向耦合的退化晶体管28、29,以及另外一个集成的恒流发生器30。该电路是优选的,因为从恒流与较高的起始电阻方面考虑,该电路具有更好的特性,因而是优选的。电流发生器30在初始电阻RC上产生一个电压降,该压降等于在晶体管28的射极电阻Re上的电压降URC。这里恒流发生器的电流是I=URc/Re。晶体管29与晶体管28一起形成一个逆向耦合退化系统,以保证在电阻Rc和Re的相同的电压降。结果,电流发生器的电流I也保持恒定。电流发生器30的电流因此是最终流入到DC/DC转换器11的恒流1/100。
当然,也可提供其它类型的恒流发生器,例如,具有反相运算放大器的一个电流发生器,Howland电流发生器等等。
由电源供电电路11产生的用于声频放大器10的供电电压在优选实施例中没有被调节。在麦克风炭精盒9的供电回路16中,在二极管18与电阻8之间提供一个调节电路47、48,包括一个数字调节回路47与一个模拟调节回路48,被提供用于施加到麦克风炭精盒9的极化电压。图6与图7一起表示这样的一个优选远程可控的调节电路47、48。极化电压的调节所需的控制信号可以通过两个电缆导线1与2中的至少一个来传输。这样的调节电路47、48的详细结构与操作方法在下文中描述。如果提供的电流与电压限制不是在数字电路部分已经提供的限制,在其余的供电回路中,也可以提供调节电路。在图1与2的优选实施例中,在声频放大器10的供电回路15中没有提供调节电路。结果,全部的电力(不是使用在其它电路部分,如处理器,控制电子器件39,麦克风炭精盒9的极化电压,A/D或D/A转换器44、46,LED显示器25)可用于声频放大器10。结果,高的最大声频输出电压可以在声频放大器10的电流节省设计中获得,以得到一个高的最大声频输出电压。原则上,作为结果的声频放大器10的供电电压也可超过幻象电源实现的电压。由于电源供电电路11的运作方法,也可能为声频放大器10产生非常简单的正和负的供电电压。结果,声频放大器10也能利用接地作为静止电势。声频放大器(10)的馈电电压因此可以是关于接地对称的。
在一个更有利的实施例中,上述类型的DC/DC转换器11以大约82%的效率工作。因为,即使在最有利的情况下,在DC/DC转换器也有功率损耗,所以如果可能的话,串行连接消耗器件到DC/DC转换器是有利的。作为利用恒流发生器13的结果,可能容易地连接具有恒流消耗的消耗器件,例如逻辑电源24,以为串行地连接到DC/DC转换器11的如控制电子器件39,或LED显示器25,A/D或D/A转换器44、46等实现一个固定直流。
电源供电电路11的相应实施例表示在图2中。与图1相比,不同之处是只有极化电压与用于声频放大器10的电压是通过DC/DC转换器产生。其它消耗器件,像巍获得用于控制电子器件39或LED显示器25的固定的预定直流的逻辑电源24,是串行连接到DC/DC转换器。数字电源的串行连接的DC/DC转换器11充当有源的负载电阻,其中在该电阻中使用的电量不转换成热能,而是以相当大的比例转换成声频放大器10与麦克风炭精盒9上的极化电压所能使用的电源。
如图2所示,与实现参考电压的逻辑电源24或另外的数字电子器件一起,提供一个齐纳二极管27,它特别好地适用于稳定该电压。通过该二极管27,没有被耗的而是由恒流发生器13传递的任何电流被释放到大地。原则上,可以使用任何其它恒流发生器或并联调节器,来替代齐纳二极管27。
释放功率是恒流发生器13的电流与施加到电源供电电路11的电压的乘积。在图1的框图中,整个电压施加给DC/DC转换器11,并且所有电压是通过DC/DC转换器产生。在图2的框图中,电压被分成施加到DC/DC转换器11的一部分和施加到LED25与数字电源的第二个部分。DC/DC转换器代表LED25或数字电源的一个有效的初始电阻。由于数字电源的电流消耗不是恒定的,但电流I通过电流发生器13保持恒定,取决于数字电子器件的工作状态而存在的过剩电流必须通过齐纳二极管27被放出。对于声频放大器10的电源来说,功率P=I×DC/DC转换器的电压×DC/DC转换器的效率是可用的。对于LED与数字电子器件来说,可获得的功率P=I×数字电子器件与LED具有的电压。
为了进行说明,给出一个例子:在不控制的状态下,声频放大器10的电流消耗大约是0.8mA,数字电子器件的电流消耗大约是4.2mA。电流发生器13传送大约是4.7mA的一个恒流。这样在该特定条件下,使数字电子器件的电压不通过DC/DC转换器,而是利用到DC/DC转换器的一个串行连接将是更有利的。甚至,在另外的研究中,可以发现,关于能量更有利的是,如在图1的框图所示的,引导所有需要的电压通过DC/DC转换器。
在该情况下声频放大器10的电源电压的转换可以导致放大器的最大可用功率:P=4.7mA×18V×0.82=69mW。这样在声频放大器10的电压是U=P/I=69mW/0.8mA=55V。该电压是大大高于幻象供电单元31在功率适配过程中传递的24V电压。但是由于在炭精盒9的膜上也产生极化电压,实际获得的声频放大器10的供电电压值是略低于该值,但仍大大高于没有DC/DC转换器时可用的24V电压。
图5表示连接到一个发送器或一个远程控制单元55的麦克风54。重要麦克风参数的远程控制在这里是直接通过声频电缆,即通过线路1、2而发生。控制单元55最好是在混频器上,或配置在其前面。具有参数控制输入端34的微控制器35控制频率调制器36,其输入具有相同电平的调频信号到声频电缆的两个电缆导线1、2。调频信号然后作为共模信号在输入差分放大器42中被抑制。同时,幻象电源单元31的供电电压通过馈电电阻32、33被提供到两个电缆导线1、2。在一个优选实施例中,调频信号被提供给声频电缆的唯一一个导线,即不用于声频信号的导线2。
在一个优选实施例中,调频信号是由FSK(频移键控)或CPFSK(连续相位FSK)来产生。两种调制是数字数据传输技术中已知的方法。原则上,也可能利用ASK(幅移键控)或PSK(相移键控)调制。但是,ASK更可能受到干扰,PSK调制从电路技术的观点看是难以执行。与已知的上述方法的应用相比,在麦克风中使用的情况下,关键因素是调制信号必须从一个模拟信号、声频信号中分离。即使调频信号只馈入不打算用于声频信号的导线2,声频电缆的两个导线1、2之间的电容耦合引起声频信号的干扰。电容耦合取决于声频电缆的构造与长度。因此,尽管控制信号是已知的,但过滤干扰是困难的。
在麦克风中,调频电压是通过滤波器37,如一个带通滤波器从声频信号中分离,包含在其中的控制信息是通过控制电子器件39,如一个微控制器或一个CPLD(复杂可编程逻辑设备)来评价。电缆导线2是通过电容43消除同大地间的耦合作用。控制电子器件39连接到功能是作为电压比较器的一个比较器38的前面。例如,通过控制电子器件39的输出端的命令到达了如图1与2中可看见的电源供电电路11,声频放大器10,处理器,控制电子器件39,A/D或D/A转换器44、46等等。
在两个声频线路1、2的调频是在远程控制单元55中执行,远程控制单元55最好是位于混合表的附近。在远程控制单元55中,一方面,载率必须是在向麦克风54的方向上施加,另一方面,在混合表的方向上,所有调频必须被抑制。只有来自麦克风54的声频信号必须被传输。为使调频的抑制更简单,调制是在具有相同电平的声频线路1、2两者上执行。在远程控制单元55中,结果,调频信号表现为输入差分放大器42的一个共模信号,因而作为常用的模式信号被适当地抑制。在远程控制的第二个变型中,调频只发生在不传输声频信号的线路中,即线路2。在朝向混合表的方向上,在该变型中,调频信号可以通过低通滤波器41的滤波被消除。包括馈电电阻32、33以及差分放大器42和低通滤波器的幻象供电单元31没有必要如图5所示集成在远程控制单元中。例如,它们也可在混合表中提供。
在控制信号从远程控制单元55到麦克风54的传输过程中,为保证控制信号实际已到达控制电子器件39,后者响应控制信号,给远程控制单元55发送一个数据确认消息。数据确认消息也可以是一个调频信号。用于远程控制功能的数据确认消息不是绝对必要的;但这以另外电子器件为代价增加了系统的可靠性。
上述远程控制方法当然不限于电容式麦克风,因为任何种类的类似麦克风尤其是在动态麦克风的单个的功率接收机,可以通过幻象电源来操作。
根据本发明的麦克风可连接到任何标准的幻象电源,而不影响麦克风功能。如果幻象电源包括一个用于远程控制的设备,则麦克风是可远程控制的。在任何其它情形下,麦克风可由直接安装在麦克风上的开关来操作。
图6表示根据本发明的电容式麦克风,其中极化电压的调节是通过两级控制调节回路进行。这里,第二个数字调节回路47是在内部模拟调节回路48之上。结果,在麦克风炭精盒9上能产生一个适于调节的、免于干扰的极化电压。
一个优选的具有控制信息的、通过电缆导线传输、还连接到幻象供电单元31调频信号,经过滤波器37和比较器38到达控制电子器件39。根据本发明的有关麦克风的远程控制的详细表述在上面已经提供。特别是还参见图5。控制电子器件39的控制也可通过在麦克风自身的调节设备或操作器件而进行。也可能的是,控制电子器件连接到一个用于无线传输的无线电或红外线接口,或连接到一个电缆接口。极化电压的控制信号中获得的希望值是由控制电子器件39通过D/A转换器46传送到模拟调节48。替代D/A转换器,也可以使用一个脉冲宽度调制电路(PWM)。尽管PWM电路具有较低的转换速率,但它们廉价,因此十分适于调节这些转换器中的恒定电平。图7是一个实施例示例,表示控制电子器件39,例如是一个微控制器或一个CPLD,如何与D/A转换器或PWM46一起作用于模拟调节回路48。许多模拟调节回路在当前技术水平中是已知的,了解本发明的技术人员容易选择这样的调节回路的元件。如图6中所示意的,模拟调节回路48包括一个调节电路56和一个分压器49、50。调节电路56或全部模拟调节回路48的细节是表示在图7中。
模拟调节回路48最好是由具有一个约为100-120V的非调节电压的一个电源供电电路11来提供。DC/DC转换器可以是与上述相同的类型,或与图1与2中所示的相同。电阻5和6是麦克风中的馈电电阻。它们用于去除麦克风的电源和声频放大器10的输出间的耦合作用。电阻5和6在大小上是相同的,以保持线路1与2的对称。
当然本发明不限于电容式麦克风供电的幻象电源。例如,电容式麦克风的单个功率接收机的电源也可由位于麦克风中的电池提供。
由D/A转换器或PWM46提供的希望值,或更准确地说,极化电压的校正值是通过运算放大器52与实际值相比较。希望值是根据在麦克风的制造过程中测量的校准数据来计算,并编程进入控制电子器件。作为这种计算的一个参考值,可以利用导线上的一个准确参考电压45或在打印测试(print measurement)过程中被编程进入控制电子器件的一个参考电压。例如,参考电压45可以由逻辑电源24实现。这样的逻辑电源24,最好是由DC/DC转换器11来馈送,这没表示在图7中,而是表示在图1与2中。
为抑制高频干扰对模拟调节回路48的干扰影响,一个优选实施例提供了在D/A转换器或PWM46与模拟调节回路48的输入端之间的一个低通滤波器51,如在图7中所示。模拟调节回路48产生的实际值通过分压器49、50被吸收,并通过一个阻抗转换器53施加到运算放大器52的反相输入端。反馈电路加上阻抗转换器不包含在图6的示意图中。同时,该电压也被加到数字调节回路47的A/C转换器44的输入上。作为结果的数字信号是作为反馈作用于控制电子器件39的。结果,外部数字调节回路47被关闭。在图7中,分压器由电阻49、50表示,通过分压器可以吸收实际值。如在图7中所示,A/D转换器44,控制电子器件39,以及D/A转换器46也可集成在一个单个部件中。
作为模拟调节48的输出,可以得到调节的极化电压,它通过高欧姆电阻8被加到麦克风炭精盒9。计算一个调节的和免于干扰的极化电压所需要的校正电压或相应的校正因子可对应于不同设定,这反映出特定的灵敏性,导向特性,和老化参数;它们也可存储在控制电子器件39提供的存储器中,并随时可以访问。
这些校正因子可以由具有关闭麦克风的远程控制在以后改变(例如,在服务部门或通过销售商,以及也可能是由消费者)。除了可由老化或由麦克风炭精盒的替代而形成的麦克风特征的可能校正之外,现场的消费者特殊的麦克风调谐也因而是可能的。
本发明不限于单独的这些实施例示例。当然,也可以想到的是,可利用其中合并了上述电路的全部或至少一些上述电路的麦克风。例如,所有远程可控的组件的远程控制可以在麦克风中提供;同样,电源供电电路11可提供所有麦克风中想象到的功率接收机的电源。