书签 分享 收藏 举报 版权申诉 / 8

基于多小波的水电机组状态监测数据降噪方法.pdf

  • 上传人:Y0****01
  • 文档编号:6064399
  • 上传时间:2019-04-06
  • 格式:PDF
  • 页数:8
  • 大小:557.60KB
  • 摘要
    申请专利号:

    CN201611133669.3

    申请日:

    2016.12.10

    公开号:

    CN106778592A

    公开日:

    2017.05.31

    当前法律状态:

    实审

    有效性:

    审中

    法律详情:

    实质审查的生效IPC(主分类):G06K 9/00申请日:20161210|||公开

    IPC分类号:

    G06K9/00

    主分类号:

    G06K9/00

    申请人:

    国网福建省电力有限公司; 国家电网公司; 福建水口发电集团有限公司

    发明人:

    庄明; 张瑞清; 郑杰; 黄建荧; 林家洋; 吴昌旺; 魏运水; 王昕; 肖志怀; 卢娜

    地址:

    350003 福建省福州市鼓楼区五四路257号

    优先权:

    专利代理机构:

    福州元创专利商标代理有限公司 35100

    代理人:

    蔡学俊

    PDF完整版下载: PDF下载
    内容摘要

    本发明提供一种基于多小波的水电机组状态监测数据降噪方法,对采集到的振动信号进行预处理和多小波分解,得到多个频段的尺度系数和小波系数,利用阈值函数对多小波系数进行处理,并将处理后的系数进行多小波重构和后处理,达到减少信号中的噪声成分,提高振动信号信噪比的目的。多小波相邻系数降噪方法考虑了多小波相邻系数之间的相关特性,能够有效降低所采集信号中的噪声成分,本发明研究多小波相邻系数降噪方法在水电机组信号降噪过程中的应用,获取真实有效的信号成分,为水电机组故障的准确诊断提供可靠的数据。

    权利要求书

    1.一种基于多小波的水电机组状态监测数据降噪方法,其特征在于,
    假设实际观察到的信号s[n]由真实有用信号f[n]和一定的噪声成分z[n]组成,即:
    N为自然数;
    其中,z[n]为方差为σ2,独立同分布,均值为零的高斯白噪声信号,则多小波相邻系数降
    噪步骤为:
    步骤S1:对含噪信号s[n]进行预处理;
    步骤S2:利用多小波的Mallat算法对预处理后的信号进行L层多小波分解,得到L个二
    维多小波系数序列和一个二维多尺度系数序列;
    步骤S3:根据鲁棒协方差矩阵估计方法计算Vj,具体方法如下:
    定义:,其中,abs(•)为绝对值函数,
    median(•)为中值函数;设a1、a2、b1、b2为实数,Vj为2×2实数矩阵,row1与row2分别为多小波
    系数wj,k的第一行和第二行数据序列;
    计算a1、a2、b1、b2:




    计算Vj




    步骤S4:利用,计算,其中k代表多小波系数标号;
    步骤S5:利用将与其相邻的系数结合,得到包含相邻
    系数信息的值,其中,为非负整数;
    步骤S6:根据,利用阈值函数对多小波系数进行处理,得到去噪后的多小波
    系数,阈值函数主要包括硬阈值函数和软阈值函数;
    步骤S7:利用多小波的Mallat算法对去噪后的多小波系数和多尺度系数进行重构;
    步骤S8:对多小波重构的结果进行多小波后处理,得到去噪后的信号。
    2.根据权利要求1所述的基于多小波的水电机组状态监测数据降噪方法,其特征在于:
    其中步骤S5中,。

    说明书

    基于多小波的水电机组状态监测数据降噪方法

    技术领域

    本发明涉及一种基于多小波的水电机组状态监测数据降噪方法。

    背景技术

    水电能源是重点开发的新能源。在水电开发规模大幅增长的同时,作为水电厂的
    核心关键设备,水电机组也在向大型化、复杂化、集成化、精密化、自动化等方向发展。在这
    种形势下,水电机组的安全性问题也日趋突出。水电机组启、停速度快,负荷调整方便,在电
    网中常常担负调峰、调频、负荷备用等任务,其运行情况不仅关系到水电机组自身的安全,
    而且对整个电网的安全也具有重要影响。因此,为确保水电机组和电网安全、稳定运行,提
    高设备利用率,避免重大经济损失和人员伤亡,必须对水电机组进行合理的维护和检修。

    水电机组故障诊断的主要步骤包括:1)采集水电机组相关信号;2)对采集的信号
    进行降噪预处理,提高信号信噪比;3)利用信号处理方法对降噪后的信号进行处理,提取有
    效的故障特征;4)将所提取的故障特征从水电机组的故障特征空间映射到机组的故障模式
    空间中,实现机组故障类型的识别。在这些步骤当中,水电机组的故障特征提取和故障诊断
    方法的研究是水电机组故障诊断技术研究的两个难点与热点。

    故障特征提取是指从原始数据中削弱或去除与故障诊断无关的,以及对故障诊断
    结果准确性造成不良影响的信息,提取能够突显不同故障类别之间差别的故障特征的完整
    过程,其目的是简化故障诊断过程,增强故障诊断结果的准确性。换句话说,机械设备故障
    特征提取是为故障诊断服务的,所提取的故障特征结果关系到故障诊断过程的复杂性和故
    障诊断结果的准确性。水电机组故障特征提取的实现需要借助先进的信号处理方法,探索
    有效的故障特征提取途径,为水电机组故障的准确识别提供有效的数据支撑。目前,用于故
    障特征提取的信号处理方法大致可以分为时域分析、频域分析和时频分析方法三种。

    (1)时域分析方法具有简单、直观等优点,但是,在设备某些故障状态下采集的振
    动信号往往表现出一定的频率特征,而时域分析方法却无法体现信号的频率特性,这使得
    其应用具有一定的局限性。

    (2)频域分析方法实质上是信号的整体变换,其应用是建立在信号平稳性假设的
    前提之下的,对于非平稳信号,FT无法体现信号在时间域上的局部细节特征,这使得其应用
    受到了一定的限制。

    (3)时频分析方法:Wigner-Ville 分布(Wigner-Ville Distribution,WVD)属于
    二次型变换,存在交叉干扰项,尤其是对多分量信号和在信号频率成分较为接近时,该现象
    更为严重。短时傅里叶变换(Short Time Fourier Transform,STFT)窗口大小和形状是预
    先确定的,在信号处理过程中无法改变,使得其分辨率较为单一,在某些情况下,难以满足
    实际需要。Hilbert-Huang变换(Hilbert-Huang Transform,HHT)缺乏完整的数学理论基
    础,存在端点效应,对噪声干扰的鲁棒性差等,仍需要在应用过程中进行不断的完善。

    发明内容

    本发明的目的是提供一种基于多小波的水电机组状态监测数据降噪方法。

    为实现上述目的,本发明采用以下技术方案:假设实际观察到的信号s[n]由真实
    有用信号f[n]和一定的噪声成分z[n]组成,即:,N为自然数;其
    中,z[n]为方差为σ2,独立同分布,均值为零的高斯白噪声信号,则多小波相邻系数降噪
    步骤为: 步骤S1:对含噪信号s[n]进行预处理;步骤S2:利用多小波的Mallat算法对预处
    理后的信号进行L层多小波分解,得到L个二维多小波系数序列和一个二维多尺度系数
    序列;步骤S3:根据鲁棒协方差矩阵估计方法计算Vj,具体方法如下:定义:
    ,其中,abs(•)为绝对值函数,median
    (•)为中值函数;设a1、a2、b1、b2为实数,Vj为2×2实数矩阵,row1与row2分别为多小波系数
    wj,k的第一行和第二行数据序列;

    计算a1、a2、b1、b2:





    计算Vj





    步骤S4:利用,计算,其中k代表多小波系数标号;步骤S5:利用
    将与其相邻的系数结合,得到包含相邻系数信息的值
    ,其中,为非负整数; 步骤S6:根据,利用阈值函数对多小波系数进行处理,得
    到去噪后的多小波系数,阈值函数主要包括硬阈值函数和软阈值函数;

    步骤S7:利用多小波的Mallat算法对去噪后的多小波系数和多尺度系数进行重构;

    步骤S8:对多小波重构的结果进行多小波后处理,得到去噪后的信号。

    较佳的,步骤S5中,m=2。

    与现有技术相比,本发明具有以下优点:多小波相邻系数降噪方法考虑了多小波
    相邻系数之间的相关特性,能够有效降低所采集信号中的噪声成分,本发明研究多小波相
    邻系数降噪方法在水电机组信号降噪过程中的应用,获取真实有效的信号成分,为水电机
    组故障的准确诊断提供可靠的数据。

    附图说明

    图1为本发明的主要流程图。

    具体实施方式

    下面具体实施例对本发明做进一步解释说明。

    水电机组所采集的信号经过多小波高通滤波器和低通滤波器等处理后,得到的多
    小波系数与其相邻系数之间存在一定的相关性,因此,利用多小波相邻系数降噪方法对水
    电机组采集的信号进行降噪能够取得良好的降噪效果。

    本发明拟对采集到的振动信号进行预处理和多小波分解,得到多个频段的尺度系
    数和小波系数,利用阈值函数对多小波系数进行处理,并将处理后的系数进行多小波重构
    和后处理,达到减少信号中的噪声成分,提高振动信号信噪比的目的。最后将检验可行的研
    究成果应用到水口发电集团集控中心状态监测数据上,对电厂实际信号进行消噪处理。

    假设实际观察到的信号s[n]由真实有用信号f[n]和一定的噪声成分z[n]组成,
    即:

    N为自然数;

    其中,z[n]为方差为σ2,独立同分布,均值为零的高斯白噪声信号,则多小波相邻系数
    降噪步骤为:

    (1)研究现有多小波预处理方法,从中选择适用于水电机组信号降噪的一种,对含噪信
    s[n]进行预处理。

    (2)利用多小波的Mallat算法对预处理后的信号进行L层多小波分解,得到L个二
    维多小波系数序列和一个二维多尺度系数序列。

    (3)根据鲁棒协方差矩阵估计方法计算Vj,具体方法如下:

    1)定义:,其中,abs(•)为绝对值函数,
    median(•)为中值函数;设a1、a2、b1、b2为实数,Vj为2×2实数矩阵,row1与row2分别为多小波
    系数wj,k的第一行和第二行数据序列;

    2)计算a1、a2、b1、b2:





    计算Vj





    (4)利用,计算,其中k代表多小波系数标号。

    (5)利用将与其相邻的系数结合,得到包含相邻系数信
    息的值,其中,为非负整数,研究表明,取2时降噪效果较好,因此,本文采用。

    (6)根据,利用阈值函数对多小波系数进行处理,得到去噪后的多小波系数
    ,阈值函数主要包括硬阈值函数和软阈值函数。

    (7)利用多小波的Mallat算法对去噪后的多小波系数和多尺度系数进行重构。

    参见图1,将本发明应用在具体实施例中,构建发电集团水电机组故障诊断诊断模
    型。为发电集团水电机组运行检修提供依据,指导机组安全稳定运行:

    1、探求水电机组故障机理,建立水电机组故障特征集

    通过大量阅读文献,研究现有研究成果和建立水电机组动力学模型等方式,探求水电
    机组故障机理,初步确定哪些特征参数对故障敏感性较强,用于指导建立原始水电机组故
    障特征集。结合发电集团各机组实际情况,将已得到的故障特征进行完善,进而建立适合水
    口发电集团的机组故障特征集。

    、收集水电机组故障样本,用于故障特征自适应提取研究

    通过发电集团水电机组状态监测系统采集水电机组故障样本,同时结合实验室转子实
    验台模拟多种机组故障,获取不同故障情况下的信号样本,为水电机组故障特征自适应提
    取研究提供数据支撑。

    、基于多小波的水电机组信号降噪研究。具体方法如上所述

    4、基于多小波的水电机组故障特征自适应提取方法研究

    为了从大量特征参数中获取对故障敏感性较强的特征参数,提高后续故障诊断结果的
    准确性,利用自适应多小波,并结合遗传算法与敏感性评估指标对水电机组故障特征参数
    进行寻优,获取低维强敏感故障特征。

    、基于贝叶斯网络的水电机组故障诊断方法研究

    本发明拟采用专家经验指定贝叶斯网络各参数间的因果关系即网络结构,通过参数学
    习获得贝叶斯网络的条件概率表CPT,进而搭建起水电机组故障诊断贝叶斯网络,对机组故
    障模式进行识别。首先,将特征提取的结果利用SOM神经网络进行数据属性离散化。然后,经
    过贝叶斯网络参数学习确定先验概率,搭建贝叶斯网络。最后,通过簇树推理算法计算已知
    故障征兆下不同故障模式的后验概率。

    、构建水电机组故障诊断模型

    综合基于多小波的水电机组信号降噪方法研究、水电机组故障特征自适应提取方法研
    究,基于贝叶斯网络的水电机组故障诊断方法研究的研究成果,构建水电机组故障诊断模
    型,并根据水电机组故障诊断实际问题对方法进行测试和改进。

    以上是本发明的较佳实施例,凡依本发明技术方案所作的改变,所产生的功能作
    用未超出本发明技术方案的范围时,均属于本发明的保护范围。

    关 键  词:
    基于 多小波 水电 机组 状态 监测 数据 方法
      专利查询网所有文档均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    0条评论

    还可以输入200字符

    暂无评论,赶快抢占沙发吧。

    关于本文
    本文标题:基于多小波的水电机组状态监测数据降噪方法.pdf
    链接地址:https://www.zhuanlichaxun.net/p-6064399.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
    经营许可证编号:粤ICP备2021068784号-1